Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.197
Filtrar
1.
Subcell Biochem ; 104: 1-16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963480

RESUMEN

The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.


Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Microscopía por Crioelectrón , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
2.
Front Microbiol ; 15: 1429692, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983634

RESUMEN

Introduction: Chlorhexidine (CHX) is a commonly used antiseptic in situations of limited oral hygiene ability such as after periodontal surgery. However, CHX is also considered as a possible factor in the emergence of cross-resistance to antibiotics. The aim of this study was to analyze the changes in the oral microbiota and the prevalence of antimicrobial resistance genes (ARGs) due to CHX treatment. Materials and methods: We analyzed the oral metagenome of 20 patients who applied a 0.2% CHX mouthwash twice daily for 4 weeks following periodontal surgical procedures. Saliva and supragingival plaque samples were examined before, directly after 4 weeks, and another 4 weeks after discontinuing the CHX treatment. Results: Alpha-diversity decreased significantly with CHX use. The Bray-Curtis dissimilarity increased in both sample sites and mainly streptococci showed a higher relative abundance after CHX treatment. Although no significant changes of ARGs could be detected, an increase in prevalence was found for genes that encode for tetracycline efflux pumps. Conclusion: CHX treatment appears to promote a caries-associated bacterial community and the emergence of tetracycline resistance genes. Future research should focus on CHX-related changes in the microbial community and whether the discovered tetracycline resistance genes promote resistance to CHX.

3.
Animals (Basel) ; 14(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998066

RESUMEN

Considering that certain catabolic products of anaerobic chlorophyll degradation inhibit efflux pump activity, this study was conducted to test if feeding pigs a water-soluble chlorophyllin product could affect the antibiotic resistance profiles of select wild-type populations of fecal bacteria. Trial 1 evaluated the effects of chlorophyllin supplementation (300 mg/meal) on fecal E. coli and enterococcal populations in pigs fed twice daily diets supplemented without or with ASP 250 (containing chlortetracycline, sulfamethazine and penicillin at 100, 100 and 50 g/ton, respectively). Trial 2, conducted similarly, evaluated chlorophyllin supplementation in pigs fed diets supplemented with or without 100 g tylosin/ton. Each trial lasted 12 days, and fecal samples were collected and selectively cultured at 4-day intervals to enumerate the total numbers of E. coli and enterococci as well as populations of these bacteria phenotypically capable of growing in the presence of the fed antibiotics. Performance results from both studies revealed no adverse effect (p > 0.05) of chlorophyllin, antibiotic or their combined supplementation on average daily feed intake or average daily gain, although the daily fed intake tended to be lower (p = 0.053) for pigs fed diets supplemented with tylosin than those fed diets without tylosin. The results from trial 1 showed that the ASP 250-medicated diets, whether without or with chlorophyllin supplementation, supported higher (p < 0.05) fecal E. coli populations than the non-medicated diets. Enterococcal populations, however, were lower, albeit marginally and not necessarily significantly, in feces from pigs fed the ASP 250-medicated diet than those fed the non-medicated diet. Results from trial 2 likewise revealed an increase (p < 0.05) in E. coli and, to a lesser extent, enterococcal populations in feces collected from pigs fed the tylosin-medicated diet compared with those fed the non-medicated diet. Evidence indicated that the E. coli and enterococcal populations in trial 1 were generally insensitive to penicillin or chlortetracycline, as there were no differences between populations recovered without or with antibiotic selection. Conversely, a treatment x day of treatment interaction observed in trial 2 (p < 0.05) provided evidence, albeit slight, of an enrichment of tylosin-insensitive enterococci in feces from the pigs fed the tylosin-medicated but not the non-medicated diet. Under the conditions of the present study, it is unlikely that chlorophyllin-derived efflux pump inhibitors potentially present in the chlorophyllin-fed pigs were able to enhance the efficacy of the available antibiotics. However, further research specifically designed to optimize chlorophyll administration could potentially lead to practical applications for the swine industry.

4.
Mar Pollut Bull ; 206: 116712, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39018820

RESUMEN

To evaluate the antibiotic susceptibility of Vibrio parahaemolyticus from prawns and oysters marketed in Zhanjiang, Guangdong, China. 84 strains of V. parahaemolyticus were isolated from prawns and oysters sampled from 9 major markets. The results showed that 84 V. parahaemolyticus strains had the highest rate of antibiotic resistance to oxytetracycline (69.05 %, 58/84) and the lowest rate of antibiotic resistance to enrofloxacin (1.19 %, 1/84), ciprofloxacin (4.76 %, 4/84) and norfloxacin (7.14 %, 6/84) in quinolone. Meanwhile, 96.42 % of the strains showed multiple antibiotic resistance (MAR). PCR results showed that the resistance phenotype was closely related to the antibiotic resistance genes and efflux pump genes (p < 0.01), and the efflux pump gene was the key causing MAR. The combination of antibiotics significantly eliminated multidrug resistance. In addition, efflux pump inhibitors also reduce MAR. This study may provide information on antibiotic susceptibility, antibiotic resistance and strategies for the control of V. parahaemolyticus.

5.
Sci Rep ; 14(1): 16483, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39013998

RESUMEN

The drug efflux pump is a crucial mechanism implicated in resistance to multiple antimicrobials. Thymoquinone (TQ) has evidently demonstrated multiple activities, antibacterial being the most effective. Knowledge about TQ activity against multidrug-resistant Staphylococcus aureus is very scarce. Therefore, the present study was conducted to investigate TQ resistance modulation in ciprofloxacin (CIP) and doxycycline (DO) multidrug-resistant S. aureus. Forty-seven samples were collected from different sources, and S. aureus was isolated and identified. Then, S. aureus resistance profiles to antimicrobials, N. sativa essential oil, and TQ; the correlation between TQ-MIC readings and disc diffusion; cartwheel and ethidium bromide (EtBr) accumulation assays; and norA gene expression were all described within silico molecular docking for TQ interactions with norA efflux pump protein. TQ-MICs ranged from 5-320 µg/ml. TQ down-regulated norA gene expression, resulting in a drop in efflux pump activity of 77.5-90.6% in the examined strains, comparable to that observed with verapamil. Exposure of S. aureus strains to CIP and DO raises the initial basal efflux pumping expression to 34.2 and 22.9 times, respectively. This induced efflux pumping overexpression was substantially reduced by 97.7% when TQ was combined with CIP or DO. There was a significant reduction of MICs of CIP and DO MICs by 2-15 and 2-4 folds, respectively, after treatment with 0.5XMIC-TQ in resistance modulation assays. These results refer to TQ ligand inhibitory interactions with NorA protein in molecular docking. Interpretations of inhibition zone diameters (IZDs) of disc diffusion and TQ-MICs exhibit independence of MICs from IZDs, as indicated by invalid linear regression analysis. TQ significantly reduced efflux pumping S. aureus induced by CIP and DO, but further investigations are needed to improve TQ-pharmacokinetics to restore CIP and DO activity and suppress fluoroquinolone and doxycycline-resistant S. aureus selection in clinical and animal settings.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Benzoquinonas , Ciprofloxacina , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Staphylococcus aureus , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Benzoquinonas/farmacología , Benzoquinonas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Doxiciclina/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
6.
J Leukoc Biol ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011942

RESUMEN

The emergence and propagation of bacteria resistant to antimicrobial drugs is a serious public health threat worldwide. The current antibacterial arsenal is becoming obsolete and the pace of drug development is decreasing, highlighting the importance of investment in alternative approaches to treat or prevent infections caused by antimicrobial-resistant bacteria. A significant mechanism of antimicrobial resistance employed by Gram-negative bacteria is the overexpression of efflux pumps that can extrude several compounds from the bacteria, including antimicrobials. The overexpression of efflux pump proteins has been detected in several multidrug resistant (MDR) Gram-negative bacteria, drawing attention to these proteins as potential targets against these pathogens. This review will focus on the role of outer membrane proteins (OMPs) from efflux pumps as potential vaccine candidates against clinically relevant MDR Gram-negative bacteria, discussing advantages and pitfalls. Additionally, we will explore the relevance of efflux pump OMP diversity and the possible impact of vaccination on microbiota.

7.
Microbiology (Reading) ; 170(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900549

RESUMEN

Long-term administration of certain macrolides is efficacious in patients with persistent pulmonary Pseudomonas aeruginosa infection, despite how limited the clinically achievable concentrations are, being far below their MICs. An increase in the sub-MIC of macrolide exposure-dependent sensitivity to nitrosative stress is a typical characteristic of P. aeruginosa. However, a few P. aeruginosa clinical isolates do not respond to sub-MIC of macrolide treatment. Therefore, we examined the effects of sub-MIC of erythromycin (EM) on the sensitivity to nitrosative stress together with an efflux pump inhibitor (EPI) phenylalanine arginyl ß-naphthylamide (PAßN). The sensitivity to nitrosative stress increased, suggesting that the efflux pump was involved in inhibiting the sub-MIC of macrolide effect. Analysis using efflux pump-mutant P. aeruginosa revealed that MexAB-OprM, MexXY-OprM, and MexCD-OprJ are factors in reducing the sub-MIC of macrolide effect. Since macrolides interfere with quorum sensing (QS), we demonstrated that the QS-interfering agent furanone C-30 (C-30) producing greater sensitivity to nitric oxide (NO) stress than EM. The effect of C-30 was decreased by overproduction of MexAB-OprM. To investigate whether the increase in the QS-interfering agent exposure-dependent sensitivity to nitrosative stress is characteristic of P. aeruginosa clinical isolates, we examined the viability of P. aeruginosa treated with NO. Although treatment with EM could reduce cell viability, a high variability in EM effects was observed. Conversely, C-30 was highly effective at reducing cell viability. Treatment with both C-30 and PAßN was sufficiently effective against the remaining isolates. Therefore, the combination of a QS-interfering agent and an EPI could be effective in treating P. aeruginosa infections.


Asunto(s)
Antibacterianos , Eritromicina , Furanos , Proteínas de Transporte de Membrana , Pruebas de Sensibilidad Microbiana , Estrés Nitrosativo , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Percepción de Quorum/efectos de los fármacos , Antibacterianos/farmacología , Estrés Nitrosativo/efectos de los fármacos , Eritromicina/farmacología , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Furanos/farmacología , Dipéptidos/farmacología , Macrólidos/farmacología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Humanos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
8.
Comput Struct Biotechnol J ; 23: 2358-2374, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38873647

RESUMEN

Secondary active transporters shuttle substrates across eukaryotic and prokaryotic membranes, utilizing different electrochemical gradients. They are recognized as one of the antimicrobial efflux pumps among pathogens. While primary active transporters within the genome of C. difficile 630 have been completely cataloged, the systematical study of secondary active transporters remains incomplete. Here, we not only identify secondary active transporters but also disclose their evolution and role in drug resistance in C. difficile 630. Our analysis reveals that C. difficile 630 carries 147 secondary active transporters belonging to 27 (super)families. Notably, 50 (34%) of them potentially contribute to antimicrobial resistance (AMR). AMR-secondary active transporters are structurally classified into five (super)families: the p-aminobenzoyl-glutamate transporter (AbgT), drug/metabolite transporter (DMT) superfamily, major facilitator (MFS) superfamily, multidrug and toxic compound extrusion (MATE) family, and resistance-nodulation-division (RND) family. Surprisingly, complete RND genes found in C. difficile 630 are likely an evolutionary leftover from the common ancestor with the diderm. Through protein structure comparisons, we have potentially identified six novel AMR-secondary active transporters from DMT, MATE, and MFS (super)families. Pangenome analysis revealed that half of the AMR-secondary transporters are accessory genes, which indicates an important role in adaptive AMR function rather than innate physiological homeostasis. Gene expression profile firmly supports their ability to respond to a wide spectrum of antibiotics. Our findings highlight the evolution of AMR-secondary active transporters and their integral role in antibiotic responses. This marks AMR-secondary active transporters as interesting therapeutic targets to synergize with other antibiotic activity.

9.
mSphere ; : e0037724, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888334

RESUMEN

Klebsiella pneumoniae is an important opportunistic pathogen that causes a variety of infections. It is critical for bacteria to maintain metal homeostasis during infection. By using an isogenic mntP deletion mutant of K. pneumoniae strain NTUH-K2044, we found that MntP was a manganese efflux pump. Manganese increased the tolerance to oxidative stress, and oxidative stress could increase the intracellular manganese concentration. In oxidative stress, the mntP deletion mutant exhibited significantly higher sensitivity to manganese. Furthermore, iron could increase the tolerance of the mntP deletion mutant to manganese. Inductively coupled plasma mass spectrometry analysis revealed that the mntP deletion mutant had higher intracellular manganese and iron concentrations than wild-type and complementary strains. These findings suggested that iron could increase manganese tolerance in K. pneumoniae. This work elucidated the role of MntP in manganese detoxification and Mn/Fe homeostasis in K. pneumoniae.IMPORTANCEMetal homeostasis plays an important role during the process of bacterial infection. Herein, we revealed that MntP was involved in intracellular manganese homeostasis. Manganese promoted resistance to oxidative stress in Klebsiella pneumoniae. Furthermore, we demonstrated that the mntP deletion mutant exhibited significantly lower survival under manganese and H2O2 conditions. Oxidative stress increased the intracellular manganese content of the mntP deletion mutant. MntP played a critical role in maintaining intracellular manganese and iron concentrations. MntP contributed to manganese detoxification and Mn/Fe homeostasis in K. pneumoniae.

10.
Virulence ; 15(1): 2367648, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38899601

RESUMEN

The emergence of multidrug-resistant bacteria poses a significant threat to human health, necessitating a comprehensive understanding of their underlying mechanisms. Uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, is frequently associated with multidrug resistance and recurrent infections. To elucidate the mechanism of resistance of UPEC to beta-lactam antibiotics, we generated ampicillin-resistant UPEC strains through continuous exposure to low and high levels of ampicillin in the laboratory, referred to as Low AmpR and High AmpR, respectively. Whole-genome sequencing revealed that both Low and High AmpR strains contained mutations in the marR, acrR, and envZ genes. The High AmpR strain exhibited a single additional mutation in the nlpD gene. Using protein modeling and qRT-PCR analyses, we validated the contributions of each mutation in the identified genes to antibiotic resistance in the AmpR strains, including a decrease in membrane permeability, increased expression of multidrug efflux pump, and inhibition of cell lysis. Furthermore, the AmpR strain does not decrease the bacterial burden in the mouse bladder even after continuous antibiotic treatment in vivo, implicating the increasing difficulty in treating host infections caused by the AmpR strain. Interestingly, ampicillin-induced mutations also result in multidrug resistance in UPEC, suggesting a common mechanism by which bacteria acquire cross-resistance to other classes of antibiotics.


Asunto(s)
Ampicilina , Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Mutación , Infecciones Urinarias , Escherichia coli Uropatógena , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/efectos de los fármacos , Animales , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones Urinarias/microbiología , Infecciones por Escherichia coli/microbiología , Ratones , Antibacterianos/farmacología , Ampicilina/farmacología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Humanos , Pruebas de Sensibilidad Microbiana , Secuenciación Completa del Genoma
11.
Viruses ; 16(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38932150

RESUMEN

Filamentous bacteriophages belonging to the order Tubulavirales, family Inoviridae, significantly affect the properties of Gram-negative bacteria, but filamentous phages of many important pathogens have not been described so far. The aim of this study was to examine A. baumannii filamentous phages for the first time and to determine their effect on bacterial virulence. The filamentous phages were detected in 15.3% of A. baumannii strains as individual prophages in the genome or as tandem repeats, and a slightly higher percentage was detected in the culture collection (23.8%). The phylogenetic analyses revealed 12 new genera within the Inoviridae family. Bacteriophages that were selected and isolated showed structural and genomic characteristics of the family and were unable to form plaques. Upon host infection, these phages did not significantly affect bacterial twitching motility and capsule production but significantly affected growth kinetics, reduced biofilm formation, and increased antibiotic sensitivity. One of the possible mechanisms of reduced resistance to antibiotics is the observed decreased expression of efflux pumps after infection with filamentous phages.


Asunto(s)
Acinetobacter baumannii , Biopelículas , Genoma Viral , Filogenia , Acinetobacter baumannii/virología , Acinetobacter baumannii/genética , Biopelículas/crecimiento & desarrollo , Inovirus/genética , Inovirus/fisiología , Inovirus/aislamiento & purificación , Especificidad del Huésped , Antibacterianos/farmacología , Virulencia , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Bacteriófagos/clasificación , Profagos/genética , Profagos/fisiología
12.
Arch Microbiol ; 206(7): 325, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913205

RESUMEN

The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.


Asunto(s)
Antibacterianos , Bacterias , Farmacorresistencia Bacteriana Múltiple , Fitoquímicos , Antibacterianos/farmacología , Antibacterianos/química , Fitoquímicos/farmacología , Fitoquímicos/química , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos
13.
Antibiotics (Basel) ; 13(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38927168

RESUMEN

The rise of multi-drug-resistant (MDR) pathogenic bacteria presents a grave challenge to global public health, with antimicrobial resistance ranking as the third leading cause of mortality worldwide. Understanding the mechanisms underlying antibiotic resistance is crucial for developing effective treatments. Efflux pumps, particularly those of the resistance-nodulation-cell division (RND) superfamily, play a significant role in expelling molecules from bacterial cells, contributing to the emergence of multi-drug resistance. These are transmembrane transporters naturally produced by Gram-negative bacteria. This review provides comprehensive insights into the modulation of RND efflux pump expression in bacterial pathogens by numerous and common molecules (bile, biocides, pharmaceuticals, additives, plant extracts, etc.). The interplay between these molecules and efflux pump regulators underscores the complexity of antibiotic resistance mechanisms. The clinical implications of efflux pump induction by non-antibiotic compounds highlight the challenges posed to public health and the urgent need for further investigation. By addressing antibiotic resistance from multiple angles, we can mitigate its impact and preserve the efficacy of antimicrobial therapies.

14.
Biomedicines ; 12(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38927531

RESUMEN

An increased efflux activity is one of the major reasons for bacterial antibiotic resistance. The usage of efflux pump inhibitors could be a promising approach to restoring the activity of inefficient antibiotics. The interaction of the RND family efflux pump inhibitor phenylalanyl-arginyl-ß-naphthylamide (PAßN) with Salmonella enterica ser. Typhimurium cells was assayed using traditional microbiological techniques and a novel PAßN-selective electrode. Monitoring the PAßN concentration in the medium using the electrode enabled the real-time measurements of this compound's interaction with bacterial cells. We showed that S. Typhimurium cells accumulate a high amount of PAßN because of its high affinity to lipopolysaccharides (LPSs), the major constituent of the outer layer of the outer membrane, and does not affect the functioning of the plasma membrane. EDTA enhanced the binding of PAßN to S. Typhimurium cells and the purified E. coli LPSs, but the energization of the cells by glucose does not affect the cell-bound amount of this inhibitor. Polycationic antibiotic Polymyxin B released both the cells accumulated and the suspended LPS-bound PAßN.

15.
Genes (Basel) ; 15(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38927749

RESUMEN

BACKGROUND: Currently, the Enterobacteriaceae species are responsible for a variety of serious infections and are already considered a global public health problem, especially in underdeveloped countries, where surveillance and monitoring programs are still scarce and limited. Analyses were performed on the complete genome of an extensively antibiotic-resistant strain of Enterobater hormaechei, which was isolated from a patient with non-Hodgkin's lymphoma, who had been admitted to a hospital in the city of Manaus, Brazil. METHODS: Phenotypical identification and susceptibility tests were performed in automated equipment. Total DNA extraction was performed using the PureLink genomic DNA mini-Kit. The genomic DNA library was prepared with Illumina Microbial Amplicon Prep and sequenced in the MiSeq Illumina Platform. The assembly of the whole-genome and individual analyses of specific resistance genes extracted were carried out using online tools and the Geneious Prime software. RESULTS: The analyses identified an extensively resistant ST90 clone of E. hormaechei carrying different genes, including blaCTX-M-15, blaGES-2, blaTEM-1A, blaACT-15, blaOXA-1 and blaNDM-1, [aac(3)-IIa, aac(6')-Ian, ant(2″)-Ia], [aac(6')-Ib-cr, (qnrB1)], dfrA25, sul1 and sul2, catB3, fosA, and qnrB, in addition to resistance to chlorhexidine, which is widely used in patient antisepsis. CONCLUSIONS: These findings highlight the need for actions to control and monitor these pathogens in the hospital environment.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Enterobacter , Genoma Bacteriano , Linfoma no Hodgkin , Secuenciación Completa del Genoma , Humanos , Enterobacter/genética , Enterobacter/efectos de los fármacos , Enterobacter/aislamiento & purificación , Linfoma no Hodgkin/genética , Linfoma no Hodgkin/microbiología , Linfoma no Hodgkin/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/genética , Secuenciación Completa del Genoma/métodos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/genética , Pruebas de Sensibilidad Microbiana , Brasil
16.
Microb Pathog ; 193: 106730, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851361

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that poses a significant threat to individuals suffering from cystic fibrosis (CF). The pathogen is highly prevalent in CF individuals and is responsible for chronic infection, resulting in severe tissue damage and poor patient outcome. Prolonged antibiotic administration has led to the emergence of multidrug resistance in P. aeruginosa. In this direction, antivirulence strategies achieving targeted inhibition of bacterial virulence pathways, including quorum sensing, efflux pumps, lectins, and iron chelators, have been explored against CF isolates of P. aeruginosa. Hence, this review article presents a bird's eye view on the pulmonary infections involving P. aeruginosa in CF patients by laying emphasis on factors contributing to bacterial colonization, persistence, and disease progression along with the current line of therapeutics against P. aeruginosa in CF. We further collate scientific literature and discusses various antivirulence strategies that have been tested against P. aeruginosa isolates from CF patients.

17.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892071

RESUMEN

Peptides displaying antimicrobial properties are being regarded as useful tools to evade and combat antimicrobial resistance, a major public health challenge. Here we have addressed dendrimers, attractive molecules in pharmaceutical innovation and development displaying broad biological activity. Triazine-based dendrimers were fully synthesized in the solid phase, and their antimicrobial activity and some insights into their mechanisms of action were explored. Triazine is present in a large number of compounds with highly diverse biological targets with broad biological activities and could be an excellent branching unit to accommodate peptides. Our results show that the novel peptide dendrimers synthesized have remarkable antimicrobial activity against Gram-negative bacteria (E. coli and P. aeruginosa) and suggest that they may be useful in neutralizing the effect of efflux machinery on resistance.


Asunto(s)
Dendrímeros , Escherichia coli , Pruebas de Sensibilidad Microbiana , Triazinas , Dendrímeros/química , Dendrímeros/síntesis química , Dendrímeros/farmacología , Triazinas/química , Triazinas/farmacología , Triazinas/síntesis química , Escherichia coli/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/síntesis química
18.
Biochem Pharmacol ; 226: 116400, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945275

RESUMEN

The emergence of multidrug-resistant fungi is of grave concern, and its infections are responsible for significant deaths among immunocompromised patients. The treatment of fungal infections primarily relies on a clinical class of antibiotics, including azoles, polyenes, echinocandins, polyketides, and a nucleotide analogue. However, the incidence of fungal infections is increasing as the treatment for human and plant fungal infections overlaps with antifungal drugs. The need for new antifungal agents acting on different targets than known targets is undeniable. Also, the pace at which loss of fungal susceptibility to antibiotics cannot be undermined. There are several modes by which fungi can develop resistance to antibiotics, including reduced drug uptake, drug target alteration, and a reduction in the cellular concentration of the drug due to active extrusions and biofilm formation. The efflux pump's overexpression in the fungi primarily reduced the antibiotic's concentration to a sub-lethal concentration, thus responsible for developing resistant fungus strains. Several strategies are used to check antibiotic resistance in multi-drug resistant fungi, including synthesizing antibiotic analogs and giving antibiotics in combination therapies. Among them, the efflux pump protein inhibitors are considered potential adjuvants to antibiotics and can block the efflux of antibiotics by inhibiting efflux pump protein transporters. Moreover, it can sensitize the antifungal drugs to multi-drug resistant fungi with overexpressed efflux pump proteins. This review discusses the natural lead molecules, repurposable drugs, and formulation strategies to overcome the efflux pump activity in the fungi.

19.
World J Microbiol Biotechnol ; 40(8): 233, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842631

RESUMEN

Tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) is increasing and has emerged as a global public health issue. However, the mechanism of tigecycline resistance remains unclear. The objective of this study was to investigate the potential role of efflux pump system in tigecycline resistance. 29 tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) strains were collected and their minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The ramR, acrR, rpsJ, tet(A), and tet(X) were amplified by polymerase chain reaction (PCR). The mRNA expression of different efflux pump genes and regulator genes were analyzed by real-time PCR. Additionally, KP14 was selected for genome sequencing. KP14 genes without acrB, oqxB, and TetA were modified using suicide plasmids and MIC of tigecycline of KP14 with target genes knocked out was investigated. It was found that MIC of tigecycline of 20 out of the 29 TNSKP strains decreased by over four folds once combined with phenyl-arginine-ß-naphthylamide dihydrochloride (PaßN). Most strains exhibited upregulation of AcrAB and oqxAB efflux pumps. The strains with acrB, oqxB, and tetA genes knocked out were constructed, wherein the MIC of tigecycline of KP14∆acrB and KP14∆tetA was observed to be 2 µg/mL (decreased by 16 folds), the MIC of tigecycline of KP14ΔacrBΔTetA was 0.25 µg/mL (decreased by 128 folds), but the MIC of tigecycline of KP14∆oqxB remained unchanged at 32 µg/mL. The majority of TNSKP strains demonstrated increased expression of AcrAB-TolC and oqxAB, while certain strains showed mutations in other genes associated with tigecycline resistance. In KP14, both overexpression of AcrAB-TolC and tet(A) gene mutation contributed to the mechanism of tigecycline resistance.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Mutación , Tigeciclina , Tigeciclina/farmacología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Farmacorresistencia Bacteriana/genética , Humanos , Antiportadores
20.
ACS Infect Dis ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833551

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) has become a serious threat to human public health and global economic development, and there is an urgent need to develop new antimicrobial agents. Flavonoids are the largest group of plant secondary metabolites, and the anti-S. aureus and anti-MRSA activities of flavonoids have now been widely reported. The aim of this Review is to describe plant-derived flavonoid active ingredients and their effects and mechanisms of inhibitory activity against MRSA in order to provide insights for screening novel antimicrobial agents. Here, 85 plant-derived flavonoids (14 flavones, 21 flavonols, 26 flavanones, 9 isoflavones, 12 chalcones, and 3 other classes) with anti-MRSA activity are reviewed. Among these flavonoids, flavones and isoflavones generally showed the most significant anti-MRSA activity (MICs: 1-8 µg/mL). The results of the present Review display that most of the flavonoids with excellent anti-MRSA activity were derived from Morus alba L. and Paulownia tomentosa (Thunb.) Steud. The antibacterial mechanism of flavonoids against MRSA is mainly achieved by disruption of membrane structures, inhibition of efflux pumps, and inhibition of ß-lactamases and bacterial virulence factors. We hope this Review can provide insights into the development of novel antimicrobials based on natural products for treating MRSA infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...