Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2400910, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319485

RESUMEN

Garnet-type solid-state lithium batteries (SSLBs) possess excellent potential owing to their safety and high energy density. However, fundamental barriers are deficient cycling stability and poor rate capability. The main concern lies in generating voids at the Li|garnet interface during Li stripping, stemming from the sluggish diffusion of Li atoms inside the bulk Li metal. Herein, a composite anode (AN@Li) containing Li-Al alloy, Li3N, and LiNO2 is designed by introducing aluminum nitrate into molten Li. The lower interfacial formation energies exhibited by Li-Al alloy, Li3N, and LiNO2 with garnet solid-state electrolyte (SSE) enhance the wettability of AN@Li toward SSE. Meanwhile, it affords efficient conductive pathways that facilitate Li+ diffusion in the bulk anode (not just on the surface). Impressively, the resulting symmetric cell with AN@Li electrodes achieves high critical current density (1.95 mA cm-2) and long cycle life (6000 h at 0.3 mA cm-2). The SSLB coupled with LiFePO4 cathode and AN@Li anode enables stable cycling for 200 cycles at a high rate of 1 C with a retention of 96% and exhibiting outstanding rate capability (145.9 mAh g-1 at 2 C). This work provides practical insights for producing high-performance lithium metal anode for advanced garnet-type SSLBs.

2.
Small ; : e2405432, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295569

RESUMEN

LiNi0.8Mn0.1Co0.1O2 (NMC811) is the most promising cathode material for future Li-ion batteries (LIBs). However, the bulk and surface structural instabilities retard its commercial success. Surface chemical instability toward exposure to moisture (H2O and CO2) leads to the formation of residual lithium compounds (RLCs: Li2CO3, LiOH) on the surface. The alkaline RLCs form a resistive layer on the surface of NMC811 by undergoing parasitic side reactions with electrolytes. Herein, an "Adverse-to-Beneficial" approach is proposed to eliminate RLCs by chemically transforming them into a LixPOy (Li3PO4 and LiPO3) interface. The interface protects the NMC811 surface from moisture attack and unwanted side reactions with electrolytes. It enhances the cycle life by retaining 70% of the initial capacity after 300 cycles at a 0.5C rate and 60% after 500 cycles, even at a 5C rate in a voltage window of 3.0-4.3 V versus Li+/Li. The coexistence of two Li-conducting phases lowers the voltage polarization of the kinetically sluggish H1 → M phase transition to unlock fast cycling, reduces cationic disorder, improves coulombic efficiency, enhances ion diffusion kinetics, and minimizes particle crack formation after long-term cycling. Hence, the LixPOy interface yields multifaceted benefits in the storage, processing, and electrochemistry of NMC811.

3.
J Colloid Interface Sci ; 678(Pt B): 902-914, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39270390

RESUMEN

The limited energy density of supercapacitors hampers their widespread application in electronic devices. Metal oxides, employed as electrode materials, suffer from low conductivity and stability, prompting extensive research in recent years to enhance their electrochemical properties. Among these efforts, the construction of core-shell heterostructures and the utilization of oxygen vacancy (VO) engineering have emerged as pivotal strategies for improving material stability and ion diffusion rates. Herein, core-shell composites comprising NiCo2S4 nanospheres and MnO2 nanosheets are grown in situ on carbon cloth (CC), forming nanoflower clusters while introducing VO defects through a chemical reduction method. Density functional theory (DFT) results proves that the existence of VO effectively enhances electronic and structural properties of MnO2, thereby enhancing capacitive properties. The electrochemical test results show that NiCo2S4@MnO2-V3 exhibits excellent 1376 F g-1 mass capacitance and 2.06 F cm-2 area capacitance at 1 A g-1. Moreover, NiCo2S4@MnO2-V3//activated carbon (AC) asymmetric supercapacitor (ASC) can achieve an energy density of 39.7 Wh kg-1 at a power density of 775 W kg-1, and maintains 15.5 Wh kg-1 even at 7749.77 W kg-1. Capacitance retention is 73.1 % after 10,000 cycles at 5 A g-1, and coulombic efficiency reaches 100 %, demonstrating satisfactory cycle stability. In addition, the device's excellent flexibility offers broad application prospects in wearable electronic applications.

4.
Small ; : e2406683, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192470

RESUMEN

Magnesium-lithium-ion hybrid batteries (MLIBs) have gained significant attention since the combination of a dendrite-free and low-cost magnesium anode with lithium-ion storage cathodes. However, the lack of high-performance cathodes has severely hindered their development, limited by the lower operating voltages of electrolytes. Herein, vanadium molybdenum disulfide nanosheets anchoring on flexible carbon cloth (VMS@CC) are constructed as high-performance cathodes for MLIBs, which inherit the electrochemical properties of high-voltage VS2 and high-capacity MoS2, simultaneously. By adjusting the V and Mo atomic ratio, the VMS@CC cathode for MLIBs delivers a record maximum energy density of 275.5 Wh kg-1 with a high working voltage of 1.07 V at 50 mA g-1. Meanwhile, under the synergistic effects of the conductive carbon cloth matrix, abundant hetero-interfaces and defects, as well as expanded interlayer spacing, the VMS@CC cathode displays superior rate capability and long-term cycling stability. Ex situ analyses demonstrate the VMS nanosheets cathode exhibits a Li+/Mg2+ co-insertion/extraction mechanism in MLIBs, following the in situ insertion of organic species in the hybrid electrolyte during the aging process. The fabricated flexible cathode herein provides a new insight into the construction of high-energy density cathodes for MLIBs.

5.
Angew Chem Int Ed Engl ; 63(39): e202409906, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38970247

RESUMEN

The closed pores play a critical role in improving the sodium storage capacity of hard carbon (HC) anode, however, their formation mechanism as well as the efficient modulation strategy at molecular level in the polymer-derived HCs is still lacking. In this work, the steric hindrance effect has been proposed to create closed pores in the polymer-derived HCs for the first time through grafting the aromatic rings within and between the main chains in the precursor. The experimental data and theoretical calculation demonstrate that steric-hindrance effect from the aromatic ring side group can increase backbone rigidity and the internal free volumes in the polymer precursor, which can prevent the over graphitization and facilitate the formation of closed pores during the carbonization process. As a result, the as-prepared HC anode exhibits a remarkably enhanced discharge capacity of 340.3 mAh/g at 0.1 C, improved rate performance (210.7 mAh/g at 5 C) as well as boosted cycling stability (86.4 % over 1000 cycles at 2 C). This work provides a new insight into the formation mechanisms of closed pores via steric hindrance engineering, which can shed light on the development of high-performance polymer-derived HC anode for sodium-ion batteries.

6.
Chem Asian J ; 19(17): e202400394, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38847495

RESUMEN

Creating an innovative and environmentally friendly energy storage system is of vital importance due to the growing number of environmental problems and the fast exhaustion of fossil fuels. Energy storage using porous carbon composites generated from biomass has attracted a lot of attention in the research community. This is primarily due to the environmentally friendly nature, abundant availability in nature, accessibility, affordability, and long-term viability of macro/meso/microporous carbon sourced from a variety of biological materials. Extensive information on the design and the building of an energy storage device that uses supercapacitors was a part of this research. This study examines both porous carbon electrodes (ranging from 44 to 1050 F/g) and biomasses with a large surface area (between 215 and 3532 m2/g). Supposedly, these electrodes have a capacitive retention performance of about 99.7 percent after 1000 cycles. The energy density of symmetric supercapacitors is also considered, with values between 5.1 and 138.4 Wh/kg. In this review, we look at the basic structures of biomass and how they affect porous carbon synthesis. It also discusses the effects of different structured porous carbon materials on electrochemical performance and analyzes them. In recent developments, significant steps have been made across various fields including fuel cells, carbon capture, and the utilization of biomass-derived carbonaceous nanoparticles. Notably, our study delves into the innovative energy conversion and storage potentials inherent in these materials. This comprehensive investigation seeks to lay the foundation for forthcoming energy storage research endeavors by delineating the current advancements and anticipating potential challenges in fabricating porous carbon composites sourced from biomass.

7.
Small ; 20(37): e2401502, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38716798

RESUMEN

All-solid-state fluoride ion batteries (ASSFIBs) show remarkable potential as energy storage devices due to their low cost, superior safety, and high energy density. However, the poor ionic conductivity of F- conductor, large volume expansion, and the lack of a suitable anode inhibit their development. In this work, PbSnF4 solid electrolytes in different phases (ß- and γ-PbSnF4) are successfully synthesized and characterized. The ASSFIBs composed of ß-PbSnF4 electrolytes, a BiF3 cathode, and micrometer/nanometer size (µ-/n-) Sn anodes, exhibit substantial capacities. Compared to the µ-Sn anode, the n-Sn anode with nanostructure exhibits superior battery performance in the BiF3/ß-PbSnF4/Sn battery. The optimized battery delivers a high initial discharge capacity of 181.3 mAh g-1 at 8 mA g-1 and can be reversibly cycled at 40 mA g-1 with a high discharge capacity of over 100.0 mAh g-1 after 120 cycles at room temperature. Additionally, it displays high discharge capacities over 90.0 mAh g-1 with excellent cyclability over 100 cycles under -20 °C. Detailed characterization has confirmed that reducing Sn particle size and boosting external pressure are crucial for achieving good defluorination/fluorination behaviors in the Sn anode. These findings pave the way to designing ASSFIBs with high capacities and superior cyclability under different operating temperatures.

8.
Nanomicro Lett ; 16(1): 194, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743294

RESUMEN

Aqueous zinc-ion batteries (AZIBs) are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability. In response to the growing demand for green and sustainable energy storage solutions, organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs. Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs, the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry. Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review. Specifically, we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms. In addition, we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances. Finally, challenges and perspectives are discussed from the developing point of view for future AZIBs. We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.

9.
ACS Appl Mater Interfaces ; 16(15): 19720-19729, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38571476

RESUMEN

LiNi0.8Mn0.1Co0.1O2 (NMC811) is the most promising cathode material for next-generation lithium-ion batteries (LIBs). However, the chemical instability of the material during air exposure leads to the formation of residual lithium compounds (RLCs: LiOH and Li2CO3) on the surface and inhibits its practical application. Here, we propose a chemical conversion process to remove RLCs by utilizing them and forming a hybrid coating layer on the surface of NMC811 that contains Li3PO4, LiMn2O4, and LiMnPO4 phases, yielding multifaceted benefits. The hybrid layer on the surface protects the material from undesirable side reactions. It improves the cycle life of NMC811 by retaining 80% of its initial capacity after 300 cycles and 66% after 500 cycles at a 0.5C rate in the operating voltage of 3.0-4.3 V. The process enables high-voltage (4.7 V vs Li+/Li) operation by stabilizing the electrode-electrolyte interface, reduces the degree of cationic disorder and the voltage polarization for phase transitions, improves Coulombic efficiency and ion diffusion kinetics, and minimizes the secondary particle crack formation over long-term cycling. In fact, the coating reduces the detrimental effects of RLCs, leaves the surface for better Li+ transport, and hence significantly improves the electrochemical performance of NMC811.

10.
ACS Appl Mater Interfaces ; 16(6): 7232-7242, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38302451

RESUMEN

Niobium pentoxides (Nb2O5) present great potential as next-generation anode candidates due to exceptional lithium-ion intercalation kinetics, considerably high capacity, and reasonable redox potential. Although four phases of Nb2O5 including hexagonal, orthorhombic, tetragonal, and monoclinic polymorphs show diverse characteristics in electrochemical performance, stable lifetime, high specific capacity, and fast intercalation properties cannot be delivered simultaneously with a single phase. Herein, this issue is addressed by generating a homogeneous mixture of orthorhombic and monoclinic crystals at the nanoscale. Reversible lithium-ion intercalation/deintercalation of the monoclinic phase is achieved, and exceptional lithium storage sites are created at the interface of the two phases. As a result, electrochemical features of stable lifetime from the orthorhombic phase and high specific performance from the monoclinic phase are harmoniously combined. This dual-phase Nb2O5/C nanohybrids deliver as high as 380 mA h g-1 (0.01-3.0 V) and 184 mA h g-1 (1.0-3.0 V) after 200 cycles. The essential principle of property enhancement is further confirmed through in situ XRD measurements and DFT calculations. The dual-phase concept can be further applied on electrodes with multiphases to achieve high electrochemical performance.

11.
Nanomicro Lett ; 16(1): 78, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38190094

RESUMEN

The concentration difference in the near-surface region of lithium metal is the main cause of lithium dendrite growth. Resolving this issue will be key to achieving high-performance lithium metal batteries (LMBs). Herein, we construct a lithium nitrate (LiNO3)-implanted electroactive ß phase polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) crystalline polymorph layer (PHL). The electronegatively charged polymer chains attain lithium ions on the surface to form lithium-ion charged channels. These channels act as reservoirs to sustainably release Li ions to recompense the ionic flux of electrolytes, decreasing the growth of lithium dendrites. The stretched molecular channels can also accelerate the transport of Li ions. The combined effects enable a high Coulombic efficiency of 97.0% for 250 cycles in lithium (Li)||copper (Cu) cell and a stable symmetric plating/stripping behavior over 2000 h at 3 mA cm-2 with ultrahigh Li utilization of 50%. Furthermore, the full cell coupled with PHL-Cu@Li anode and LiFePO4 cathode exhibits long-term cycle stability with high-capacity retention of 95.9% after 900 cycles. Impressively, the full cell paired with LiNi0.87Co0.1Mn0.03O2 maintains a discharge capacity of 170.0 mAh g-1 with a capacity retention of 84.3% after 100 cycles even under harsh condition of ultralow N/P ratio of 0.83. This facile strategy will widen the potential application of LiNO3 in ester-based electrolyte for practical high-voltage LMBs.

12.
Small ; 20(26): e2310843, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38247199

RESUMEN

LiNO3 has attracted intensive attention as a promising electrolyte additive to regulate Li deposition behavior as it can form favorable Li3N, LiNxOy species to improve the interfacial stability. However, the inferior solubility in carbonate-based electrolyte restricts its application in high-voltage Li metal batteries. Herein, an artificial composite layer (referred to as PML) composed of LiNO3 and PMMA is rationally designed on Li surface. The PML layer serves as a reservoir for LiNO3 release gradually to the electrolyte during cycling, guaranteeing the stability of SEI layer for uniform Li deposition. The PMMA matrix not only links the nitrogen-containing species for uniform ionic conductivity but also can be coordinated with Li for rapid Li ions migration, resulting in homogenous Li-ion flux and dendrite-free morphology. As a result, stable and dendrite-free plating/stripping behaviors of Li metal anodes are achieved even at an ultrahigh current density of 20 mA cm-2 (>570 h) and large areal capacity of 10 mAh cm-2 (>1200 h). Moreover, the Li||LiFePO4 full cell using PML-Li anode undergoes stable cycling for 2000 cycles with high-capacity retention of 94.8%. This facile strategy will widen the potential application of LiNO3 in carbonate-based electrolyte for practical LMBs.

13.
Adv Mater ; 36(7): e2305135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37590909

RESUMEN

Sodium-ion batteries (SIBs) are a viable alternative to meet the requirements of future large-scale energy storage systems due to the uniform distribution and abundant sodium resources. Among the various cathode materials for SIBs, phosphate-based polyanionic compounds exhibit excellent sodium-storage properties, such as high operation voltage, remarkable structural stability, and superior safety. However, their undesirable electronic conductivities and specific capacities limit their application in large-scale energy storage systems. Herein, the development history and recent progress of phosphate-based polyanionic cathodes are first overviewed. Subsequently, the effective modification strategies of phosphate-based polyanionic cathodes are summarized toward high-performance SIBs, including surface coating, morphological control, ion doping, and electrolyte optimization. Besides, the electrochemical performance, cost, and industrialization analysis of phosphate-based polyanionic cathodes for SIBs are discussed for accelerating commercialization development. Finally, the future directions of phosphate-based polyanionic cathodes are comprehensively concluded. It is believed that this review can provide instructive insight into developing practical phosphate-based polyanionic cathodes for SIBs.

14.
J Colloid Interface Sci ; 657: 91-101, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38035423

RESUMEN

Layered double hydroxides (LDHs) with unique layered structure have excellent theoretical capacitance. Nevertheless, the constrained availability of electrically active sites and cationic species curtails their feasibility for practical implementation within supercapacitors. Most of the reported materials are bimetallic hydroxides, and fewer studies are on trimetallic hydroxides. In here, the hollow dodecahedron NiCoZn-LDH is synthesized using CoZn metal-organic frameworks (CoZn-MOFs) as template. Its morphology and composition are studied in detail. Concurrently, the effect of the amount of third component on the resulting structure of NiCoZn-LDH is also researched. Benefiting from its favorable structural and compositional attributes to efficient transfer of ions and electrons, NiCoZn-LDH-200 demonstrates outstanding specific capacitance of 1003.3F g-1 at 0.5 A/g. Furthermore, flexible asymmetric supercapacitor utilizing NiCoZn-LDH-200 as the positive electrode and activated carbon (AC) as the negative electrode reveals favorable electrochemical performances, including a notable specific capacitance of 184.7F g-1 at 0.5 A/g, a power density of 368.21 W kg-1 at a high energy density of 65.66 Wh kg-1, an energy density of 31.78 Wh kg-1 at a high power density of 3985.97 W kg-1, a capacitance retention of 92 % after 8000 cycles at 5 A/g, and a good capacitance retention of 90 % after 500 cycles of bending. The template method presented herein can effectively solve the problem of easy accumulation and improve the electrochemical properties of the materials, which exhibits a broad research prospect.

15.
Small ; 20(20): e2308212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100280

RESUMEN

The FeOOH/Zn(OH)2/CoS (FZC) nanocomposites are synthesized and show the outstanding electrochemical properties in both supercapacitor and catalytic hydrogen production. The specific area capacitance reaches 17.04 F cm-2, which is more than ten times higher than that of FeOOH/Zn(OH)2 (FZ) substrate: 1.58 F cm-2). FZC nanocomposites also exhibit the excellent cycling stability with an initial capacity retention rate of 93.6% after 10 000 long-term cycles. The electrolytic cell (FZC//FZC) assembled with FZC as both anode and cathode in the UOR (urea oxidation reaction)|| HER (hydrogen evolution reaction) coupled system requires a cell voltage of only 1.453 V to drive a current density of 10 mA cm-2. Especially, the electrochemical performances of FZC nanocomposites are enhanced in magnetic field, and the mechanism is proposed based on Stern double layer model at electrode-electrolyte interface (EEI). More electrolyte ions reach the surface of FZC electrode material under Kelvin force, moreover, the warburg impedance of FZC nanocomposites decrease under magnetic field action, which results in the enhanced behaviors for both the energy storage and urea oxidation reaction .

16.
Artículo en Inglés | MEDLINE | ID: mdl-38019962

RESUMEN

Lithium-sulfur (Li-S) batteries have ultrahigh theoretical specific capacity and energy density, which are considered to be very promising energy storage devices. However, the slow redox kinetics of polysulfides are the main reason for the rapid capacity decay of Li-S batteries. A reasonable electrocatalyst for the Li-S battery should reduce the reaction barrier and accelerate the reaction kinetics of the bidirectional catalytic conversion of lithium polysulfides (LiPSs), thereby reducing the cumulative concentration of LiPSs in the electrolyte. In this report, porous N-doped carbon nanofibers decorated with independent dual metal sites as catalysts for Li-S batteries were fabricated in one step using a fusion-foaming method. Experimental and theoretical analyses demonstrate that the synergistic effect of independent dual metal sites provides strong LiPS affinity, improved electronic conductivity, and enhanced redox kinetics of polysulfides. Therefore, the assembled Li-S battery exhibits high rate performance (discharge specific capacity of 771 mA h g-1 at 2C) and excellent cycle stability (capacity decay rate of 0.51% after 1000 cycles at 1C).

17.
Molecules ; 28(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37959684

RESUMEN

Sodium-ion batteries have important application prospects in large-scale energy storage due to their advantages, such as safety, affordability, and abundant resources. Prussian blue analogs (PBAs) have a stable and open framework structure, making them a very promising cathode material. However, high-performance manganese-based Prussian blue cathode materials for sodium-ion batteries still suffer from significant challenges due to several key issues, such as a high number of vacancy defects and a high crystal water content. This article investigates the effects of the Fe-Mn molar ratio, Mn ion concentration, and reaction time on the electrochemical performance of MnHCF during the coprecipitation process. When Fe:Mn = 1:2, c(Mn2+) = 0.02 mol/L, and the reaction time is 12 h, the content of interstitial water molecules in the sample is low, and the Fe(CN)6 defects are few. At 0.1 C, the prepared electrode has a high initial discharge specific capacity (121.9 mAh g-1), and after 100 cycles at 0.2 C, the capacity retention rate is 65% (~76.2 mAh g-1). Meanwhile, the sample electrode exhibits excellent reversibility. The discharge capacity can still be maintained at around 75% when the magnification is restored from 5 C to 0.1 C. The improvement in performance is mainly attributed to two aspects: On the one hand, reducing the Fe(CN)6 defects and crystal water content is conducive to the diffusion and stable structure of N. On the other hand, reducing the reaction rate can significantly delay the crystallization of materials and optimize the nucleation process.

18.
Small ; 19(46): e2303307, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37467263

RESUMEN

Aqueous zinc-ion batteries (AZIBs) have attracted the attention of researchers because of their high theoretical capacity and safety. Among the many vanadium-based AZIB cathode materials, zinc vanadate is of great interest as a typical phase in the dis-/charge process. Here, a remarkable method to improve the utilization rate of zinc vanadate cathode materials is reported. In situ growth of Zn2 (V3 O8 )2 on carbon cloth (CC) as the cathode material (ZVO@CC) of AZIBs. Compared with the Zn2 (V3 O8 )2 cathode material bonded on titanium foil (ZVO@Ti), the specific capacity increases from 300 to 420 mAh g-1 , and the utilization rate of the material increases from 69.60% to 99.2%. After the flexible device is prepared, it shows the appropriate specific capacity (268.4 mAh g-1 at 0.1 A g-1 ) and high safety. The method proposed in this work improves the material utilization rate and enhances the energy density of AZIB and also has a certain reference for the other electrochemical energy storage devices.

19.
Molecules ; 28(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37446697

RESUMEN

Binary metal oxide stannate (M2SnO4; M = Zn, Mn, Co, etc.) structures, with their high theoretical capacity, superior lithium storage mechanism and suitable operating voltage, as well as their dual suitability for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), are strong candidates for next-generation anode materials. However, the capacity deterioration caused by the severe volume expansion problem during the insertion/extraction of lithium or sodium ions during cycling of M2SnO4-based anode materials is difficult to avoid, which greatly affects their practical applications. Strategies often employed by researchers to address this problem include nanosizing the material size, designing suitable structures, doping with carbon materials and heteroatoms, metal-organic framework (MOF) derivation and constructing heterostructures. In this paper, the advantages and issues of M2SnO4-based materials are analyzed, and the strategies to solve the issues are discussed in order to promote the theoretical work and practical application of M2SnO4-based anode materials.


Asunto(s)
Carbono , Litio , Iones , Suministros de Energía Eléctrica , Electrodos
20.
J Colloid Interface Sci ; 643: 1-8, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37044009

RESUMEN

Black phosphorus (BP) anode has received extensive attentions for lithium-ion batteries (LIBs) due to its ultrahigh theoretical specific capacity (2596 mAh g-1) and superior electronic conductivity (≈102 S m-1). However, the enormous volume variations during lithiation/delitiation processes greatly limit its applications. Herein, a new BP-titanium disulfide-graphite (BP-TiS2-G) nanocomposite composed of BP, titanium disulfide and graphite has been prepared by a facile and scalable high-energy ball milling method. The experimental data proves that PC and PS bonds have been successfully introduced at the interface, which can effectively maintain the structural integrity of the BP-TiS2-G electrode when evaluated as an anode material for LIBs. In addition, lithium-ion diffusion kinetics have been demonstrated to be enhanced from the synergistic effect of PC and PS bonds. As a result, the BP-TiS2-G anode shows outstanding cycling stability (906.2 mAh g-1 after 1300 cycles at 1.0 A g-1) and superior rate performance (313.8 mAh g-1 at 10.0 A g-1). Our work shows the synergistic effects of different chemical bonds to stabilize BP can be a potential strategy for the development of high-performance alloy-type anodes for rechargeable batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA