Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomicro Lett ; 16(1): 244, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990425

RESUMEN

Long-term societal prosperity depends on addressing the world's energy and environmental problems, and photocatalysis has emerged as a viable remedy. Improving the efficiency of photocatalytic processes is fundamentally achieved by optimizing the effective utilization of solar energy and enhancing the efficient separation of photogenerated charges. It has been demonstrated that the fabrication of III-V semiconductor-based photocatalysts is effective in increasing solar light absorption, long-term stability, large-scale production and promoting charge transfer. This focused review explores on the current developments in III-V semiconductor materials for solar-powered photocatalytic systems. The review explores on various subjects, including the advancement of III-V semiconductors, photocatalytic mechanisms, and their uses in H2 conversion, CO2 reduction, environmental remediation, and photocatalytic oxidation and reduction reactions. In order to design heterostructures, the review delves into basic concepts including solar light absorption and effective charge separation. It also highlights significant advancements in green energy systems for water splitting, emphasizing the significance of establishing eco-friendly systems for CO2 reduction and hydrogen production. The main purpose is to produce hydrogen through sustainable and ecologically friendly energy conversion. The review intends to foster the development of greener and more sustainable energy source by encouraging researchers and developers to focus on practical applications and advancements in solar-powered photocatalysis.

2.
J Colloid Interface Sci ; 673: 874-882, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38908286

RESUMEN

The quest for efficient hydrogen production highlights the need for cost-effective and high-performance catalysts to enhance the electrochemical water-splitting process. A significant challenge in developing self-supporting catalysts lies in the high cost and complex modification of traditional substrates. In this study, we developed catalysts featuring superaerophobic microstructures engineered on microspherical nickel-coated Chinese rice paper (Ni-RP), chosen for its affordability and exceptional ductility. These catalysts, due to their microspherical morphology and textured surface, exhibited significant superaerophobic properties, substantially reducing bubble adhesion. The nickel oxy-hydroxide (NiOxHy) and phosphorus-doped nickel (PNi) catalysts on Ni-RP demonstrated effective roles in oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), achieving overpotentials of 250 mV at 20 mA cm-2 and 87 mV at -10 mA cm-2 in 1 M KOH, respectively. Moreover, a custom water-splitting cell using PNi/Ni-RP and NiOxHy/Ni-RP electrodes reached an impressive average voltage of 1.55 V at 10 mA cm-2, with stable performance over 100 h in 1 M KOH. Our findings present a cost-effective, sustainable, and easily modifiable substrate that utilizes superaerophobic structures to create efficient and durable catalysts for water splitting. This work serves as a compelling example of designing high-performance self-supporting catalysts for electrocatalytic applications.

3.
Heliyon ; 10(10): e31108, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38826749

RESUMEN

The fabrication of highly efficient yet stable noble-metal-free bifunctional electrocatalysts that can simultaneously catalyse both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) remains challenging. Herein, we employ the heterostructure coupling strategy, showcasing an aerosol-assisted chemical vapour deposition (AACVD) aided synthetic approach for the in-situ growth of cobalt molybdenum sulphide nanocomposites on carbon paper (CoMoS@CP) as a bifunctional electrocatalyst. The AACVD allows the rational incorporation of Co in the Mo-S binary structure, which modulates the morphology of CoMoS@CP, resulting in enhanced HER activity (ŋ10 = 171 mV in acidic and ŋ10 = 177 mV in alkaline conditions). Furthermore, the CoS2 species in the CoMoS@CP ternary structure extends the OER capability, yielding an ŋ100 of 455 mV in 1 M KOH. Lastly, we found that the synergistic effect of the Co-Mo-S interface elevates the bifunctional performance beyond binary counterparts, achieving a low cell voltage (1.70 V at 10 mA cm-2) in overall water splitting test and outstanding catalytic stability (∼90 % performance retention after 50-/30-h continuous operation at 10 and 100 mA cm-2, respectively). This work has opened up a new methodology for the controllable synthesis of self-supported transition metal-based electrocatalysts for applications in overall water splitting.

4.
Small ; : e2310106, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38746966

RESUMEN

Metal-Organic Frameworks (MOFs) recently emerged as a new platform for the realization of integrated devices for artificial photosynthesis. However, there remain few demonstrations of rational tuning of such devices for improved performance. Here, a fast molecular water oxidation catalyst working via water nucleophilic attack is integrated into the MOF MIL-142, wherein Fe3O nodes absorb visible light, leading to charge separation. Materials are characterized by a range of structural and spectroscopic techniques. New, [Ru(tpy)(Qc)(H2O)]+ (tpy = 2,2':6',2″-terpyridine and Qc = 8-quinolinecarboxylate)-doped Fe MIL-142 achieved a high photocurrent (1.6 × 10-3 A·cm-2) in photo-electrocatalytic water splitting at pH = 1. Unassisted photocatalytic H2 evolution is also reported with Pt as the co-catalyst (4.8 µmol g-1 min-1). The high activity of this new system enables hydrogen gas capture from an easy-to-manufacture, scaled-up prototype utilizing MOF deposited on FTO glass as a photoanode. These findings provide insights for the development of MOF-based light-driven water-splitting assemblies utilizing a minimal amount of precious metals and Fe-based photosensitizers.

5.
Adv Sci (Weinh) ; 11(25): e2401073, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38610120

RESUMEN

This study reports the use of Keplerate-type {Mo72Fe30} polyoxometalate (POMs) nanostructures as a bi-functional-electrocatalyst for HER and OER in an alkaline medium with a lower overpotential (135 mV for HER and 264 mV for OER), and excellent electrochemical stability. The bi-functional catalytic properties of {Mo72Fe30} POM are studied using a scanning electrochemical microscope (SECM) via current mapping using substrate generation and tip collection mode. Furthermore, the bipolar nature of the {Mo72Fe30} POM nano-electrocatalysts is studied using the electrochemical gating via simultaneous monitoring of the electrochemical (cell) and electrical ({Mo72Fe30} POM) signals. Next, a prototype water electrolyzer fabricated using {Mo72Fe30} POM electrocatalysts showed they can drive 10 mA cm-2 with a low cell voltage of 1.62 V in lab-scale test conditions. Notably, the {Mo72Fe30} POM electrolyzers' performance assessment based on recommended conditions for industrial aspects shows that they require a very low overpotential of 1.89 V to drive 500 mA cm-2, highlighting their promising candidature toward clean-hydrogen production.

6.
Chem Asian J ; : e202301107, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419386

RESUMEN

The development of green hydrogen generation technologies is increasingly crucial to meeting the growing energy demand for sustainable and environmentally acceptable resources. Many obstacles in the advancement of electrodes prevented water electrolysis, long thought to be an eco-friendly method of producing hydrogen gas with no carbon emissions, from coming to fruition. Because of their great electrical conductivity, maximum supporting capacity, ease of modification in valence states, durability in hard environments, and high redox characteristics, transition metal oxides (TMOs) have recently captured a lot of interest as potential cathodes and anodes. Electrochemical water splitting is the subject of this investigation, namely the role of transition metal oxides as both active and supportive sites. It has suggested various approaches for the logical development of electrode materials based on TMOs. These include adjusting the electronic state, altering the surface structure to control its resistance to air and water, improving the flow of energy and matter, and ensuring the stability of the electrocatalyst in challenging conditions. In this comprehensive review, it has been covered the latest findings in electrocatalysis of the Oxygen Evolution Reaction (OER) and Hydrogen Evaluation Reaction (HER), as well as some of the specific difficulties, opportunities, and current research prospects in this field.

7.
J Colloid Interface Sci ; 661: 409-435, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38306750

RESUMEN

Water-splitting electrocatalysis has gained increasing attention as a promising strategy for developing renewable energy in recent years, but its high overpotential caused by the unfavorable thermodynamics has limited its widespread implementation. Therefore, there is an urgent need to design catalytic materials with outstanding activity and stability that can overcome the high overpotential and thus improve the electrocatalytic efficiency. Metal-organic frameworks (MOFs) based and/or derived materials are widely used as water-splitting catalysts because of their easily controlled structures, abundant heterointerfaces and increased specific surface area. Herein, some recent research findings on MOFs-based/derived materials are summarized and presented. First, the mechanism and evaluation parameters of electrochemical water splitting are described. Subsequently, advanced modulation strategies for designing MOFs-based/derived catalysts and their catalytic performance toward water splitting are summarized. In particular, the correlation between chemical composition/structural functionalization and catalytic performance is highlighted. Finally, the future outlook and challenges for MOFs materials are also addressed.

8.
Chem Rec ; 24(3): e202300330, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38372409

RESUMEN

Electrochemical water splitting for sustainable hydrogen and oxygen production have shown enormous potentials. However, this method needs low-cost and highly active catalysts. Traditional nano catalysts, while effective, have limits since their active sites are mostly restricted to the surface and edges, leaving interior surfaces unexposed in redox reactions. Single atom catalysts (SACs), which take advantage of high atom utilization and quantum size effects, have recently become appealing electrocatalysts. Strong interaction between active sites and support in SACs have considerably improved the catalytic efficiency and long-term stability, outperforming their nano-counterparts. This review's first section examines the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER). In the next section, SACs are categorized as noble metal, non-noble metal, and bimetallic synergistic SACs. In addition, this review emphasizes developing methodologies for effective SAC design, such as mass loading optimization, electrical structure modulation, and the critical role of support materials. Finally, Carbon-based materials and metal oxides are being explored as possible supports for SACs. Importantly, for the first time, this review opens a discussion on waste-derived supports for single atom catalysts used in electrochemical reactions, providing a cost-effective dimension to this vibrant research field. The well-known design techniques discussed here may help in development of electrocatalysts for effective water splitting.

9.
Small ; 20(29): e2311929, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38396229

RESUMEN

The global pursuit of sustainable energy is focused on producing hydrogen through electrocatalysis driven by renewable energy. Recently, High entropy alloys (HEAs) have taken the spotlight in electrolysis due to their intriguing cocktail effect, broad design space, customizable electronic structure, and entropy stabilization effect. The tunability and complexity of HEAs allow a diverse range of active sites, optimizing adsorption strength and activity for electrochemical water splitting. This review comprehensively covers contemporary advancements in synthesis technique, design framework, and physio-chemical evaluation approaches for HEA-based electrocatalysts. Additionally, it explores design principles and strategies aimed at optimizing the catalytic activity, stability, and effectiveness of HEAs in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting. Through an in-depth investigation of these aspects, the complexity inherent in constituent element interactions, reaction processes, and active sites associated with HEAs is aimed to unravel. Eventually, an outlook regarding challenges and impending difficulties and an outline of the future direction of HEA in electrocatalysis is provided. The thorough knowledge offered in this review will assist in formulating and designing catalysts based on HEAs for the next generation of electrochemistry-related applications.

10.
Adv Sci (Weinh) ; 11(14): e2308063, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38282172

RESUMEN

This study presents an innovative, statistically-guided magnetron sputtering technique for creating nanoarchitectonics of high-performing, NiFeMoN electrocatalysts for oxygen evolution reaction (OER) in water splitting. Using a central composite face-centered (CCF) design, 13 experimental conditions are identified that enable precise optimization of synthesis parameters through response surface methodology (RSM), confirmed by analysis of variance (ANOVA). The statistical analysis highlighted a interaction between Mo% and N% in the nanostructured NiFeMoN and found optimizing values at 31.35% Mo and 47.12% N. The NiFeMoN catalyst demonstrated superior performance with a low overpotential of 216 mV at 10 mA cm-2 and remarkable stability over seven days, attributed to the modifications in electronic structure and the creation of new active sites through Mo and N additions. Furthermore, the NiFeMoN coating, when used as a protective layer for a Si photoanode in 1 m KOH, achieved an applied-bias photon-to-current efficiency (ABPE) of 5.2%, maintaining stability for 76 h. These advancements underscore the profound potential of employing statistical design for optimizing synthesis parameters of intricate catalyst materials via magnetron sputtering, paving the way for accelerated advancements in water splitting technologies and also in other energy conversion systems, such as nitrogen reduction and CO2 conversion.

11.
Chem Rec ; 24(1): e202300127, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37350371

RESUMEN

Transition metal vanadates (MVs) possess abundant electroactive sites, short ion diffusion pathways, and optical properties that make them suitable for various electrochemical (EC) and photoelectrochemical (PEC) applications. While these materials are commonly used in energy storage devices like batteries and capacitors, their shape-controlled 1D and 2D morphologies have gained equal popularity in water splitting (WS) technology in recent times. This review focuses on recent progress made on various first-row (3d, 4 s) transition metal vanadates (t-MVs) having controlled one-dimensional (fiber, wire, or rod) and two-dimensional (layered or sheet) morphologies with a specific emphasis on copper vanadates (CuV), cobalt vanadates (CoV), iron vanadates (FeV), and nickel vanadates (NiV). The review covers different aspects of shape-controlled 1D and 2D t-MVs including optoelectrical properties, wet chemistry synthesis, and electrochemical (EC-WS) and photoelectrochemical water splitting (PEC-WS) performance in terms of onset potential, overpotential, and long-term stability or high cyclic performance. The review concludes by providing some possible thoughts on how to promote the water-splitting attributes of shape-controlled t-MVs more effectively.

12.
Adv Mater ; 36(2): e2304269, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37690005

RESUMEN

Copper antimony sulfides are regarded as promising catalysts for photo-electrochemical water splitting because of their earth abundance and broad light absorption. The unique photoactivity of copper antimony sulfides is dependent on their various crystalline structures and atomic compositions. Here, a closed-loop workflow is built, which explores Cu-Sb-S compositional space to optimize its photo-electrocatalytic hydrogen evolution from water, by integrating a high-throughput robotic platform, characterization techniques, and machine learning (ML) optimization workflow. The multi-objective optimization model discovers optimum experimental conditions after only nine cycles of integrated experiments-machine learning loop. Photocurrent testing at 0 V versus reversible hydrogen electrode (RHE) confirms the expected correlation between the materials' properties and photocurrent. An optimum photocurrent of -186 µA cm-2 is observed on Cu-Sb-S in the ratio of 9:45:46 in the form of single-layer coating on F-doped SnO2 (FTO) glass with a corresponding bandgap of 1.85 eV and 63.2% Cu1+ /Cu species content. The targeted intelligent search reveals a nonobvious CuSbS composition that exhibits 2.3 times greater activity than baseline results from random sampling.

13.
Artículo en Inglés | MEDLINE | ID: mdl-37906330

RESUMEN

Over the last few decades, the global rise in energy demand has prompted researchers to investigate the energy requirements from alternative green fuels apart from the conventional fossil fuels, due to the surge in CO2 emission levels. In this context, the global demand for hydrogen is anticipated to extend by 4-5% in the next 5 years. Different production technologies like gasification of coal, partial oxidation of hydrocarbons, and reforming of natural gas are used to obtain high yields of hydrogen. In present time, 96% of hydrogen is produced by the conventional methods, and the remaining 4% is produced by the electrolysis of water. Photo-electrochemical (PEC) water splitting is a promising and progressive solar-to-hydrogen pathway with high conversion efficiency at low operating temperatures with substrate electrodes such as fluorine-doped tin oxide (FTO), incorporated with photocatalytic nanomaterials. Several semiconducting nanomaterials such as carbon nanotubes, TiO2, ZnO, graphene, alpha-Fe2O3, WO3, metal nitrides, metal phosphides, cadmium-based quantum dots, and rods have been reported for PEC water splitting. The design of photocatalytic electrodes plays a crucial role for efficient PEC water splitting process. By modifying the composition and morphology of photocatalytic nanomaterials, the overall solar-to-hydrogen (STH) energy conversion efficiency can be improved by optimizing their opto-electronic properties. The present article highlights the recent advancements in cleaner and effective photocatalysts for producing high yields of hydrogen via PEC water splitting.

14.
Chemosphere ; 345: 140488, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37898466

RESUMEN

The current study explores the possibility of effectively improving Bi2WO6 (BWO) nanostructures in photocatalytic clean H2 generation and treating water from pharmaceutical wastes. BWO nanoparticles (NPs) hybridized with carbon-derived materials proved to be an efficient candidate in the field of photocatalysis. In this work, BWO nanostructures have been synthesized via the facile co-precipitation technique. The reduced graphene oxide (r-GO) was used as the carbon derivative for the hybridization process. Furthermore, different weight percentages of rGO were loaded with BWO NPs through the wet impregnation technique. The structural, and morphological analysis confirmed the formation of BWO/x% rGO composites. UV-DRS analysis showcased the reduction in bandgap in annexure with increased light absorbance region upon rGO inclusion. Time-resolved photoluminescence (TRPL) proved a prolonged lifetime for BWO/15% rGO composite. In addition, their photocatalytic abilities were put to the test, and BWO/15% rGO nano-hybrid demonstrated a superior degradation of pharmaceutical wastes like tetracycline hydrochloride (TCH) and levofloxacin (LVX) from water in 15 min. Furthermore, photo-electrochemical measurements showed the lowest onset potential and better charge transfer for efficient splitting of water. The photocatalytic water splitting was performed in the presence of sacrificial agents and in the absence of sacrificial agents, where BWO/15% rGO exhibited maximum H2 evolution.


Asunto(s)
Nanopartículas , Agua , Luz , Carbono , Preparaciones Farmacéuticas
15.
Angew Chem Int Ed Engl ; 62(46): e202312644, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37699862

RESUMEN

Developing highly efficient and stable hydrogen production catalysts for electrochemical water splitting (EWS) at industrial current densities remains a great challenge. Herein, we proposed a heterostructure-induced-strategy to optimize the metal-support interaction (MSI) and the EWS activity of Ru-Ni3 N/NiO. Density functional theory (DFT) calculations firstly predicted that the Ni3 N/NiO-heterostructures can improve the structural stability, electronic distributions, and orbital coupling of Ru-Ni3 N/NiO compared to Ru-Ni3 N and Ru-NiO, which accordingly decreases energy barriers and increases the electroactivity for EWS. As a proof-of-concept, the Ru-Ni3 N/NiO catalyst with a 2D Ni3 N/NiO-heterostructures nanosheet array, uniformly dispersed Ru nanoparticles, and strong MSI, was successfully constructed in the experiment, which exhibited excellent HER and OER activity with overpotentials of 190 mV and 385 mV at 1000 mA cm-2 , respectively. Furthermore, the Ru-Ni3 N/NiO-based EWS device can realize an industrial current density (1000 mA cm-2 ) at 1.74 V and 1.80 V under alkaline pure water and seawater conditions, respectively. Additionally, it also achieves a high durability of 1000 h (@ 500 mA cm-2 ) in alkaline pure water.

16.
Adv Mater ; 35(42): e2305598, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37433070

RESUMEN

Hydrazine-assisted water electrolysis provides new opportunities to enable energy-saving hydrogen production while solving the issue of hydrazine pollution. Here, the synthesis of compressively strained Ni2 P as a bifunctional electrocatalyst for boosting both the anodic hydrazine oxidation reaction (HzOR) and cathodic hydrogen evolution reaction (HER) is reported. Different from a multistep synthetic method that induces lattice strain by creating core-shell structures, a facile strategy is developed to tune the strain of Ni2 P via dual-cation co-doping. The obtained Ni2 P with a compressive strain of -3.62% exhibits significantly enhanced activity for both the HzOR and HER than counterparts with tensile strain and without strain. Consequently, the optimized Ni2 P delivers current densities of 10 and 100 mA cm-2 at small cell voltages of 0.16 and 0.39 V for hydrazine-assisted water electrolysis, respectively. Density functional theory (DFT) calculations reveal that the compressive strain promotes water dissociation and concurrently tunes the adsorption strength of hydrogen intermediates, thereby facilitating the HER process on Ni2 P. As for the HzOR, the compressive strain reduces the energy barrier of the potential-determining step for the dehydrogenation of *N2 H4 to *N2 H3 . Clearly, this work paves a facile pathway to the synthesis of lattice-strained electrocatalysts via the dual-cation co-doping.

17.
Nanotechnology ; 34(21)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36753747

RESUMEN

The development of high efficiency oxygen evolution electrocatalyst is of great significance for water splitting reaction. Herein, an efficient cone-structured NiFe-LDH/Nicone/Ti catalyst is fabricated by electrodeposition method towards enhanced oxygen evolution reaction (OER). The featured tip curvature of nanocone structure can accelerate the reaction kinetics of OER by offering a field-enhanced aggregation of local hydroxide ion reactant on the catalyst surface, and thus improves the performance of the NiFe catalyst. Accordingly, NiFe-LDH/Nicone/Ti requires only a low overpotential of 292 mV to achieve 50 mA cm-2, and with high stability under continuous high-current operations. In addition, the alkali-electrolyzer using NiFe-LDH/Nicone/Ti electrode exhibits good performance with a voltage of 1.73 V at 50 mA cm-2and displays excellent stability in long-term stability test. This cone-structured catalyst design with field-enhanced local hydroxide ion aggregation effect provides a promising method for the development of highly active OER electrocatalysts.

18.
J Colloid Interface Sci ; 639: 223-232, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36805747

RESUMEN

Developing a highly effective bifunctional electrocatalyst for alkaline-condition electrochemical water splitting is both essential and challenging. The work presented here successfully synthesizes and employs a heterostructured CoP-NiCoP ultra-long nanopin array in situ growing on MXene (Ti3C2Tx) as a stable bifunctional electrocatalyst for electrochemical water-splitting. The heterogeneous structure formed by CoP nanoparticles and NiCoP nanopins provides extra active sites for water-splitting. Also, Ti3C2Tx works as a support substrate during electrochemical operations, accelerating mass transfer, ion transport, and rapid gas product diffusion. Meanwhile, throughout the catalytic process, the dense nanopin arrays shield Ti3C2Tx from further oxidation. At a result, the CoP-NiCoP-Ti3C2Tx (denoted as CP-NCP-T) demonstrated excellent catalytic activity, with overpotentials of just 46 mV for hydrogen evolution at 10 mA cm-2 and 281 mV for oxygen evolution at 50 mA cm-2. Furthermore, in 1.0 M KOH solution, the outstanding bifunctional electrode (CP-NCP-T || CP-NCP-T) exhibits efficient electrochemical water splitting activity (1.54 V@10 mA cm-2) and outperforms the comparable device Pt/C || IrO2 (1.62 V@10 mA cm-2).

19.
J Colloid Interface Sci ; 634: 563-574, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549205

RESUMEN

Accelerating charge transfer efficiency by constructing heterogeneous interfaces on metal-based substrates is an effective way to improve the electrocatalytic performance of materials. However, minimizing the substrate-catalyst interfacial resistance to maximize catalytic activity remains a challenge. This study reports a simple interface engineering strategy for constructing Mo-Ni9S8/Ni3S2 heterostructured nanoflowers. Experimental and theoretical investigations reveal that the primary role assumed by Ni3S2 in Mo-Ni9S8/Ni3S2 heterostructure is to replace nickel foam (NF) substrate for electron conduction, and Ni3S2 has a lower potential energy barrier (0.76 to 1.11 eV) than NF (1.87 eV), resulting in a more effortless electron transfer. The interface between Ni3S2 and Mo-Ni9S8 effectively regulates electron redistribution, and when the electrons from Ni3S2 are transferred to Mo-Ni9S8, the potential energy barriers at the heterogeneous interface are 1.06 eV, lower than that between NF and Ni3S2 (1.53 eV). Mo-Ni9S8/Ni3S2-0.1 exhibited excellent oxygen evolution reaction (OER)/hydrogen evolution reaction (HER) bifunctional catalytic activity in 1 M KOH, with overpotentials of only 223 mV@100 mA cm-2 for OER and 116 mV@10 mA cm-2 for HER. Moreover, when combined with an alkaline electrolytic cell, it required only an ultra-low cell voltage of 1.51 V to drive a current density of 10 mA cm-2. This work provides new inspirations for rationally designing interface engineering for advanced catalytic materials.


Asunto(s)
Electrólisis , Electrones , Transporte de Electrón , Catálisis , Hidrógeno , Níquel , Oxígeno
20.
Small ; 19(7): e2203838, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36511178

RESUMEN

To solve surface carrier recombination and sluggish water oxidation kinetics of hematite (α-Fe2 O3 ) photoanodes, herein, an attractive surface modification strategy is developed to successively deposit ultrathin CoOx overlayer and Ni single atoms on titanium (Ti)-doped α-Fe2 O3 (Ti:Fe2 O3 ) nanorods through a two-step atomic layer deposition (ALD) and photodeposition process. The collaborative decoration of ultrathin CoOx overlayer and Ni single atoms can trigger a big boost in photo-electrochemical (PEC) performance for water splitting over the obtained Ti:Fe2 O3 /CoOx /Ni photoanode, with the photocurrent density reaching 1.05 mA cm-2 at 1.23 V vs. reversible hydrogen electrode (RHE), more than three times that of Ti:Fe2 O3 (0.326 mA cm-2 ). Electrochemical and electronic investigations reveal that the surface passivation effect of ultrathin CoOx overlayer can reduce surface carrier recombination, while the catalysis effect of Ni single atoms can accelerate water oxidation kinetics. Moreover, theoretical calculations evidence that the synergy of ultrathin CoOx overlayer and Ni single atoms can lower the adsorption free energy of OH* intermediates and relieve the potential-determining step (PDS) for oxygen evolution reaction (OER). This work provides an exemplary modification through rational engineering of surface electrochemical and electronic properties for the improved PEC performances, which can be applied in other metal oxide semiconductors as well.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA