Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(46): 102198-102211, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37665445

RESUMEN

4-Nitrophenol is a widely used emerging pollutant in various industries, including the production of agrochemicals, drugs, and synthetic dyes. Due to its potential environmental harmful effects, there is a need to study its reuse and removal from wastewater. This study used electrodialysis technology to separate 4-nitrophenol ions using a four-compartment stack. The effects of supporting electrolyte concentration, pH, voltages, and current density on the performance of electrodialysis for separating 4-nitrophenol were investigated. A high extraction percentage of 77% was achieved with low energy consumption (107 kWh kg-1) when high 4-nitrophenol flows and transport numbers were reached.

2.
Mol Nutr Food Res ; 67(21): e2300047, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37667444

RESUMEN

SCOPE: Quinoa intake exerts hypoglycemic and hypolipidemic effects in animals and humans. Although peptides from quinoa inhibit key enzymes involved in glucose homeostasis in vitro, their in vivo antidiabetic properties have not been investigated. METHODS AND RESULTS: This study evaluated the effect of oral administration of a quinoa protein hydrolysate (QH) produced through enzymatic hydrolysis and fractionation by electrodialysis with ultrafiltration membrane (EDUF) (FQH) on the metabolic and pregnancy outcomes of Lepdb/+ pregnant mice, a preclinical model of gestational diabetes mellitus. The 4-week pregestational consumption of 2.5 mg mL-1 of QH in water prevented glucose intolerance and improves hepatic insulin signaling in dams, also reducing fetal weights. Sequencing and bioinformatic analyses of the defatted FQH (FQHD) identified 11 peptides 6-10 amino acids long that aligned with the quinoa proteome and exhibited putative anti-dipeptidyl peptidase-4 (DPP-IV) activity, confirmed in vitro in QH, FQH, and FDQH fractions. Peptides homologous to mouse and human proteins enriched for biological processes related to glucose metabolism are also identified. CONCLUSION: Processing of quinoa protein may be used to develop a safe and effective nutritional intervention to control glucose intolerance during pregnancy. Further studies are required to confirm if this nutritional intervention is applicable to pregnant women.


Asunto(s)
Chenopodium quinoa , Diabetes Gestacional , Intolerancia a la Glucosa , Humanos , Ratones , Femenino , Animales , Embarazo , Diabetes Gestacional/terapia , Hidrolisados de Proteína/química , Ultrafiltración , Hipoglucemiantes , Péptidos/química
3.
Membranes (Basel) ; 13(4)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37103812

RESUMEN

A bibliometric analysis, using the Scopus database as a source, was carried out in order to study the scientific documents published up to 2021 regarding the use of electrodialysis, membrane distillation, and forward osmosis for the removal of heavy metals from wastewater. A total of 362 documents that fulfilled the search criteria were found, and the results from the corresponding analysis revealed that the number of documents greatly increased after the year 2010, although the first document was published in 1956. The exponential evolution of the scientific production related to these innovative membrane technologies confirmed an increasing interest from the scientific community. The most prolific country was Denmark, which contributed 19.3% of the published documents, followed by the two main current scientific superpowers: China and the USA (with 17.4% and 7.5% contributions, respectively). Environmental Science was the most common subject (55.0% of contributions), followed by Chemical Engineering (37.3% of contributions) and Chemistry (36.5% of contribution). The prevalence of electrodialysis over the other two technologies was clear in terms of relative frequency of the keywords. An analysis of the main hot topics identified the main advantages and drawbacks of each technology, and revealed that examples of their successful implementation beyond the lab scale are still scarce. Therefore, complete techno-economic evaluation of the treatment of wastewater polluted with heavy metals via these innovative membrane technologies must be encouraged.

4.
Membranes (Basel) ; 13(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36984650

RESUMEN

In copper smelting processes, acidic effluents are generated that contain inorganic contaminants such as arsenic and copper. Nowadays, the treatment of wastewater is done by physicochemical methods without copper recovery. Electrodialysis is an alternative process that can recover copper. Moreover, when electrocoagulation is applied to remove arsenic from wastewater, a more stable final sludge of less volume is obtained. The present research studies the application of a combined electrodialysis and electrocoagulation process to (1) recover Cu and (2) precipitate and remove arsenic simultaneously in the same batch reactor, using synthetic wastewater that simulates wastewater from a copper smelter. Copper and arsenic could be removed and separated by the electrodialysis part, and the electrocoagulation of arsenic was verified. With electrodialysis, the arsenic and copper removals were 67% and 100%, respectively, while 82% of the arsenic arriving at the electrocoagulation part of the cell could be precipitated and removed by this process. Initial concentrations were around 815 mg L-1 Cu and 7700 mg L-1 As. The optimal current was found to be 1.36 A due to the shorter treatment times necessary to get removal percentages, recovery percentages and energy/removed copper mass ratios in the same ranges as the values achieved with a current of 1.02 A. In summary, the combined process is a promising tool for simultaneous copper recovery and arsenic removal.

5.
Membranes (Basel) ; 13(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36837690

RESUMEN

Electromembrane processes for LiOH production from lithium brines obtained from solar evaporation ponds in production processes of the Salar de Atacama are considered. In order to analyze high concentrations' effect on ion exchange membranes, the use of concentrated LiCl aqueous solutions in a bipolar membrane electrodialysis process to produce LiOH solutions higher than 3.0% by mass is initially investigated. For this purpose, a mathematical model based on the Nernst-Planck equation is developed and validated, and a parametric study is simulated considering as input variables electrolyte concentrations, applied current density, stack design, process design and membrane characteristics. As a novelty, this mathematical model allows estimating LiOH production in a wide concentration range of LiCl, HCl and LiOH solutions and its effect on the process, providing data on final LiOH solution purity, current efficiency, specific electricity consumption and membrane performance. Among the main results, a concentration of 4.0% to 4.5% by LiOH mass is achieved, with a solution purity higher than 95% by mass and specific electrical energy consumption close to 4.0 kWh/kg. The work performed provides key information on process sensitivity to operating conditions and process design characteristics. These results serve as a guide in the application of this technology to lithium hydroxide production.

6.
Membranes (Basel) ; 12(2)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35207071

RESUMEN

Salicylic acid is an intermediate product in the synthesis of dyes, medications and aspirin. An electrodialysis module has been constructed with commercial cationic, anionic and bipolar membranes for the conversion of sodium salicylate into salicylic acid. The effect of operating conditions such as applied electric potential, salt concentration, initial acid concentration and volumetric flow on bipolar membrane electrodialysis (BMED) yields were investigated using Taguchi analysis. The results obtained in 210 min of work show an average concentration of salicylic acid of 0.0185 M, an average electric current efficiency of 85.3%, and a specific energy consumption of 2.24 kWh/kg of salicylic acid. It was concluded that the proposed bipolar membrane electrodialysis process is an efficient alternative to produce salicylic acid (SAH) from sodium salicylate (SANa) in an environmentally friendly manner. Furthermore, the production of sodium hydroxide was obtained as a by-product of the process carried out.

7.
Membranes (Basel) ; 11(9)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34564534

RESUMEN

The saline gradient present in river mouths can be exploited using ion-exchange membranes in reverse electrodialysis (RED) for energy generation. However, significant improvements in the fabrication processes of these IEMs are necessary to increase the overall performance of the RED technology. This work proposes an innovative technique for synthesizing anion exchange membranes (AEMs) via electrospinning. The AEM synthesis was carried out by applying a high voltage while ejecting a mixture of polyepichlorohydrin (PECH), 1,4-diazabicyclo [2.2.2] octane (DABCO® 33-LV) and polyacrylonitrile (PAN) at room temperature. Different ejection parameters were used, and the effects of various thermal treatments were tested on the resulting membranes. The AEMs presented crosslinking between the polymers and significant fiber homogeneity with diameters between 1400 and 1510 nm, with and without thermal treatment. Good chemical resistance was measured, and all synthesized membranes were of hydrophobic character. The thickness, roughness, swelling degree, specific fixed-charge density and ion-exchange capacity were improved over equivalent membranes produced by casting, and also when compared with commercial membranes. Finally, the results of the study of the electrospinning parameters indicate that a better performance in electrochemical properties was produced from fibers generated at ambient humidity conditions, with low flow velocity and voltage, and high collector rotation velocity.

8.
Membranes (Basel) ; 11(8)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34436338

RESUMEN

The objective of this work was to evaluate obtaining LiOH directly from brines with high LiCl concentrations using bipolar membrane electrodialysis by the analysis of Li+ ion transport phenomena. For this purpose, Neosepta BP and Fumasep FBM bipolar membranes were characterized by linear sweep voltammetry, and the Li+ transport number in cation-exchange membranes was determined. In addition, a laboratory-scale reactor was designed, constructed, and tested to develop experimental LiOH production tests. The selected LiCl concentration range, based on productive process concentrations for Salar de Atacama (Chile), was between 14 and 34 wt%. Concentration and current density effects on LiOH production, current efficiency, and specific electricity consumption were evaluated. The highest current efficiency obtained was 0.77 at initial concentrations of LiOH 0.5 wt% and LiCl 14 wt%. On the other hand, a concentrated LiOH solution (between 3.34 wt% and 4.35 wt%, with a solution purity between 96.0% and 95.4%, respectively) was obtained. The results of this work show the feasibility of LiOH production from concentrated brines by means of bipolar membrane electrodialysis, bringing the implementation of this technology closer to LiOH production on a larger scale. Moreover, being an electrochemical process, this could be driven by Solar PV, taking advantage of the high solar radiation conditions in the Atacama Desert in Chile.

9.
Membranes (Basel) ; 10(9)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854211

RESUMEN

A membrane electrodialysis process was tested for obtaining battery grade lithium hydroxide from lithium brines. Currently, in the conventional procedure, a brine with Li+ 4-6 wt% is fed to a process to form lithium carbonate and further used to produce lithium hydroxide. The disadvantages of this process are its high cost due to several stage requirement and the usage of lime, causing waste generation. The main objective of this work is to demonstrate the feasibility of obtaining battery grade lithium hydroxide monohydrate, avoiding production of lithium carbonate. A laboratory cell was constructed to study electrochemical kinetics and determine energetic parameters. The effects of current density, electrode material, electrolyte concentration, temperature and cationic membrane (Nafion 115 and Nafion 117) on cell performance were determined. Tests showed that a current density of 1200 A/m2 and temperatures between 75-85 °C allow reduced specific electricity consumption (SEC) (7.25 kWh/kg LiOH). A high purity product is obtained at temperatures below 75 °C, with a Nafion 117 membrane and low electrolyte concentration. Resulting key electrochemical data would enable a pilot-scale process implementation to obtain lithium compounds.

10.
Molecules ; 25(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365990

RESUMEN

Lactic acid is a high-value molecule with a vast number of applications. Its production in the biorefineries model is a possibility for this sector to aggregate value to its production chain. Thus, this investigation presents a biorefinery model based on the traditional sugar beet industry proposing an approach to produce lactic acid from a waste stream. Sugar beet is used to produce sugar and ethanol, and the remaining pulp is sent to animal feed. Using Bacillus coagulans in a continuous fermentation, 2781.01 g of lactic acid was produced from 3916.91 g of sugars from hydrolyzed sugar beet pulp, with a maximum productivity of 18.06 g L-1h-1. Without interfering in the sugar production, ethanol, or lactic acid, it is also possible to produce pectin and phenolic compounds in the biorefinery. The lactic acid produced was purified by a bipolar membrane electrodialysis and the recovery reached 788.80 g/L with 98% w/w purity.


Asunto(s)
Beta vulgaris/química , Fermentación , Ácido Láctico/biosíntesis , Reactores Biológicos , Etanol , Hidrólisis , Ácido Láctico/química , Sacarosa , Levaduras/metabolismo
11.
Membranes (Basel) ; 10(4)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290497

RESUMEN

Growing environmental concerns have led to the development of cleaner processes, such as the substitution of cyanide in electroplating industries and changes in the treatment of wastewaters. Hence, we evaluated the treatment of cyanide­free wastewater from the brass electroplating industry with EDTA as a complexing agent by electrodialysis, aimed at recovering water and concentrated solutions for reuse. The electrodialysis tests were performed in underlimiting and overlimiting conditions. The results suggested that intense water dissociation occurred at the cathodic side of the commercial anion­exchange membrane (HDX) during the overlimiting test. Consequently, the pH reduction at this membrane may have led to the reaction of protons with complexes of EDTA-metals and insoluble species. This allowed the migration of free Cu2+ and Zn2+ to the cation-exchange membrane as a result of the intense electric field and electroconvection. These overlimiting phenomena accounted for the improvement of the percent extraction and percent concentration, since in the electrodialysis stack employed herein, the concentrate compartments of cationic and anionic species were connected to the same reservoir. Chronopotentiometric studies showed that electroconvective vortices minimized fouling/scaling at both membranes. The electrodialysis in the overlimiting condition seemed to be more advantageous due to water dissociation and electroconvection.

12.
Membranes (Basel) ; 9(11)2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31689967

RESUMEN

Salinity gradient power is a renewable, non-intermittent, and neutral carbon energy source. Reverse electrodialysis is one of the most efficient and mature techniques that can harvest this energy from natural estuaries produced by the mixture of seawater and river water. For this, the development of cheap and suitable ion-exchange membranes is crucial for a harvest profitability energy from salinity gradients. In this work, both anion-exchange membrane and cation-exchange membrane based on poly(epichlorohydrin) and polyvinyl chloride, respectively, were synthesized at a laboratory scale (255 c m 2) by way of a solvent evaporation technique. Anion-exchange membrane was surface modified with poly(ethylenimine) and glutaraldehyde, while cellulose acetate was used for the cation exchange membrane structural modification. Modified cation-exchange membrane showed an increase in surface hydrophilicity, ion transportation and permselectivity. Structural modification on the cation-exchange membrane was evidenced by scanning electron microscopy. For the modified anion exchange membrane, a decrease in swelling degree and an increase in both the ion exchange capacity and the fixed charge density suggests an improved performance over the unmodified membrane. Finally, the results obtained in both modified membranes suggest that an enhanced performance in blue energy generation can be expected from these membranes using the reverse electrodialysis technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA