Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407717, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963683

RESUMEN

Hard carbon (HC) is the most commonly used anode material in sodium-ion batteries. However, the solid-electrolyte-interface (SEI) layer formed in carbonate ester-based electrolytes has an imperceptible dissolution tendency and a sluggish Na+ diffusion kinetics, resulting in an unsatisfactory performance of HC anode. Given that electrode/electrolyte interface property is highly dependent on the configuration of Helmholtz plane, we filtrated proper solvents by PFBE (PF6 - anion binding energy) and CAE (carbon absorption energy) and disclosed the function of chosen TFEP to reconstruct the Helmholtz plane and regulate the SEI film on HC anode. Benefiting from the preferential adsorption tendency on HC surface and strong anion-dragging interaction of TFEP, a robust and thin anion-derived F-rich SEI film is established, which greatly enhances the mechanical stability and the Na+ ion diffusion kinetics of the electrode/electrolyte interface. The rationally designed TFEP-based electrolyte endows Na||HC half-cell and 2.8 Ah HC||Na4Fe3(PO4)2P2O7 pouch cell with excellent rate capability, long cycle life, high safety and low-temperature adaptability. It is believed that this insightful recognition of tuning interface properties will pave a new avenue in the design of compatible electrolyte for low-cost, long-life, and high-safe sodium-ion batteries.

2.
ACS Nano ; 18(27): 17996-18010, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38924447

RESUMEN

The low initial Coulombic efficiency (ICE) greatly hinders the practical application of MXenes in sodium-ion batteries. Herein, theoretical calculations confirm that -F and -OH terminations as well as the tetramethylammonium ion (TMA+) intercalator in sediment Ti3C2Tx (s-Ti3C2Tx) MXene possess strong interaction with Na+, which impedes Na+ desorption during the charging process and results in low ICE. Consequently, Na+-intercalated sediment Ti3C2Tx (Na-s-Ti3C2Tx) is constructed through Na2S·9H2O treatment of s-Ti3C2Tx. Specifically, Na+ can first exchange with TMA+ of s-Ti3C2Tx and then combine with -F and -OH terminations, thus leading to the elimination of TMA+ and preshielding of -F and -OH. As expected, the resulting Na-s-Ti3C2Tx anode delivers considerably boosted ICE values of around 71% in carbonate-based electrolytes relative to s-Ti3C2Tx. Furthermore, electrolyte optimization is employed to improve ICE, and the results demonstrate that an ultrahigh ICE value of 94.0% is obtained for Na-s-Ti3C2Tx in the NaPF6-diglyme electrolyte. More importantly, Na-s-Ti3C2Tx exhibits a lower Na+ migration barrier and higher electronic conductivity compared with s-Ti3C2Tx based on theoretical calculations. In addition, the cyclic stability and rate performance of the Na-s-Ti3C2Tx anode in various electrolytes are comprehensively explored. The presented simple strategy in boosting ICE significantly enhances the commercialization prospect of MXenes in advanced batteries.

3.
Molecules ; 29(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398631

RESUMEN

Aqueous zinc ion batteries (AZIBs) have emerged as a promising battery technology due to their excellent safety, high capacity, low cost, and eco-friendliness. However, the cycle life of AZIBs is limited by severe side reactions and zinc dendrite growth on the zinc electrode surface, hindering large-scale application. Here, an electrolyte optimization strategy utilizing the simplest dipeptide glycylglycine (Gly-Gly) additive is first proposed. Theoretical calculations and spectral analysis revealed that, due to the strong interaction between the amino group and Zn atoms, Gly-Gly preferentially adsorbs on zinc's surface, constructing a stable and adaptive interfacial layer that inhibits zinc side reactions and dendrite growth. Furthermore, Gly-Gly can regulate zinc ion solvation, leading to a deposition mode shift from dendritic to lamellar and limiting two-dimensional dendrite diffusion. The symmetric cell with the addition of a 20 g/L Gly-Gly additive exhibits a cycle life of up to 1100 h. Under a high current density of 10 mA cm-2, a cycle life of 750 cycles further demonstrates the reliable adaptability of the interfacial layer. This work highlights the potential of Gly-Gly as a promising solution for improving the performance of AZIBs.

4.
Adv Mater ; 36(3): e2308628, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37910810

RESUMEN

Aqueous batteries are emerging as highly promising contenders for large-scale grid energy storage because of uncomplicated assembly, exceptional safety, and cost-effectiveness. The unique aqueous electrolyte with a rich hydrogen bond (HB) environment inevitably has a significant impact on the electrode materials and electrochemical processes. While numerous reviews have focused on the materials design and assembly of aqueous batteries, the utilization of HB chemistry is overlooked. Herein, instead of merely compiling recent advancements, this review presents a comprehensive summary and analysis of the profound implication exerted by HB on all components of the aqueous batteries. Intricate links between the novel HB chemistry and various aqueous batteries are ingeniously constructed within the critical aspects, such as self-discharge, structural stability of electrode materials, pulverization, solvation structures, charge carrier diffusion, corrosion reactions, pH sensitivity, water splitting, polysulfides shuttle, and H2 S evolution. By adopting a vantage point that encompasses material design, binder and separator functionalization, electrolyte regulation, and HB optimization, a critical examination of the key factors that impede electrochemical performance in diverse aqueous batteries is conducted. Finally, insights are rendered properly based on HB chemistry, with the aim of propelling the advancement of state-of-the-art aqueous batteries.

5.
Molecules ; 28(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37375293

RESUMEN

Electrolytes are one of the most influential aspects determining the efficiency of electrochemical supercapacitors. Therefore, in this paper, we investigate the effect of introducing co-solvents of ester into ethylene carbonate (EC). The use of ester co-solvents in ethylene carbonate (EC) as an electrolyte for supercapacitors improves conductivity, electrochemical properties, and stability, allowing greater energy storage capacity and increased device durability. We synthesized extremely thin nanosheets of niobium silver sulfide using a hydrothermal process and mixed them with magnesium sulfate in different wt% ratios to produce Mg(NbAgS)x)(SO4)y. The synergistic effect of MgSO4 and NbS2 increased the storage capacity and energy density of the supercapattery. Multivalent ion storage in Mg(NbAgS)x(SO4)y enables the storage of a number of ions. The Mg(NbAgS)x)(SO4)y was directly deposited on a nickel foam substrate using a simple and innovative electrodeposition approach. The synthesized silver Mg(NbAgS)x)(SO4)y provided a maximum specific capacity of 2087 C/g at 2.0 A/g current density because of its substantial electrochemically active surface area and linked nanosheet channels which aid in ion transportation. The supercapattery was designed with Mg(NbAgS)x)(SO4)y and activated carbon (AC) achieved a high energy density of 79 Wh/kg in addition to its high power density of 420 W/kg. The supercapattery (Mg(NbAgS)x)(SO4)y//AC) was subjected to 15,000 consecutive cycles. The Coulombic efficiency of the device was 81% after 15,000 consecutive cycles while retaining a 78% capacity retention. This study reveals that the use of this novel electrode material (Mg(NbAgS)x(SO4)y) in ester-based electrolytes has great potential in supercapattery applications.

6.
Small ; 19(15): e2206445, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36609796

RESUMEN

Alkali metal-CO2 batteries, which combine CO2 recycling with energy conversion and storage, are a promising way to address the energy crisis and global warming. Unfortunately, the limited cycle life, poor reversibility, and low energy efficiency of these batteries have hindered their commercialization. Li-CO2 battery systems have been intensively researched in these aspects over the past few years, however, the exploration of Na-CO2 batteries is still in its infancy. To improve the development of Na-CO2 batteries, one must have a full picture of the chemistry and electrochemistry controlling the operation of Na-CO2 batteries and a full understanding of the correlation between cell configurations and functionality therein. Here, recent advances in CO2 chemical and electrochemical mechanisms on nonaqueous Na-CO2 batteries and hybrid Na-CO2 batteries (including O2 -involved Na-O2 /CO2 batteries) are reviewed in-depth and comprehensively. Following this, the primary issues and challenges in various battery components are identified, and the design strategies for the interfacial structure of Na anodes, electrolyte properties, and cathode materials are explored, along with the correlations between cell configurations, functional materials, and comprehensive performances are established. Finally, the prospects and directions for rationally constructing Na-CO2 battery materials are foreseen.

7.
Chem Rec ; 22(10): e202200112, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35675943

RESUMEN

Sodium (Na)-based batteries, as the ideal choice of large-scale and low-cost energy storage, have attracted much attention. Na metal anodes with high theoretical specific capacity and low potential are considered to be one of the most promising anodes for next-generation Na-based batteries. However, the high reactivity of Na metal anodes makes the electrode/electrolyte phase unstable, resulting in formation of Na dendrites, short cycle life and safety problems. Herein, the contribution outlines the latest development of Na metal anodes for Na metal batteries. The design strategies for high efficiency utilization of Na metal anodes are elucidated, including sophisticated electrode construction, liquid electrolyte optimization, electrode/electrolyte interface stabilization, and solid electrolyte adaptation. Finally, the future research direction and existing problems are proposed.

8.
ACS Appl Mater Interfaces ; 12(24): 27794-27802, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32442365

RESUMEN

Lithium (Li) metal anode (LMA) has received growing attention due to its highest theoretical capacity (3860 mA h g-1) and lowest redox potential (-3.04 V versus standard hydrogen electrode). However, practical application of LMA is obstructed by the detrimental side reactions between Li metal and organic electrolytes, especially when cycled in traditional carbonate ester electrolytes. Herein, we propose a novel fluorinated carbonate ester-based electrolyte by combining diethyl fluorocarbonate (ETFEC) solvent and 5 M LiFSI concentration (M = mol L-1). Using this electrolyte, an ultrahigh Li plating/stripping Coulombic efficiency (CE) of 99.1% can be obtained in Li||Cu cells and a stable cycle performance of Li||LiFePO4 is achieved under the conditions of limited Li metal (5 mA h cm-2), moderate loading LiFePO4 (7-8 mg cm-2), and lean electrolyte (40 uL). The fundamental functioning mechanism of this novel electrolyte has been carefully investigated by scanning electronic microscopy (SEM), operando optical microscopy (OM), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectroscopy (XPS), and solid state nuclear magnetic resonance (SS-NMR). The results demonstrate that this optimized electrolyte facilitates formation of a high Li+ conductive SEI layer enriched with LiF and inorganic sulfur-containing species, which can effectively suppress the side reactions between electrolyte and Li metal and prevent formation of dead Li.

9.
ACS Appl Mater Interfaces ; 12(19): 21368-21385, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32293860

RESUMEN

High voltage spinel manganese oxide LiNi0.5Mn1.5O4 (LNMO) cathodes are promising for practical applications owing to several strengths including high working voltages, excellent operating safety, low costs, and so on. However, LNMO-based lithium-ion batteries (LIBs) fade rapidly mainly owing to unqualified electrolytes, hence becoming a big obstacle toward practical applications. To tackle this roadblock, substantial progress has been made thus far, and yet challenges still remain, while rare reviews have systematically discussed the status quo and future development of electrolyte optimization coupling with LNMO cathodes. Here, we discuss cycling degradation mechanisms at the cathode/electrolyte interface and ideal requirements of electrolytes for LNMO cathode-equipped LIBs, as well as review the recent advance of electrolyte optimization for LNMO cathode-equipped LIBs in detail. And then, the perspectives regarding the future research opportunities in developing state-of-the-art electrolytes are also presented. The authors hope to shed light on the rational optimization of advanced organic electrolytes in order to boost the large-scale practical applications of high voltage LNMO cathode-based LIBs.

10.
Electrophoresis ; 40(18-19): 2618-2624, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31116449

RESUMEN

This study reports a reinvestigation of background electrolyte selection strategy for performance improvement in CE-LIF of peptides and proteins. This strategy is based on the employment of high concentrations of organic species in BGE possessing high buffer capacity and low specific conductivity in order to ensure excellent stacking preconcentration and separation resolution of fluorescently tagged peptides and proteins. Unlike universal UV detection, the use of such BGEs at high concentrations does not lead to degradation of LIF detection signals at the working excitation and emission wavelengths. At the same buffer ionic strength, pH and electric field, an "inorganic-species-free" BGE (or ISF BGE) for CE-LIF of fluorescently labeled beta amyloid peptide Aß 1-42 (a model analyte) offered a signal intensity and peak efficiency at least three-times higher than those obtained with a conventional BGE normally used for CE-LIF, while producing an electric current twice lower. Good peak performance (in terms of height and shape) was maintained when using ISF BGEs even with samples prepared in high-conductivity phosphate buffer saline matrix. The advantageous features of such BGEs used at high concentrations over conventional ones in terms of high separation resolution, improved signal intensities, tuning of EOF magnitudes and minimization of protein adsorption on an uncoated fused silica capillary are demonstrated using Alexa-488-labelled trypsin inhibitor. Such BGE selection approach was applied for investigation of separation performance for CE-LIF of ovalbumin labelled with different fluorophores.


Asunto(s)
Electroforesis Capilar/métodos , Péptidos/análisis , Proteínas/análisis , Electrólitos , Péptidos/química , Péptidos/aislamiento & purificación , Proteínas/química , Proteínas/aislamiento & purificación , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia/métodos
11.
Angew Chem Int Ed Engl ; 54(30): 8684-7, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-25891480

RESUMEN

Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA