Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Small ; : e2400483, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092666

RESUMEN

The development of high-energy-density cathode materials is regarded as the ultimate goal of alkali metal-ion batteries energy storage. However, the strategy of regulating specific capacity is limited by the theoretical capacity, and meanwhile focusing on improving capacity will lead to structural destructions. Herein, a novel perspective is proposed that tuning the electronic band structure by introducing highly electronegative fluoride atoms in NaxTMO2-yFy (0 < x < 1, 0 < y < 2) model compounds to improve redox potential for developing high-energy-density layered oxides. Highly electronegative fluoride atoms is introduced into P2-type Na0.67Fe0.5Mn0.5O2 (NFM), and the thus fluoride NFM (F-NFM) cathode achieved high redox potential (3.0 V) and high energy density (446 Wh kg-1). Proved by structural characterizations, fluorine atoms are successfully incorporated into oxygen sites in NFM lattice. Ultraviolet photoelectron spectroscopy is applied to quantitatively analyze the improved redox potential of F-NFM, which is achieved by the decreased valence band energy in electronic band structure due to the strongly electrophilic fluoride ions. Moreover, fluoride atoms can stabilize the local environment of NFM and improve its redox potential. The work provides a perspective to improve redox potential by tuning the electronic band structure in layered oxides and developing high-energy-density alkali metal-ion batteries.

2.
Am J Ophthalmol Case Rep ; 36: 102094, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39100576

RESUMEN

Purpose: Cone-rod dystrophies (CORD) are inherited retinal dystrophies characterized by primary cone degeneration with secondary rod involvement. We report two patients from the same family with a dominant variant in the guanylate cyclase 2D (GUCY2D) gene with different phenotypes in the electroretinogram (ERG). Observations: A 21-year-old lady (Patient 1) was referred due to experiencing blurry vision and color vision impairment. Visual field testing revealed a central scotoma. Spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF) documented macula dysfunction. Reduced amplitude was observed in the photopic responses of ERG. Her 54-year-old father (Patient 2) had similar issues with blurry vision. A dilated fundus examination displayed bilateral macular atrophy. Loss of the ellipsoid zone line and collapse of the outer nuclear segment were noted on the SD-OCT. Photopic ERG responses were extinguished, and an electronegative ERG was observed in the dark-adapted 3.0 ERG. The gene report revealed a c.2512C > T (p.Arg838Cys) variant in GUCY2D for both patients. They were respectively diagnosed as cone dystrophy (COD) and cone-rod dystrophy (CORD). Conclusions: We report two different clinical phenotypes in GUCY2D-associated COD despite sharing the same variant. A dysfunction in the synaptic junction between the photoreceptor and the secondary neuron was proposed to explain the electronegative ERG. This explanation might extend to other gene-related cases of CORD with electronegative ERG.

3.
Curr Atheroscler Rep ; 26(7): 317-329, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38753254

RESUMEN

PURPOSE OF REVIEW: Low-density lipoprotein (LDL) poses a risk for atherosclerotic cardiovascular disease (ASCVD). As LDL comprises various subtypes differing in charge, density, and size, understanding their specific impact on ASCVD is crucial. Two highly atherogenic LDL subtypes-electronegative LDL (L5) and Lp(a)-induce vascular cell apoptosis and atherosclerotic changes independent of plasma cholesterol levels, and their mechanisms warrant further investigation. Here, we have compared the roles of L5 and Lp(a) in the development of ASCVD. RECENT FINDINGS: Lp(a) tends to accumulate in artery walls, promoting plaque formation and potentially triggering atherosclerosis progression through prothrombotic or antifibrinolytic effects. High Lp(a) levels correlate with calcific aortic stenosis and atherothrombosis risk. L5 can induce endothelial cell apoptosis and increase vascular permeability, inflammation, and atherogenesis, playing a key role in initiating atherosclerosis. Elevated L5 levels in certain high-risk populations may serve as a distinctive predictor of ASCVD. L5 and Lp(a) are both atherogenic lipoproteins contributing to ASCVD through distinct mechanisms. Lp(a) has garnered attention, but equal consideration should be given to L5.


Asunto(s)
Aterosclerosis , Lipoproteína(a) , Humanos , Lipoproteína(a)/sangre , Lipoproteína(a)/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/sangre , Lipoproteínas LDL/sangre , Lipoproteínas LDL/metabolismo , Apoptosis , Animales
4.
Curr Med Chem ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494931

RESUMEN

The purpose of this review is to revisit in detail the arguments supporting or disproving the hypothesis that oxidized low-density lipoprotein (LDL) plays a key role in atherosclerotic lesion development. The detection of oxidized LDL in vivo was extremely important for confirming its key role in atherogenesis. Indirect evidence of its existence included the presence of autoantibodies against malondialdehyde-treated LDL in human blood; however, the affinity of circulating antibodies to another LDL modification, such as desialylated LDL, was an order of magnitude stronger. At least 3 forms of atherogenic modified lipoproteins were isolated from the blood of atherosclerotic patients using different methods, namely, small dense, electronegative and desialylated. Their properties were so similar that it was suggested that the three types could be classified as the same multiple-modified LDL particle. It has been shown that when native (unmodified) LDL is incubated with autologous serum from patients with atherosclerosis, multiple modifications occur, which include desialylation, a decrease in the content of phospholipids and neutral lipids, a decrease in particle size, an increase in negative charge and other physical and chemical changes. Longer incubation also increased the susceptibility of LDL to oxidation. Thus, LDL oxidation is not the only, much less the most important, form of atherogenic modification of LDL since it occurs at the last stages of multiple modifications cascade and does not significantly increase the atherogenic potential of multiple-modified LDL. Finally, clinical trials did not support the oxidative hypothesis; however, research on oxidized LDL continues, influencing the future research. It is time to abandon the myth!

5.
ACS Nano ; 18(14): 10196-10205, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38526994

RESUMEN

Although numerous polymer-based composites exhibit excellent dielectric permittivity, their dielectric performance in various applications is severely hampered by high dielectric loss induced by interfacial space charging and a leakage current. Herein, we demonstrate that embedding molten salt etched MXene into a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE))/poly(methyl methacrylate) (PMMA) hybrid matrix induces strong interfacial interactions, forming a close-packed inner polymer layer and leading to significantly suppressed dielectric loss and markedly increased dielectric permittivity over a broad frequency range. The intensive molecular interaction caused by the dense electronegative functional terminations (-O and -Cl) in MXene results in restricted polymer chain movement and dense molecular arrangement, which reduce the transportation of the mobile charge carriers. Consequently, compared to the neat polymer, the dielectric constant of the composite with 2.8 wt % MXene filler increases from ∼52 to ∼180 and the dielectric loss remains at the same value (∼0.06) at 1 kHz. We demonstrate that the dielectric loss suppression is largely due to the formation of close-packed interfaces between the MXene and the polymer matrix.

8.
J Mol Graph Model ; 127: 108693, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38070228

RESUMEN

Ab initio molecular dynamics studies have been performed on fluorobenzene, phenol, and aniline, which have the three most electronegative atoms, fluorine, oxygen, and nitrogen, respectively. Radial distribution functions show strong hydrogen bonding in the phenolic -OH group, whereas it is less prominent in the -NH2 group of aniline. Fluorobenzene does not show strong hydrogen bonds as no solvation shell is found between the fluorine atom and different aromatic hydrogens of the molecule. Spatial distribution functions show that the nitrogen atom of aniline interacts with the aromatic plane, the oxygen atom of phenol is concentrated near the -OH group and fluorobenzene's fluorine atom interacts with the para hydrogen. Liquid phase dimer structures of these systems reveal that perpendicular orientation (Y-shaped) is preferred over parallel ones. Almost half of the total dimer population tends to prefer 90∘±30° angle. H-bond analyses show that fluorobenzene has the longest mean H-bond lifetime for the H-bond between the aromatic hydrogens and the fluorine atoms, whereas the aniline has the least. The mean lifetime between aromatic hydrogens and electronegative atoms increases steadily from aniline to fluorobenzene. Phenolic -OH and amino -NH2 groups show considerably longer mean H-bond lifetime than the aromatic hydrogens. Gas-phase binding energies obtained from quantum chemical calculations show that aniline and phenol dimers have higher binding energy values than the fluorobenzene dimer. Only the phenol dimer shows a perpendicular structure as a stable one, while aniline and fluorobenzene prefer the parallel orientation.


Asunto(s)
Flúor , Fluorobencenos , Enlace de Hidrógeno , Fenol/química , Compuestos de Anilina , Oxígeno , Nitrógeno
9.
Front Neurosci ; 17: 1275932, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033552

RESUMEN

Alzheimer's disease (AD) and other classes of dementia are important public health problems with overwhelming social, physical, and financial effects for patients, society, and their families and caregivers. The pathophysiology of AD is poorly understood despite the extensive number of clinical and experimental studies. The brain's lipid-rich composition is linked to disturbances in lipid homeostasis, often associated with glucose and lipid abnormalities in various neurodegenerative diseases, including AD. Moreover, elevated low-density lipoprotein (LDL) cholesterol levels may be related to a higher probability of AD. Here, we hypothesize that lipids, and electronegative LDL (L5) in particular, may be involved in the pathophysiology of AD. Although changes in cholesterol, triglyceride, LDL, and glucose levels are seen in AD, the cause remains unknown. We believe that L5-the most electronegative subfraction of LDL-may be a crucial factor in understanding the involvement of lipids in AD pathology. LDL and L5 are internalized by cells through different receptors and mechanisms that trigger separate intracellular pathways. One of the receptors involved in L5 internalization, LOX-1, triggers apoptotic pathways. Aging is associated with dysregulation of lipid homeostasis, and it is believed that alterations in lipid metabolism contribute to the pathogenesis of AD. Proposed mechanisms of lipid dysregulation in AD include mitochondrial dysfunction, blood-brain barrier disease, neuronal signaling, inflammation, and oxidative stress, all of which lead ultimately to memory loss through deficiency of synaptic integration. Several lipid species and their receptors have essential functions in AD pathogenesis and may be potential biomarkers.

10.
Diagnostics (Basel) ; 13(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37835784

RESUMEN

Inherited retinal dystrophies (IRDs) are a group of heterogeneous diseases caused by genetic mutations that specifically affect the function of the rod, cone, or bipolar cells in the retina. Electroretinography (ERG) is a diagnostic tool that measures the electrical activity of the retina in response to light stimuli, and it can help to determine the function of these cells. A normal ERG response consists of two waves, the a-wave and the b-wave, which reflect the activity of the photoreceptor cells and the bipolar and Muller cells, respectively. Despite the growing availability of next-generation sequencing (NGS) technology, identifying the precise genetic mutation causing an IRD can be challenging and costly. However, certain types of IRDs present with unique ERG features that can help guide genetic testing. By combining these ERG findings with other clinical information, such as on family history and retinal imaging, physicians can effectively narrow down the list of candidate genes to be sequenced, thereby reducing the cost of genetic testing. This review article focuses on certain types of IRDs with unique ERG features. We will discuss the pathophysiology and clinical presentation of, and ERG findings on, these disorders, emphasizing the unique role ERG plays in their diagnosis and genetic testing.

11.
Case Rep Ophthalmol ; 14(1): 498-506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901652

RESUMEN

In this report, we present a case of unilateral melanoma-associated retinopathy in a 72-year-old woman. The patient's main symptoms were decreased vision and positive dysphotopsia. Unilateral electronegative electroretinogram (ERG) was suggestive for melanoma retinopathy. PET-CT discovered metastatic disease, 3 years after the initial melanoma. A prompt treatment with corticosteroids was started, followed by immunotherapy. The central and peripheral vision of the patient improved, and the ERG showed normalization of the responses. This case highlights the importance of early recognition and individualized treatment strategies for melanoma-associated retinopathy.

12.
Int J Biol Macromol ; 250: 126069, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536403

RESUMEN

The fifth subfraction of low-density lipoprotein (L5 LDL) can be separated from human LDL using fast-protein liquid chromatography with an anion exchange column. L5 LDL induces vascular endothelial injury both in vitro and in vivo through the lectin-like oxidized LDL receptor-1 (LOX-1). However, no in vivo evidence shows the tendency of L5 LDL deposition on vascular endothelium and links to dysfunction. This study aimed to investigate L5 LDL retention in vivo using SPECT/CT imaging, with Iodine-131 (131I)-labeled and injected into six-month-old apolipoprotein E knockout (apoE-/-) mice through tail veins. Besides, we examined the biodistribution of L5 LDL in tissues and analyzed the intracellular trafficking in human aortic endothelial cells (HAoECs) by confocal microscopy. The impacts of L5 LDL on HAoECs were analyzed using electron microscopy for mitochondrial morphology and western blotting for signaling. Results showed 131I-labeled-L5 was preferentially deposited in the heart and vessels compared to L1 LDL. Furthermore, L5 LDL was co-localized with the mitochondria and associated with mitofusin (MFN1/2) and optic atrophy protein 1 (OPA1) downregulation, leading to mitochondrial fission. In summary, L5 LDL exhibits a propensity for subendothelial retention, thereby promoting endothelial dysfunction and the formation of atherosclerotic lesions.

13.
Am J Med Genet A ; 191(12): 2819-2824, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37530213

RESUMEN

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare autosomal recessive multisystem disorder that often presents with gastrointestinal and neurological symptoms. Here we report a 33-year-old male who presented with a 16-year history of diarrhea with black stool and progressive weight loss. He complained of progressive bilateral blurred vision, upper eyelids heaviness, ocular motility impairment, and color blindness. Peripheral neuropathy, bilateral sensorineural deafness, hyperlactatemia, diabetes mellitus, hepatic steatosis, blood coagulation dysfunction, and diffuse leukoencephalopathy were detected in the systemic evaluation. Based on the novel homozygous pathogenic variant in the TYMP gene (c.1159+1G>A), he was diagnosed with MNGIE. On ophthalmic examinations, the thickness of the inner retina and ganglion cell complex significantly decreased. ERG showed diffusely decreased amplitudes. The electronegative electroretinogram, which was first reported in MNGIE, indicated a more severe inner retina impairment. The bilateral papillomacular bundle defect and central vision loss in MNGIE are consistent with classical mitochondrial optic neuropathies' features. According to the literature, pigmentary retinopathy, optic neuropathy, and abnormal pupillary reflexes are uncommon ocular features of MNGIE. This study contributes to a better understanding of ocular manifestations in MNGIE and demonstrates that MNGIE may have dyschromatopsia and an electronegative electroretinogram.


Asunto(s)
Encefalomiopatías Mitocondriales , Oftalmoplejía , Enfermedades del Sistema Nervioso Periférico , Masculino , Humanos , Adulto , Mutación , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/genética , Ojo/patología , Oftalmoplejía/diagnóstico , Oftalmoplejía/genética
14.
Angew Chem Int Ed Engl ; 62(37): e202307459, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37488979

RESUMEN

Despite the enormous interest in Li metal as an ideal anode material, the uncontrollable Li dendrite growth and unstable solid electrolyte interphase have plagued its practical application. These limitations can be attributed to the sluggish and uneven Li+ migration towards Li metal surface. Here, we report olefin-linked covalent organic frameworks (COFs) with electronegative channels for facilitating selective Li+ transport. The triazine rings and fluorinated groups of the COFs are introduced as electron-rich sites capable of enhancing salt dissociation and guiding uniform Li+ flux within the channels, resulting in a high Li+ transference number (0.85) and high ionic conductivity (1.78 mS cm-1 ). The COFs are mixed with a polymeric binder to form mixed matrix membranes. These membranes enable reliable Li plating/stripping cyclability over 700 h in Li/Li symmetric cells and stable capacity retention in Li/LiFePO4 cells, demonstrating its potential as a viable cationic highway for accelerating Li+ conduction.

15.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108253

RESUMEN

Electronegative LDL (LDL(-)) is a minor form of LDL present in blood for which proportions are increased in pathologies with increased cardiovascular risk. In vitro studies have shown that LDL(-) presents pro-atherogenic properties, including a high susceptibility to aggregation, the ability to induce inflammation and apoptosis, and increased binding to arterial proteoglycans; however, it also shows some anti-atherogenic properties, which suggest a role in controlling the atherosclerotic process. One of the distinctive features of LDL(-) is that it has enzymatic activities with the ability to degrade different lipids. For example, LDL(-) transports platelet-activating factor acetylhydrolase (PAF-AH), which degrades oxidized phospholipids. In addition, two other enzymatic activities are exhibited by LDL(-). The first is type C phospholipase activity, which degrades both lysophosphatidylcholine (LysoPLC-like activity) and sphingomyelin (SMase-like activity). The second is ceramidase activity (CDase-like). Based on the complementarity of the products and substrates of these different activities, this review speculates on the possibility that LDL(-) may act as a sort of multienzymatic complex in which these enzymatic activities exert a concerted action. We hypothesize that LysoPLC/SMase and CDase activities could be generated by conformational changes in apoB-100 and that both activities occur in proximity to PAF-AH, making it feasible to discern a coordinated action among them.


Asunto(s)
Aterosclerosis , Lipoproteínas LDL , Humanos , Lipoproteínas LDL/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Fosfolípidos , Esfingomielinas/metabolismo , Arterias/metabolismo
16.
Protein Sci ; 32(5): e4643, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37060324

RESUMEN

Electronegative clusters (ENCs) made up of acidic residues and/or phosphorylation sites are the most abundant repetitive sequences in RNA-binding proteins. Previous studies have indicated that ENCs inhibit RNA binding for structured RNA-binding domains (RBDs). However, this is not the case for the unstructured RBD in histone pre-mRNA stem-loop binding protein (SLBP). The SLBP RBD contains 70 amino acids and is followed by a phosphorylatable ENC. ENC phosphorylation increases RNA-binding affinity of SLBP to the sub-picomolar range. In this study, we use NMR and molecular dynamics simulations to elucidate the mechanism for this tight binding. Our NMR data demonstrate that the ENC transiently folds apo SLBP into an RNA-bound resembling state. We find that in the RNA-bound state, the phosphorylated ENC interacts with the loop region opposite to the RNA-binding site. This allosteric interaction stabilizes the complex and therefore enhances RNA binding. To evaluate the generality of our findings, we graft an ENC onto endoribonuclease homolog 1's first double-stranded RNA-binding motif (DRBM1), an unstructured RBD that shares no homology with SLBP. We find that the engineered ENC increases the folded species of DRBM1 and inhibits RNA binding. On the contrary, introducing basic residues to DRBM1 makes the domain more unfolded, enhances RNA binding, and mitigates the inhibitory effect of the engineered ENC. In summary, our study suggests that ENCs promote folding of unstructured RNA-binding domains, and their effects on RNA binding depend on the electropositive charges on the RBD surface.


Asunto(s)
Histonas , Proteínas Nucleares , Histonas/metabolismo , Proteínas Nucleares/química , Factores de Escisión y Poliadenilación de ARNm/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Sitios de Unión , Unión Proteica
17.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982815

RESUMEN

A high concentration of low-density lipoproteins (LDLs) in circulation has been well-known as a major risk factor for cardiovascular diseases. The presence of oxidized LDLs (oxLDLs) in atherosclerotic lesions and circulation was demonstrated using anti-oxLDL monoclonal antibodies. The so-called "oxLDL hypothesis", as a mechanism for atherosclerosis development, has been attracting attention for decades. However, the oxLDL has been considered a hypothetical particle since the oxLDL present in vivo has not been fully characterized. Several chemically modified LDLs have been proposed to mimic oxLDLs. Some of the subfractions of LDL, especially Lp(a) and electronegative LDL, have been characterized as oxLDL candidates as oxidized phospholipids that stimulate vascular cells. Oxidized high-density lipoprotein (oxHDL) and oxLDL were discovered immunologically in vivo. Recently, an oxLDL-oxHDL complex was found in human plasma, suggesting the involvement of HDLs in the oxidative modification of lipoproteins in vivo. In this review, we summarize our understanding of oxidized lipoproteins and propose a novel standpoint to understand the oxidized lipoproteins present in vivo.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Lipoproteínas LDL , Lipoproteínas , Aterosclerosis/etiología , Lipoproteínas HDL , Enfermedades Cardiovasculares/complicaciones , Factores de Riesgo
18.
J Colloid Interface Sci ; 641: 176-186, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36933466

RESUMEN

Slow Li ion diffusion kinetics and disordered migration of electrons are two most crucial obstacles to be resolved in electrode material design for higher rate capability of Li-ion batteries. Herein, the Co-doped CuS1-x with abundant high active S vacancies is proposed to accelerate the electronic and ionic diffusion during the energy conversion process, because contraction of Co-S bond can cause the expansion of atomic layer spacing, thus promoting the Li ion diffusion and directional electron migration parallel to the Cu2S2 plane, and also induce the increasing of active sites to improve the Li+ adsorption and electrocatalytic conversion kinetics. Especially, the electrocatalytic studies and plane charge density difference simulations demonstrate that electron transfer near the Co site is more frequent, which is conducive to more rapid energy conversion and storage. Those S vacancies formed by Co-S contraction in CuS1-x structure obviously increase Li ion adsorption energy in Co-doped CuS1-x to 2.21 eV, higher than the 2.1 eV for CuS1-x and 1.88 eV for CuS. Taking these advantages, the Co-doped CuS1-x as anode of Li-ion batterie shows an impressive rate capability of 1309 mAh·g-1 at 1A g-1, and long cycling stability (retaining 1064 mAh·g-1 capacity after 500 cycles). This work provides new opportunities for the design of high-performance electrode material for rechargeable metal-ion batteries.

19.
J Pers Med ; 13(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36836428

RESUMEN

L5, the most electronegative subfraction of low-density lipoprotein cholesterol (LDL-C), may play a role in the pathogenesis of cerebrovascular dysfunction and neurodegeneration. We hypothesized that serum L5 is associated with cognitive impairment and investigated the association between serum L5 levels and cognitive performance in patients with mild cognitive impairment (MCI). This cross-sectional study conducted in Taiwan included 22 patients with MCI and 40 older people with normal cognition (healthy controls). All participants were assessed with the Cognitive Abilities Screening Instrument (CASI) and a CASI-estimated Mini-Mental State Examination (MMSE-CE). We compared the serum total cholesterol (TC), LDL-C, and L5 levels between the MCI and control groups and examined the association between lipid profiles and cognitive performance in these groups. The serum L5 concentration and total CASI scores were significantly negatively correlated in the MCI group. Serum L5% was negatively correlated with MMSE-CE and total CASI scores, particularly in the orientation and language subdomains. No significant correlation between the serum L5 level and cognitive performance was noted in the control group. Conclusions: Serum L5, instead of TC or total LDL-C, could be associated with cognitive impairment through a disease stage-dependent mode that occurs during neurodegeneration.

20.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36829998

RESUMEN

Owing to the high risk of recurrence, identifying indicators of carotid plaque vulnerability in atherothrombotic ischemic stroke is essential. In this study, we aimed to identify modified LDLs and antioxidant enzymes associated with plaque vulnerability in plasma from patients with a recent ischemic stroke and carotid atherosclerosis. Patients underwent an ultrasound, a CT-angiography, and an 18F-FDG PET. A blood sample was obtained from patients (n = 64, 57.8% with stenosis ≥50%) and healthy controls (n = 24). Compared to the controls, patients showed lower levels of total cholesterol, LDL cholesterol, HDL cholesterol, apolipoprotein B (apoB), apoA-I, apoA-II, and apoE, and higher levels of apoJ. Patients showed lower platelet-activating factor acetylhydrolase (PAF-AH) and paraoxonase-1 (PON-1) enzymatic activities in HDL, and higher plasma levels of oxidized LDL (oxLDL) and electronegative LDL (LDL(-)). The only difference between patients with stenosis ≥50% and <50% was the proportion of LDL(-). In a multivariable logistic regression analysis, the levels of LDL(-), but not of oxLDL, were independently associated with the degree of carotid stenosis (OR: 5.40, CI: 1.15-25.44, p < 0.033), the presence of hypoechoic plaque (OR: 7.52, CI: 1.26-44.83, p < 0.027), and of diffuse neovessels (OR: 10.77, CI: 1.21-95.93, p < 0.033), indicating that an increased proportion of LDL(-) is associated with vulnerable atherosclerotic plaque.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA