Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.254
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39227535

RESUMEN

The present study describes a set of methodological procedures (seldom applied together), including (i) development of an alternative adsorbent derived from abundant low-cost plant biomass; (ii) use of simple low-cost biomass modification techniques based on physical processing and chemical activation; (iii) design of experiments (DoE) applied to optimize the removal of a pharmaceutical contaminant from water; (iv) at environmentally relevant concentrations, (v) that due to initial low concentrations required determination by ultra-performance liquid phase chromatography coupled to mass spectrometry (UPLC-MS/MS). A central composite rotational design (CCRD) was employed to investigate the performance of vegetable sponge biomass (Luffa cylindrica), physically processed (crushing and sieving) and chemically activated with phosphoric acid, in the adsorption of the antibiotic trimethoprim (TMP) from water. The optimized model identified pH as the most significant variable, with maximum drug removal (91.1 ± 5.7%) achieved at pH 7.5, a temperature of 22.5 °C, and an adsorbent/adsorbate ratio of 18.6 mg µg-1. The adsorption mechanisms and surface properties of the adsorbent were examined through characterization techniques such as scanning electron microscopy (SEM), point of zero charge (pHpzc) measurement, thermogravimetric analysis (TGA), specific surface area, and Fourier-transform infrared spectroscopy (FTIR). The best kinetic fit was obtained by the Avrami fractional-order model. The hypothesis of a hybrid behavior of the adsorbent was suggested by the equilibrium results presented by the Langmuir and Freundlich models and reinforced by the Redlich-Peterson model, which achieved the best fit (R2 = 0.982). The thermodynamic study indicated an exothermic, spontaneous, and favorable process. The maximum adsorption capacity of the material was 2.32 × 102 µg g-1 at an equilibrium time of 120 min. Finally, a sustainable and promising adsorbent for the polishing of aqueous matrices contaminated by contaminants of emerging concern (CECs) at environmentally relevant concentrations is available for future investigations.

2.
Microsc Res Tech ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222395

RESUMEN

Microplastic (MP) contamination has become a serious environmental concern that affects terrestrial environments, aquatic ecosystems, and human health. The current study assesses the presence, abundance, and morphology of MPs present in the surface water of Rohtak district, Haryana, India, which is rapidly undergoing industrialization. While the morphological studies of MPs were conducted through stereo microscopy and field emission-scanning electron microscopy (FE-SEM), the elemental composition of polymers was analyzed through attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The results revealed that the surface water was significantly contaminated by polyethylene, polypropylene, and polystyrene. Moreover, the abundance of MPs was found to be 16-28 particles/L with an average value of 23 particles/L. Most of the MPs had fibrous morphology with the specifics being, fibers (43.9%), fragments (23.7%), films (17%), and pellets (15.4%). The MPs exhibited a size range of 0.61-4.87 mm, with an average size measured at 2.03 ± 0.04 mm. Also, the MP pollution load index values for the surface water bodies were found to be below 10, indicating a low risk category. Though currently designated as "low risk," it is important that mitigation strategies be brought over at this juncture to further prevent the deterioration of quality of water. Thus, this study not only intends to bring forth the impact of human activities, industrial waste, open waste dumping, and inadequate municipal waste management practices on increasing MP concentration but also highlights the sustainable alternatives and strategies to address this emerging pollutant in urban water systems. For further prevention, the implementation of stringent regulations and on-site plastic waste segregation is a critical component in preventing the disposal of plastic waste in surface water bodies. RESEARCH HIGHLIGHTS: The abundance of MPs was found to be 16-28 particles/L, with an average value of 23 particles/L. The surface water bodies in Rohtak district fall into the hazard categories of low risk with values less than 10. The overall MP concentration in water, across all five areas, based on color was in order: white/transparent (39.1%), black (15%), gray (9.1%), green (8.7%), blue (7.8%), red (7.8%), orange (6.3%), and yellow (6.1%). The dominant polymers were polyethylene (PE) (42%) and polypropylene (41%) as determined by FTIR spectroscopy.

3.
Environ Sci Technol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223699

RESUMEN

Nanofiltration (NF) technology is pivotal for ensuring a sustainable and reliable supply of clean water. To address the critical need for advanced thin-film composite (TFC) polyamide (PA) membranes with exceptional permselectivity and fouling resistance for emerging contaminant purification, we introduce a novel high-performance NF membrane. This membrane features a selective polypiperazine (PIP) layer functionalized with amino-containing quaternary ammonium compounds (QACs) through an in situ interfacial polycondensation reaction. Our investigation demonstrated that precise QAC functionalization enabled the construction of the selective PA layer with increased surface area, enhanced microporosity, stronger electronegativity, and reduced thickness compared to the control PIP membrane. As a result, the QAC NF membrane exhibited an approximately 51% increase in water permeance compared to the control PIP membrane, while achieving superior retention capabilities for divalent salts (>99%) and emerging organic contaminants (>90%). Furthermore, the incorporation of QACs into the PIP selective layer was proved to be effective in mitigating mineral scaling by allowing selective passage of scale-forming cations, while simultaneously exhibiting strong antimicrobial properties to combat biofouling. The in situ QAC incorporation strategy presented in this study provides valuable guidelines for the fit-for-purpose design of the selective PA layer, which is crucial for the development of high-performance NF membranes for efficient water purification.

4.
Sci Total Environ ; : 175906, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226958

RESUMEN

Antibiotic resistance, driven by the proliferation of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARBs), has emerged as a pressing global health concern. Antimicrobial resistance is exacerbated by the widespread use of antibiotics in agriculture, aquaculture, and human medicine, leading to their accumulation in various environmental compartments such as soil, water, and sediments. The presence of ARGs in the environment, particularly in municipal water, animal husbandry, and hospital environments, poses significant risks to human health, as they can be transferred to potential human pathogens. Current remediation strategies, including the use of pyroligneous acid, coagulants, advanced oxidation, and bioelectrochemical systems, have shown promising results in reducing ARGs and ARBs from soil and water. However, these methods come with their own set of challenges, such as the need for elevated base levels in UV-activated persulfate and the long residence period required for photocatalysts. The future of combating antibiotic resistance lies in the development of standardized monitoring techniques, global collaboration, and the exploration of innovative remediation methods. Emphasis on combination therapies, advanced oxidation processes, and monitoring horizontal gene transfer can pave the way for a comprehensive approach to mitigate the spread of antibiotic resistance in the environment.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39103588

RESUMEN

The aim of the present paper was to give a complete picture on the drinking water contamination by pharmaceutical residues all over the world. For this purpose, a systematic review was carried out for identifying all available research reporting original data resulting by sampling campaign and analysis of "real" drinking water samples to detect pharmaceutical residues. The investigated databases were PubMed, Scopus, and Web of Science. A total of 124 studies were included; among these, 33 did not find target analytes (all below the limit of detection), while the remaining 91 studies reported the presence for one or more compounds, in concentrations ranging from a few units to a few tens of nanograms. The majority of the studies were performed in Europe and the most represented categories were nonsteroidal anti-inflammatory drugs and analgesics. The most common analytical approach used is the preparation and analysis of the samples by solid-phase extraction and chromatography coupled to mass spectrometry. The main implications resulting from our review are the need for (a) further studies aimed to allow more accurate environmental, wildlife, and human health risk assessments and (b) developing integrated policies promoting less environmentally persistent drugs, the reduction of pharmaceuticals in livestock breeding, and the update of wastewater and drinking water treatment plants for a better removal of drugs and their metabolites.

6.
Foods ; 13(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39123638

RESUMEN

Polymer modification has been established as a cost-effective, simple, in situ method for overcoming some of the inherent disadvantages of boron-doped diamond (BDD) electrodes, and its application has been extended to reliable, low-cost environmental monitoring solutions. The present review focuses on modifying BDD electrodes with semi-conductive polymers acting as redox mediators. This article reports on the development of a 3-methyl thiophene-modified boron-doped diamond (BDD/P3MT) sensor for the electrochemical determination of total phenolic compounds (TPCs) in tea samples, using gallic acid (GA) as a marker. GA is a significant polyphenol with various biological activities, making its quantification crucial. Thus, a simple, fast, and sensitive GA sensor was fabricated using the electroanalytical square wave voltammetry (SWV) technique. The sensor utilizes a semi-conductive polymer, 3-methyl thiophene, as a redox mediator to enhance BDD's sensitivity and selectivity. Electrochemical synthesis was used for polymer deposition, allowing for greater purity and avoiding solubility problems. The BDD/P3MT sensor exhibits good electrochemical properties, including rapid charge transfer and a large electrochemical area, enabling GA detection with a limit of detection of 11 mg/L. The sensor's response was correlated with TPCs measured by the Folin-Ciocalteu method. Square wave voltammetry (SWV) showed a good linear relationship between peak currents and GA concentrations in a wide linear range of 3-71 mg/L under optimal conditions. The BDD/P3MT sensor accurately measured TPCs in green tea, rooibos tea, and black tea samples, with green tea exhibiting the highest TPC levels. The results demonstrate the potential of the modified BDD electrode for the rapid and accurate detection of phenolic compounds in tea, with implications for quality control and antioxidant activity assessments. The prolific publications of the past decade have established BDD electrodes as robust BDD sensors for quantifying polyphenols. Fruits, vegetables, nuts, plant-derived beverages such as tea and wine, traditional Eastern remedies and various herbal nutritional supplements contain phenolic chemicals. The safety concerns of contaminated food intake are significant health concerns worldwide, as there exists a critical nexus between food safety, nutrition, and food security. It has been well established that green tea polyphenol consumption promotes positive health effects. Despite their potential benefits, consuming high amounts of these polyphenols has sparked debate due to concerns over potential negative consequences.

7.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124889

RESUMEN

Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs) are persistent organic pollutants still widespread in the environment and in the food chain. Both groups of these synthetic xenobiotics consist of 209 possible congeners depending on the number and position of halogens. PCBs with the same number of chlorine atoms and PBBs with the same number of bromine atoms are isomers: ten different degrees of halogenation are allowed, which results in a lot of existing isomers for both groups. The isomers have perfect correspondence in the number and type of atoms with differences only in positioning, so their mass spectra are expected to be identical with a consequent significant analytical problem in the event of coelution of the chromatographic peaks. This is not always the case, since the mass spectrometric ortho effect is capable of effectively discriminating many coeluting PCB or PBB isomers, although not all possible ones. The present paper investigates, for the first time, the reliability of qualitative and quantitative analysis by using the ortho effect: this was conducted through targeted experimental measurements on real samples of food by using different detectors. In this context, it is shown how to recognize the presence of a PCB that does not have the ortho effect when coeluting with an isomer that has. This is an important aspect that has never been studied until now. The ortho effect is extremely simple to operate once the ordinary GC-MS runs have been performed: the analyst only needs to recheck the mass spectrum for measuring the intensity of the first dehalogenation ion. The topic is of practical relevance since two different isomers can have different health hazards, and the presence of a very toxic isomer could be masked by a less toxic one. The same mass spectrometric ortho effect also deals with PXBs (i.e., mixed poly-brominated/chlorinated biphenyls), which are emerging contaminants.

8.
Anal Chim Acta ; 1319: 342967, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39122288

RESUMEN

BACKGROUND: Liquid crystal monomers (LCMs) have been classified as emerging organic pollutants. Efficient isolation and extraction is a critical step in the determination, and then knowing the occurrence and distribution of LCMs in environmental waters. However, the reported sample preparation techniques still suffer some dilemmas such as using large amount of organic solvent, low extraction capacity, tedious operation procedure and employment of expensive extraction column. To circumvent the disadvantages, new extraction format and adsorbent with quickness, less consumption of organic solvent, superior extraction performance and low cost should be developed for the analysis of LCMs. RESULTS: Using 1H,1H,2H,2H-heptadecafluorodecyl acrylate and 9-vinylanthracene as mixed functional monomers, a task specific magnetic adsorbent (TSMA) was prepared by one-pot hydrothermal technique for the highly efficient capture of LCMs under magnetic solid phase extraction (MSPE) format. Due to the abundant functional groups, the developed TSMA/MSPE presented satisfactory capture performance towards LCMs. Satisfactory enrichment factors (132-212) and high adsorption capacity (18 mg/g) were obtained. Additionally, the relevant adsorption mechanism was studied by the combination of density functional theory calculation and experiments about adsorption kinetics and adsorption isotherm. Under the beneficial conditions, a sensitive and reliable method for the monitoring of studied LCMs in environmental waters was established by the combination of TSMA/MSPE with HPLC equipped with diode array detector (DAD). The achieved limits of detection and spiked recoveries were 0.0025-0.0061 µg/L and 81.0-112 %, respectively. Finally, the developed method was employed to monitor LCMs levels in the North Creek watershed of Jiulong River. SIGNIFICANCE AND NOVELTY: The current study provided a new adsorbent for quick and efficient capture of LCMs at trace levels. In addition, a sensitive, reliable and anti-intereference method for the monitoring of trace LCMs in actual waters was established. Moreover, for the first, the contents, occurrence and distribution of LCMs in North Creek watershed was investigated based on the developed method.

9.
Chemosphere ; 364: 142994, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098345

RESUMEN

This study explores a retrospective non-targeted analysis (NTA), based on Ultra High-Performance Liquid Chromatography coupled to High-Resolution Mass Spectrometry (UHPLC-HRMS), to assess hidden chemicals of emerging concern (CECs) in marine model organisms. Conventional ecotoxicological studies do not include evaluating the natural habitats of the collected organisms, missing the possibility of highlighting unexpected pollutants, and thus compromising the correctness and reliability of the experimental results. In this paper we reprocessed samples previously collected from the Venice Lagoon for ecotoxicological studies and used for targeted analysis of three bisphenols-related compounds (i.e. BPS, BPF and BPAF) on seawater and specimens of the clam Ruditapes philippinarum. Results from the validation were the following: accuracy, expressed as percentage recoveries (R%), in the range 80%

10.
Artículo en Inglés | MEDLINE | ID: mdl-39090285

RESUMEN

BACKGROUND: Per and polyfluoroalkyl substances (PFAS), a class of environmentally and biologically persistent chemicals, have been used across many industries since the middle of the 20th century. Some PFAS have been linked to adverse health effects. OBJECTIVE: Our objective was to incorporate known and potential PFAS sources, physical characteristics of the environment, and existing PFAS water sampling results into a PFAS risk prediction map that may be used to develop a PFAS water sampling prioritization plan for the Colorado Department of Public Health and Environment (CDPHE). METHODS: We used random forest classification to develop a predictive surface of potential groundwater contamination from two PFAS, perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). The model predicted PFAS risk at locations without sampling data into one of three risk categories after being "trained" with existing PFAS water sampling data. We used prediction results, variable importance ranking, and population characteristics to develop recommendations for sampling prioritization. RESULTS: Sensitivity and precision ranged from 58% to 90% in the final models, depending on the risk category. The model and prioritization approach identified private wells in specific census blocks, as well as schools, mobile home parks, and public water systems that rely on groundwater as priority sampling locations. We also identified data gaps including areas of the state with limited sampling and potential source types that need further investigation. IMPACT STATEMENT: This work uses random forest classification to predict the risk of groundwater contamination from two per- and polyfluoroalkyl substances (PFAS) across the state of Colorado, United States. We developed the prediction model using data on known and potential PFAS sources and physical characteristics of the environment, and "trained" the model using existing PFAS water sampling results. This data-driven approach identifies opportunities for PFAS water sampling prioritization as well as information gaps that, if filled, could improve model predictions. This work provides decision-makers information to effectively use limited resources towards protection of populations most susceptible to the impacts of PFAS exposure.

11.
J Hazard Mater ; 478: 135634, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182300

RESUMEN

Emerging contaminants (ECs) in secondary effluent of wastewater treatment plants (WWTPs) have received increasing attention due to their adverse effects on aquatic ecosystems and human health. Herein, visible-light responsive photocatalyst TM (TiO2 @NH2-MIL-101(Fe)) and resultant photocatalytic ultrafiltration (PUF, PVDF/TM) membrane were prepared to remove 32 typical compounds of antibiotics, 296 compounds of antibiotic resistance genes (ARGs), and their corresponding bacterial hosts. The construction of heterojunction photocatalyst promoted the electron transfer from NH2-MIL-101(Fe) to TiO2 and the formation of N-TiO2, enhancing visible-light (λ ≥ 420 nm) photocatalytic activity. With highly-hydrophilic surface and delicately-regulated pore structure, the initial water permeance of optimal PUF membrane significantly increased to 3912.2 L/m2/h at 1.0 bar. Meanwhile, membrane retention (via adsorption, electrostatic interaction, and steric hindrance) was improved due to the narrowed pore size, highly-negative surface charge and abundant functional groups. Additionally, hydroxyl radical (•OH) was the dominant active reactive oxygen species (ROS) for ECs degradation, and the narrowed pore structure could serve as microreactors to increase ROS concentration and reduce migration distance. Consequently, the removal efficiencies of antibiotics, bacteria and ARGs were 86.5 %, 91.4 % and 91.8 %, respectively. Overall, this novel visible-light-activated PUF membrane expands membrane application, and has great potential in ECs treatment.

12.
Environ Sci Technol ; 58(33): 14797-14811, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39120259

RESUMEN

Short-, medium-, and long-chain chlorinated paraffins (CPs) (SCCPs, MCCPs, and LCCPs) and dechloranes are chemicals of emerging concern; however, little is known of their bioaccumulative potential compared to legacy contaminants in marine mammals. Here, we analyzed SCCPs, MCCPs, LCCPs, 7 dechloranes, 4 emerging brominated flame retardants, and 64 legacy contaminants, including polychlorinated biphenyls (PCBs), in the blubber of 46 individual marine mammals, representing 10 species, from Norway. Dietary niche was modeled based on stable isotopes of nitrogen and carbon in the skin/muscle to assess the contaminant accumulation in relation to diet. SCCPs and dechlorane-602 were strongly positively correlated with legacy contaminants and highest in killer (Orcinus orca) and sperm (Physeter macrocephalus) whales (median SCCPs: 160 ng/g lw; 230 ng/g lw and median dechlorane-602: 3.8 ng/g lw; 2.0 ng/g lw, respectively). In contrast, MCCPs and LCCPs were only weakly correlated to recalcitrant legacy contaminants and were highest in common minke whales (Balaenoptera acutorostrata; median MCCPs: 480 ng/g lw and LCCPs: 240 ng/g lw). The total contaminant load in all species was dominated by PCBs and legacy chlorinated pesticides (63-98%), and MCCPs dominated the total CP load (42-68%, except 11% in the long-finned pilot whale Globicephala melas). Surprisingly, we found no relation between contaminant concentrations and dietary niche, suggesting that other large species differences may be masking effects of diet such as lifespan or biotransformation and elimination capacities. CP and dechlorane concentrations were higher than in other marine mammals from the (sub)Arctic, and they were present in a killer whale neonate, indicating bioaccumulative properties and a potential for maternal transfer in these predominantly unregulated chemicals.


Asunto(s)
Contaminantes Orgánicos Persistentes , Animales , Noruega , Contaminantes Orgánicos Persistentes/metabolismo , Hidrocarburos Clorados/metabolismo , Parafina/metabolismo , Mamíferos/metabolismo , Monitoreo del Ambiente , Retardadores de Llama/metabolismo , Dieta , Bifenilos Policlorados/metabolismo
13.
Environ Pollut ; 359: 124713, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39134166

RESUMEN

Antibiotic resistance genes (ARGs) have been extensively observed in bacterial DNA, and more recently, in phage particles from various water sources and food items. The pivotal role played by ARG transmission in the proliferation of antibiotic resistance and emergence of new resistant strains calls for a thorough understanding of the underlying mechanisms. The aim of this study was to assess the suitability of the prototypical p-crAssphage, a proposed indicator of human fecal contamination, and the recently isolated crAssBcn phages, both belonging to the Crassvirales group, as potential indicators of ARGs. These crAss-like phages were evaluated alongside specific ARGs (blaTEM, blaCTX-M-1, blaCTX-M-9, blaVIM, blaOXA-48, qnrA, qnrS, tetW and sul1) within the total DNA and phage DNA fractions in water and food samples containing different levels of fecal pollution. In samples with high fecal load (>103 CFU/g or ml of E. coli or somatic coliphages), such as wastewater and sludge, positive correlations were found between both types of crAss-like phages and ARGs in both DNA fractions. The strongest correlation was observed between sul1 and crAssBcn phages (rho = 0.90) in sludge samples, followed by blaCTX-M-9 and p-crAssphage (rho = 0.86) in sewage samples, both in the phage DNA fraction. The use of crAssphage and crAssBcn as indicators of ARGs, considered to be emerging environmental contaminants of anthropogenic origin, is supported by their close association with the human gut. Monitoring ARGs can help to mitigate their dissemination and prevent the emergence of new resistant bacterial strains, thus safeguarding public health.


Asunto(s)
Bacteriófagos , Heces , Heces/microbiología , Heces/virología , Bacteriófagos/genética , Monitoreo del Ambiente/métodos , Humanos , Farmacorresistencia Microbiana/genética , Aguas Residuales/virología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Aguas del Alcantarillado , Antibacterianos/farmacología
14.
Sci Total Environ ; 951: 175380, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122036

RESUMEN

The water diversion project is an effective engineering approach to overcome water scarcity as a water source for the area. However, the complex environmental conditions of long-distance water diversion bring many uncertainties for water security. In this study, we assessed the pollution condition and risk levels of emerging contaminants and traditional contaminants in the water and soil along a water diversion project in Tianjin. Then, we assessed the influence of eco-economic characteristics on environmental conditions and established a comprehensive assessment framework of water source sustainability by analytic hierarchy process (AHP). The results showed that excessive nutrient elements and heavy metal pollution mainly contributed to environmental problems in the water source area. Contrary to pollution assessment, the soil ecosystem was more subject to environmental pressure due to atmospheric deposition. The health risk assessment indicated that all contaminants had negligible non-carcinogenic risks for adults, with arsenic being considered a priority pollutant. The statistical analysis results indicated land use allocation was the most important factor in the environmental management of the water source area. According to the result of the integrated environmental assessment, the main characteristics of pressure zones were high pollution levels and human activity intensity. It is urgent to control agricultural pollution and allocate land use rationally for water source pressure zones. By considering the risks of traditional and emerging contaminants in water and soil, this study could support urban water source management and the sustainable development of the water diversion project.

15.
Sci Total Environ ; 951: 175550, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151614

RESUMEN

The combination of treatment wetlands (TWs) with microbial electrochemical technologies (MET) is often studied in the lab to improve the performance and decrease the footprint of TWs. In this article we evaluated the long-term performance of four pilot-scale vertical sub-surface flow TWs for major pollutants' and organic micropollutants' removal from domestic wastewater. Three of them were filled with electroconductive material and operated under saturated (MET SAT), unsaturated (MET UNSAT) and unsaturated-saturated (MET HYBRID) conditions while the fourth one was a saturated intensified aerated system (AEW) filled with gravel. The MET-TWs achieved significant removals of COD (>78 %) with no clogging issues at the maximum applied OLR (249 g COD m-3 d-1) while under these loading conditions TSS removal exceeded 84 %. Among all electroactive TWs, UNSAT could remove 25 g NH4-N m-3 d-1 through nitrification when peak ammonium loading rate was applied; however this removal was significantly lower than AEW (35 g NH4-N m-3d-1). No important removal of P was observed in all systems with the exception of MET-SAT were precipitation reactions of P with iron occurred when anaerobic pretreated wastewater was used. The removal of the sum of studied organic micropollutants ranged between 70 ± 18 % (MET UNSAT) to 91 ± 4 % (AEW) and improved with feeding pulses increase. Moderate to high removal of specific microcontaminants was observed depending on the target compound, the studied system and the operational conditions. AEW and MET HYBRID systems complied with the limits set by EU for wastewater discharge to non-sensitive water bodies and for Class B water reuse. Scale-up calculations for a settlement of 500 PE showed that these systems require much less area per PE (0.51 m2 PE-1) comparing to conventional TWs while the operational cost was calculated to 0.07 € m-3 for the AEW and 0.02 € m-3 for the MET HYBRID.

16.
ACS Nano ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190742

RESUMEN

Emerging contaminants, including per- and polyfluoroalkyl substances and heavy metals, are threatening the health of humans and ecosystems. Their removal from the environment remains challenging. Here, we designed silk fibroin-cellulose nanocrystal (silk-CNC) nanofibrillar and nanoporous membranes for emerging contaminant remediation. The protein-polysaccharide nanofibrils were fabricated by templating the assembly of silk fibroin using CNCs. Silk fibroin polymorphic nature combined with surface charge modulation of CNCs produced cationic silk-CNC(+) and anionic silk-CNC(-) nanofibrils that can target a broad spectrum of contaminants. Silk-CNC(+) nanofibrils and membranes exhibited antimicrobial properties and captured both short-chain heptafluorobutyric acid, perfluorobutanesulfonic acid, and long-chain perfluorooctanoic acid by virtue of hydrophobic attraction from ß-sheeted silk fibroin and electrostatic interactions with CNC(+). Silk-CNC(-) provided the opportunity to target cations such as heavy metal cocontaminants. The nanofabrication of biopolymer-based membranes combines high performance with environmentally benign and cost-effective removal of emerging contaminants for water purification, wastewater treatment, and remediation.

17.
Water Res ; 264: 122203, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39128203

RESUMEN

The passive sampling technique of diffusive gradients in thin-films (DGT) is promising for monitoring emerging contaminants such as per- and polyfluoroalkyl substances (PFAS). It is urgent to evaluate the impacts of salinity and exposure time on DGT sampling before it can be set as a standard method. Herein, DGT sampler based on the binding gel of weak anion exchanger (WAX) resin was deployed in a representative water system of the Xiaoqing river-estuary-sea for representative sampling windows (<1 day to 28 days) with high pH (8.18 ± 0.04 to 8.51 ± 0.17) and wide ranges of salinity (0.95 ± 0.07‰ to 14.37 ± 3.92‰), total dissolved solids (1.20 ± 0.09 g/L to 15.29 ± 3.91 g/L) and dissolved organic matter (2.8-32 mg/L). The results showed that the WAX-DGT sampler exhibited good performance for most target PFAS except for short-chain perfluorocarboxylates (C ≤ 5) in 14 days. When the exposure time was over 14 days, biofouling of the sampler may deflect the mass accumulation of the PFAS in the sampler. Salinity played an important role in the mass binding of PFAS by DGT. The shorter the carbon chain of the compound, the greater the influence of the salinity. PFAS with carboxyl groups had greater affinities for the biofouled membrane filter than those with sulfonic groups. In the river-estuary-sea system, where PFAS concentrations changed dynamically, the temporal resolution of the monitoring strategy has been demonstrated to be more important than spatial resolution. DGT provided a better integral of PFAS exposure than grab sampling in the dynamic water system and offered equivalent sensitivity of grab sampling with exposure time <10 d and greater sensitivity with exposure time ≥10 d. Thus, DGT has the advantage of providing high temporal resolution monitoring. This study provided support for the standardization of the DGT technique.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Ríos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agua de Mar/química , Salinidad , Fluorocarburos/análisis , Difusión
18.
Environ Monit Assess ; 196(9): 820, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154115

RESUMEN

Drugs and related goods are widely used in order to promote public health and the quality of life. One of the most serious environmental challenges affecting public health is the ongoing presence of antibiotics in the effluents generated by pharmaceutical industries and hospitals. Antibiotics cannot be entirely removed from wastewater using the traditional wastewater treatment methods. Unmetabolized antibiotics generated by humans can be found in urban and livestock effluent. The antibiotic present in effluent contributes to issues with resistance to antibiotics and the creation of superbugs. Over the recent 2 years, the coronavirus disease 2019 pandemic has substantially boosted hospital waste volume. In this situation, a detailed literature review was conducted to highlight the harmful effects of untreated hospital waste and outline the best approaches to manage it. Approximately 50 to 70% of the emerging contaminants prevalent in the hospital wastewater can be removed using traditional treatment strategies. This paper emphasizes the numerous treatment approaches for effectively eliminating emerging contaminants and antibiotics from hospital wastewater and provides an overview of global hospital wastewater legislation and guidelines on hospital wastewater administration. Around 90% of ECs might be eliminated by biological or physical treatment techniques when used in conjunction with modern oxidation techniques. According to this research, hybrid methods are the best approach for removing antibiotics and ECs from hospital wastewater. The document outlines the many features of effective hospital waste management and might be helpful during and after the coronavirus disease 2019 outbreak, when waste creation on all hospitals throughout the globe has considerably increased.


Asunto(s)
Antibacterianos , COVID-19 , Hospitales , Aguas Residuales , Aguas Residuales/química , COVID-19/epidemiología , Antibacterianos/análisis , Humanos , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Pandemias , SARS-CoV-2 , Monitoreo del Ambiente/métodos
19.
Water Res ; 265: 122285, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39167975

RESUMEN

Microalgae-based biotechnology is one of the most promising alternatives to conventional methods for the removal of antibiotic contaminants from diverse water matrices. However, current knowledge regarding the biochemical mechanisms and catabolic enzymes involved in microalgal biodegradation of antibiotics is scant, which limits the development of enhancement strategies to increase their engineering feasibility. In this study, we investigated the removal dynamics of amphenicols (chloramphenicol, thiamphenicol, and florfenicol), which are widely used in aquaculture, by Chlamydomonas reinhardtii under different growth modes (autotrophy, heterotrophy, and mixotrophy). We found C. reinhardtii removed >92 % chloramphenicol (CLP) in mixotrophic conditions. Intriguingly, gamma-glutamyl hydrolase (GGH) in C. reinhardtii was most significantly upregulated according to the comparative proteomics, and we demonstrated that GGH can directly bind to CLP at the Pro77 site to induce acetylation of the hydroxyl group at C3 position, which generated CLP 3-acetate. This identified role of microalgal GGH is mechanistically distinct from that of animal counterparts. Our results provide a valuable enzyme toolbox for biocatalysis and reveal a new enzymatic function of microalgal GGH. As proof of concept, we also analyzed the occurrence of these three amphenicols and their degradation intermediate worldwide, which showed a frequent distribution of the investigated chemicals at a global scale. This study describes a novel catalytic enzyme to improve the engineering feasibility of microalgae-based biotechnologies. It also raises issues regarding the different microalgal enzymatic transformations of emerging contaminants because these enzymes might function differently from their counterparts in animals.

20.
Aquat Toxicol ; 275: 107064, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39208620

RESUMEN

To date, the presence of pharmaceuticals has been extensively documented across a wide range of aquatic systems and biota. Further, substantial progress has been made in transitioning from laboratory assessments of pharmaceutical fate and effects in fish to in situ assessments of exposure and effects; however, certain research areas remain understudied. Among these is investigation of differential accumulation across multiple internal tissues in wild marine fish beyond the species commonly sampled in laboratory and freshwater field settings. This study examined the presence of pharmaceuticals across four tissues (plasma, muscle, brain, and liver) in a wild marine fish, bonefish (Albula vulpes), throughout coastal South Florida, USA. Differential accumulation across tissues was assessed for the number and concentration, identity, and composition of accumulated pharmaceuticals by sampling 25 bonefish and analyzing them for 91 pharmaceuticals. The concentration of pharmaceuticals was highest in plasma > liver > brain > muscle, while the number of pharmaceuticals was highest in liver > brain > plasma > muscle. The identity of detected pharmaceuticals was tissue specific, and there was an inverse relationship between the number of detections for each pharmaceutical and its log Kow. The composition of pharmaceuticals was tissue specific for both pharmaceutical presence/absence and concentration. Across all tissues, the greatest similarity was between brain and liver, which were more similar to plasma than to muscle, and muscle was the most distinct tissue. For tissue compositional variability, muscle was the most diverse in accumulated pharmaceuticals, while plasma, brain, and liver were similarly variable. With the highest concentrations in plasma and highest number in liver, and documented variability in accumulated pharmaceuticals across tissues, our results highlight the importance of tissue selection when surveying exposure in wild fish, suggesting that multi-tissue analysis would allow for a more comprehensive assessment of exposure diversity and risk of adverse effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA