Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.619
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124975, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154402

RESUMEN

Epilepsy is one of the most commonly-seen neurological disorders, and both endoplasmic reticulum stress (ERS) and oxidative stress (OS) have been demonstrated to be associated with epileptic seizures. As one of the three endogenous thiol-containing amino acids, cysteine (Cys) is recognized not only as an important biomarker of various biological processes but also widely used as a significant additive in the food industry. However, the exact role that Cys plays in ERS has not been well answered up to now. In this paper, we reported the first flavone-based fluorescent probe (namely BFC) with nice endoplasmic reticulum (ER)-targeting ability, which was capable of monitoring Cys in a fast response (3.0 min), large stokes shift (130 nm) and low detection limit (10.4 nM). The recognition mechanism of Cys could be attributed to the addition-cyclization reaction involving a Cys residue and an acrylate group, resulting in the release of the strong excited-state intramolecular proton transfer (ESIPT) emission molecule of benzoflavonol (BF). The low cytotoxicity and good biocompatibility of the probe BFC allowed for monitoring the fluctuation of endogenous Cys levels under both ERS and OS processes, as well as in zebrafish models of epilepsy. Quantitative determination of Cys with the probe BFC was also achieved in three different food samples. Additionally, a probe-immersed test strips integrated with a smartphone device was successfully constructed for on-site colorimetric detection of Cys. Undoubtedly, our work provided a valuable tool for tracking Cys levels in both an epilepsy model and real food samples.


Asunto(s)
Cisteína , Retículo Endoplásmico , Epilepsia , Flavonas , Colorantes Fluorescentes , Análisis de los Alimentos , Pez Cebra , Colorantes Fluorescentes/química , Cisteína/análisis , Animales , Epilepsia/diagnóstico , Flavonas/análisis , Flavonas/química , Retículo Endoplásmico/metabolismo , Análisis de los Alimentos/métodos , Espectrometría de Fluorescencia/métodos , Humanos , Modelos Animales de Enfermedad , Límite de Detección , Estrés del Retículo Endoplásmico
2.
J Ethnopharmacol ; 336: 118735, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182701

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Melastoma dodecandrum Lour. (MD), a traditional Chinese medicine used by the She ethnic group, has been used to treat cerebral ischemia-reperfusion (CIR) injury due to its efficacy in promoting blood circulation and removing blood stasiss; however, the therapeutic effects and mechanisms of MD in treating CIR injury remain unclear. AIM: To investigate the protective effects of MD on CIR injury, in addition to its impact on oxidative stress, endoplasmic reticulum (ER) stress, and cell apoptosis. MATERIALS AND METHODS: The research was conducted using both cell experiments and animal experiments. The CCK-8 method, immunofluorescence staining, and flow cytometry were used to analyze the effects of MD-containing serum on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cell viability, reactive oxygen species (ROS) clearance, anti-inflammatory, neuroprotection and inhibition of apoptosis. Furthermore, 2,3,5-Triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, Nissl staining, and immunohistochemistry were used to detect infarct size, pathological changes, Nissl corpuscula and neuronal protein expression in middle cerebral artery occlusion (MCAO) rats. Polymerase chain reaction and Western Blotting were conducted in cell and animal experiments to detect the expression levels of ER stress-related genes and proteins. RESULTS: The MD extract enhanced the viability of PC12 cells under OGD/R modeling, reduced ROS and IL-6 levels, increased MBP levels, and inhibited cell apoptosis. Furthermore, MD improved the infarct area in MCAO rats, increased the number of Nissl bodies, and regulated neuronal protein levels including Microtubule-Associated Protein 2 (MAP-2), Myelin Basic Protein (MBP), Glial Fibrillary Acidic Protein (GFAP), and Neurofilament 200 (NF200). Additionally, MD could regulate the expression levels of oxidative stress proteins malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT). Both cell and animal experiments demonstrated that MD could inhibit ER stress-related proteins (GRP78, ATF4, ATF6, CHOP) and reduce cell apoptosis. CONCLUSION: This study confirmed that the therapeutic mechanism of the MD extract on CIR injury was via the inhibition of oxidative stress and the ER stress pathway, in addition to the inhibition of apoptosis.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Fármacos Neuroprotectores , Estrés Oxidativo , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Estrés Oxidativo/efectos de los fármacos , Ratas , Células PC12 , Masculino , Fármacos Neuroprotectores/farmacología , Apoptosis/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
3.
Int J Biol Macromol ; 280(Pt 1): 135351, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270890

RESUMEN

Pulmonary fibrosis (PF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia, occurring primarily in older adults with poor prognosis. Alveolar epithelial cell (AEC) senescence is the critical pathological mechanism of PF. However, the molecular mechanisms regulating AEC senescence in PF are incompletely understood. Herein, we provided evidence to support the function of Krüppel-like factor 14 (KLF14), a novel Krüppel-like transcription factor, in the regulation of AEC senescence during PF. We confirmed that the expression of KLF14 was up-regulated in PF patients and mice treated with bleomycin (BLM). KLF14 knockdown resulted in more pronounced structural disruption of the lung tissue and swelling of the alveolar septum, which led to significantly increased mortality in BLM-induced PF mice. Mechanistically, RNA-seq analysis indicated that KLF14 decreased the senescence of AECs by inhibiting endoplasmic reticulum (ER) stress. Furthermore, the pharmacological activation of KLF14 conferred protection against PF in mice. In conclusion, our findings reveal a protective role for KLF14 in preventing AECs from senescence and shed light on the development of KLF14-targeted therapeutics for PF.

4.
J Control Release ; 375: 422-437, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39278355

RESUMEN

Colorectal cancer (CRC) is a major threat to human health, as it is one of the most common malignancies with a high incidence and mortality rate. The cancer cell membrane (CCM) has significant potential in targeted tumor drug delivery due to its membrane antigen-mediated homologous targeting ability. The endoplasmic reticulum (ER) in cancer cells plays a crucial role in apoptosis and ferroptosis. In this study, we developed an ER-targeted peptide-modified CCM-biomimetic nanoparticle-delivered lovastatin (LOV) nanomedicine delivery system (EMPP-LOV) for cancer treatment. Both in vitro and in vivo experiments demonstrated that EMPP could effectively target cancer cells and localize within the ER. EMPP-LOV modulated ER function to promote apoptosis and ferroptosis in tumor cells. Furthermore, synergistic antitumor efficacy was observed in both in vitro and in vivo models. EMPP-LOV induced apoptosis in CRC cells by over-activating endoplasmic reticulum stress and promoted ferroptosis by inhibiting the mevalonate pathway, leading to synergistic tumor growth inhibition with minimal toxicity to major organs. Overall, the EMPP-LOV delivery system, with its subcellular targeting capability within tumor cells, presents a promising therapeutic platform for CRC treatment.

5.
Mol Med Rep ; 30(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39239741

RESUMEN

Diabetic cardiomyopathy (DCM), a significant complication of diabetes mellitus, is marked by myocardial structural and functional alterations due to chronic hyperglycemia. Despite its clinical significance, optimal treatment strategies are still elusive. Bariatric surgery via sleeve gastrectomy and Roux-en-Y gastric bypass have shown promise in treating morbid obesity and associated metabolic disorders including improvements in diabetes mellitus and DCM. The present study reviews the molecular mechanisms by which bariatric surgery improves DCM, offering insights into potential therapeutic targets. Future research should further investigate the mechanistic links between bariatric surgery and DCM, to evaluate the benefits and limitations of these surgical interventions for DCM treatment. The present study aims to provide a foundation for more effective DCM therapies, contributing to the advancement of patient care.


Asunto(s)
Cirugía Bariátrica , Cardiomiopatías Diabéticas , Humanos , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/terapia , Cardiomiopatías Diabéticas/cirugía , Cirugía Bariátrica/métodos , Animales
6.
J Invest Dermatol ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218144

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer caused by mutagenesis resulting from excess UVR or other types of oxidative stress. These stressors also upregulate the production of a cutaneous innate immune element, cathelicidin antimicrobial peptide (CAMP), through endoplasmic reticulum stress-initiated, sphingosine-1-phosphate (S1P) signaling pathway. Although CAMP has beneficial antimicrobial activities, it also can be proinflammatory and procarcinogenic. We addressed whether and how S1P-induced CAMP production leads to cSCC development. Our study demonstrated that (i) CAMP expression is increased in cSCC cells and skin from patients with cSCC; (ii) S1P levels are elevated in cSCC cells, whereas inhibition of S1P production attenuates CAMP-stimulated cSCC growth; (iii) exogenous CAMP stimulates cSCC but not normal human keratinocyte growth; (iv) blockade of FPRL1 protein, a CAMP receptor, attenuates cSCC growth as well as the growth and invasion of cSCC cells mediated by CAMP into an extracellular matrix-containing fibroblast substrate; (v) FOXP3+ regulatory T-cell (which decreases antitumor immunity) levels increase in cSCC skin; and (vi) CAMP induces endoplasmic reticulum stress in cSCC cells. Together, the endoplasmic reticulum stress-S1P-CAMP axis forms a vicious circle, creating a favorable environment for cSCC development, that is, cSCC growth and invasion impede anticancer immunity.

7.
Phytomedicine ; 134: 155988, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39226708

RESUMEN

BACKGROUND: Endometrial cancer (EC) as one of the most prevalent malignancies in the female reproductive system, usually has a poor diagnosis and unfavorable health effects. Neferine (Nef), derived from the edible and medicinal lotus seed, has been known for its functional activity; however, its anti-cancer mechanism for EC remains elusive. PURPOSE: We explored the potential anti-cancer effects and underlying molecular mechanisms of Nef on EC. METHODS: The cytotoxicity was tested using MTT, and the cell cycle, apoptosis, Ca2+ levels, and the mitochondrial membrane potential (MMP) were observed through flow cytometry. After Nef treatment, differences in miRNA expression were identified using miRNA-seq data. Furthermore, western blot and immunohistochemistry (IHC) were employed to identify the proteins associated with apoptosis in both mice and cells. RESULTS: Nef treatment led to Ishikawa cell apoptosis and blocked cell proliferation in the G2/M phase. In total, 101 significantly different miRNA (p 〈 0.05 and |logFC| 〉 1) were obtained and subjected to GO and KEGG enrichment analysis, which revealed the Ca2+ and PI3K/AKT signaling pathways pertaining to apoptosis. Nef treatment significantly changed intracellular Ca2+ levels and MMP, activating the endoplasmic reticulum stress (ERS) pathway and the expression of key proteins in the mitochondrial pathway. In addition, Nef also inhibited the expression of key proteins in the PI3K/AKT pathway, causing cell apoptosis. Moreover, in mouse tumor tissues, the expression of CHOP, Bcl-2, Caspase 3, Cyto-c, and p-AKT was also consistent with the results in vitro. CONCLUSION: Nef could block the cell cycle and induce the activation of the mitochondrial apoptotic pathway involving the Ca2+-mediated ERS pathway and the PI3K/AKT pathway, thereby inducing apoptosis in EC cells, confirming the potential role of Nef in the prevention and treatment of EC.


Asunto(s)
Apoptosis , Bencilisoquinolinas , Calcio , Neoplasias Endometriales , Estrés del Retículo Endoplásmico , MicroARNs , Femenino , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Animales , MicroARNs/metabolismo , MicroARNs/genética , Calcio/metabolismo , Línea Celular Tumoral , Ratones , Bencilisoquinolinas/farmacología , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Nelumbo/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos Fitogénicos/farmacología
8.
Phytomedicine ; 134: 156017, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39265443

RESUMEN

BACKGROUND: Currently, there is a lack of validated pharmacological interventions for non-alcoholic fatty liver disease (NAFLD), which is characterized by the accumulation of hepatic triglyceride. Zhimu-Huangbai (ZH) herb-pair is a traditional Chinese medicine that regulates glucose and lipid metabolism disorders. However, the precise mechanisms underlying the preventive effects of hepatic triglyceride induced by high-fat diet (HFD) remain elusive. PURPOSE: The study aimed to examine the impact of ZH herb-pair on NAFLD in mice and explore the underlying mechanisms, particularly its effects on endoplasmic reticulum (ER) stress and lipid metabolism. METHODS: NAFLD was induced in mice using HFD, and the treated mice were orally administered ZH, metformin (Glucophage) or lovastatin. The lipid metabolism factors, ER stress markers, and the unfolded protein response (UPR) branch factors were measured using immunohistochemistry, western blotting or qRT-PCR. Co-Immunoprecipitation (CoIP) was performed to reveal the connection between SCAP and SREBP-1c. Tunicamycin (TM) and plasmid delivery were used to induce acute ER stress or crease XBP1 gain function models. The main compounds in ZH binding to IRE1α protein were studied by molecular docking and cellular thermal shift assay (CETSA). RESULTS: Treatment with ZH significantly ameliorated hepatic steatosis and reduced lipid synthesis process mainly inhibiting the expression of mature active form of SREBP-1c through relieving ER stress. The expression of IRE1α and XBP1s was inhibited after treatment with ZH. In addition, ZH improved the fatty liver phenotype caused by XBP1 overexpression via decreasing srebp1c transcription. In vitro experimental results suggested that the main compounds in ZH decreased cellular TG contents. Mechanistically, ZH targeted IRE1α and inhibited XBP1s mRNA expression to relieve ER stress and inhibit SREBP-1c production. CONCLUSIONS: ZH herb-pair can protect against NAFLD by reducing the expression of SREBP-1c, in part, via regulating IRE1α/XBP1s pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Estrés del Retículo Endoplásmico , Endorribonucleasas , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Proteínas Serina-Treonina Quinasas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Proteína 1 de Unión a la X-Box , Animales , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Medicamentos Herbarios Chinos/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Masculino , Endorribonucleasas/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Triglicéridos/metabolismo , Lovastatina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Metformina/farmacología , Transducción de Señal/efectos de los fármacos
9.
Pharmacol Res ; 208: 107409, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39284429

RESUMEN

The pathogenesis of liver diseases is multifaceted and intricate, posing a persistent global public health challenge with limited therapeutic options. Therefore, further research into liver diseases is imperative for better comprehension and advancement in treatment strategies. Numerous studies have confirmed the endoplasmic reticulum (ER) and mitochondria as key organelles driving liver diseases. Notably, the mitochondrial-associated ER membranes (MAMs) establish a physical and functional connection between the ER and mitochondria, highlighting the importance of inter-organelle communication in maintaining their functional homeostasis. This review delves into the intricate architecture and regulative mechanism of the integrated MAM that facilitate the physiological transfer of signals and substances between organelles. Additionally, we also provide a detailed overview regarding the varied pathogenic roles of malfunctioning MAM in liver diseases, focusing on its involvement in the progression of ER stress and mitochondrial dysfunction, the regulation of mitochondrial dynamics and Ca2+ transfer, as well as the disruption of lipid and glucose homeostasis. Furthermore, the current challenges and prospects associated with MAM in liver disease research are thoroughly discussed. In conclusion, elucidating the specific structure and function of MAM in different liver diseases may pave the way for novel therapeutic strategies.


Asunto(s)
Retículo Endoplásmico , Hepatopatías , Humanos , Retículo Endoplásmico/metabolismo , Hepatopatías/metabolismo , Hepatopatías/patología , Animales , Mitocondrias/metabolismo , Estrés del Retículo Endoplásmico , Membranas Intracelulares/metabolismo
10.
J Ethnopharmacol ; 337(Pt 1): 118826, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288826

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine formula known as Pulsatilla decoction was utilized to treat conditions such as bacterial dysentery, ulcerative colitis, and fungal infections like vulvovaginal candidiasis (VVC) caused by Candida albicans (C. albicans). In our prior research, it was shown that the n-butanol extract from Pulsatilla Decoction (BEPD) exhibited effective inhibition of C. albicans. Nevertheless, the exact mechanism by which BEPD hinders hyphal growth, a critical virulence factor of C. albicans, remains unclear. AIM OF THE STUDY: In the present study, the inhibitory effect and mechanism of the BEPD on C. albicans hyphal growth was predicted by transcriptome analysis, and further verified by in vitro and in vivo experiments. MATERIALS AND METHODS: The BEPD was prepared and C. albicans was cultured to induce the hyphal state. Transcriptome analysis was conducted to predict the significant difference in enrichment genes and signaling pathways in the inhibitory effect of BEPD on C. albicans hyphae. Various methods, such as spot assay, time-growth curve analysis, Confocal laser scanning microscope (CLSM), scanning electron microscope (SEM), transmission electron microscope (TEM), flow cytometry, and spectrophotometer, were used to assess the effect of BEPD on hyphal structure and growth activity, lipid peroxidation level, peroxidase (CAT) activity, superoxide dismutase (SOD) activity, and apoptosis of C. albicans. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was employed to examine the expression levels of genes associated with endoplasmic reticulum and peroxisome function. The VVC model was employed to evaluate the influence of BEPD on the growth of C. albicans hyphae in vivo. RESULT: The growth of C. albicans hyphae on solid culture media was significantly inhibited by BEPD. CLSM showed that the length of C. albicans hyphae was decreased and their vitality was lowered. SEM indicated that the hyphae of C. albicans were fractured, while TEM revealed damage to the organelles within the cells. GO enrichment and KEGG pathways analysis from transcriptomic data demonstrated that BEPD effectively suppressed the functioning of the endoplasmic reticulum and peroxisomes in C. albicans hyphae. RT-qPCR verified the decreased expression of genes associated with endoplasmic reticulum and peroxisome function by BEPD. Investigation of the endoplasmic reticulum revealed that BEPD elevated levels of reactive oxygen species (ROS) and apoptosis, indicating endoplasmic reticulum stress, as well as malondialdehyde (MDA), a marker of oxidative stress. Additionally, BEPD was shown to lower the activities of catalase (CAT) and superoxide dismutase (SOD). In animal trials, BEPD effectively hindered the growth of C. albicans hyphae in the vaginas of mice with VVC, thus reducing immune inflammatory damage to the vaginal mucosa of these mice. CONCLUSION: This study demonstrates that BEPD has an inhibitory effect on hyphae, which are an important virulence factor of C. albicans. This effect may be related to BEPD's inhibitory effect on endoplasmic reticulum (ER) and peroxisome function. The findings suggest that BEPD could potentially play a therapeutic role in C. albicans infectious diseases by inhibiting hyphae.

11.
Mol Med Rep ; 30(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39239748

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the cell apoptotic assay data shown in Fig. 1D on p. 3763 were strikingly similar to data that had already been submitted for publication in Fig. 3A in different form in another article written by different authors at different research institutes. Owing to the fact that the contentious data in the above article had already been submitted for publication prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 18: 3760­3768, 2018; DOI: 10.3892/mmr.2018.9403].

12.
Heliyon ; 10(18): e37767, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39318794

RESUMEN

Endoplasmic reticulum (ER) stress is implicated in cardiac arrhythmia whereas the associated mechanisms remain inadequately understood. Kv1.5 channels are essential for atrial repolarization. Whether ER stress affects Kv1.5 channels is unknown. This study aimed to elucidate the response of Kv1.5 channels to ER stress by clarifying the unfolded protein response (UPR) branch responsible for the channel modulation. In addition, the effect of tetramethylpyrazine (TMP) on Kv1.5 channels was studied. Patch clamp and western-blot results revealed that exposure of HL-1 atrial myocytes to ER stress inducer tunicamycin upregulates Kv1.5 expression, increases Kv1.5 channel current (I Kur ) (14.91 ± 1.11 vs. 6.11 ± 1.31 pA/pF, P < 0.001), and shortened action potential duration (APD) (APD90: 82.79 ± 5.25 vs.121.11 ± 6.72 ms, P < 0.01), which could be reverted by ER stress inhibitors. Blockade of the PERK branch while not IRE1 and ATF6 branches of UPR downregulated Kv1.5 expression, accompanied by a decreased I Kur (9.03 ± 0.99 pA/pF) and a prolonged APD90 (113.69 ± 4.41 ms) (P < 0.01). PERK-mediated increases of Kv1.5 expression and I Kur were also observed in HL-1 cells incubated with thapsigargin. TMP suppressed the enhancement of I Kur (10.52 ± 0.97 vs. 17.52 ± 2.25 pA/pF, P < 0.05), prevented the shortening of APD (APD90: 110.16 ± 5.36 vs. 84.84 ± 4.58 ms, P < 0.05), and inhibited the upregulation of Kv1.5 triggered by ER stress. Our study suggests that ER stress induces upregulation and activation of Kv1.5 channels in atrial myocytes through the PERK branch of UPR. TMP prevents Kv1.5 upregulation/activation and the resultant APD shortening by inhibiting ER stress. These results may shed light on the mechanisms of atrial arrhythmogenesis and the antiarrhythmic effect of the traditional Chinese herb TMP.

13.
Front Oncol ; 14: 1446552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39319052

RESUMEN

The endoplasmic reticulum (ER) is one of the largest organelles, and Endoplasmic Reticulum Stress Response Pathway is a series of responses triggered by the homeostatic imbalance of the ER and the state in which unfolded or misfolded proteins accumulate in the ER, which can trigger cell death. Cell death plays a crucial role in the development of diseases such as gynecological oncology. Herein, we review the current research on the response and ovarian cancer, discussing the key sensors (IRE1, PERK, ATF6), and the conditions under which it occurs (Ca2+ homeostasis disruption, hypoxia, others). Using the response as a starting point, provide a comprehensive overview of the relationship with the four types of cell death (apoptosis, autophagy, immunogenic cell death, paraptosis) in an attempt to provide new targeted therapeutic strategies for the organelle-Endoplasmic Reticulum Stress Response Pathway-cell death in ovarian cancer therapy.

15.
Aging Cell ; : e14345, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323014

RESUMEN

MicroRNA plays a crucial role in post-transcriptional gene regulation and has recently emerged as a factor linked to aging, but the underlying regulatory mechanisms remain incompletely understood. In this study, we observed lifespan-extending effects in miR-80-deficient Caenorhabditis elegans at 20°C but not 25°C. At 20°C, miR-80 deletion leads to NLP-45 upregulation, which positively correlates to increased abu transcripts and extended lifespan. Supportively, we identified miR-80 binding regions in the 5' and 3' UTR of nlp-45. As the temperature rises to 25°C, wildtype increases miR-80 levels, but removal of miR-80 is accompanied by decreased nlp-45 expression, suggesting intervention from other temperature-sensitive mechanisms. These findings support the concept that microRNAs and neuropeptide-like proteins can form molecular regulatory networks involving downstream molecules to regulate lifespan, and such regulatory effects vary on environmental conditions. This study unveils the role of an axis of miR-80/NLP-45/UPRER components in regulating longevity, offering new insights on strategies of aging attenuation and health span prolongation.

16.
Curr Drug Targets ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323343

RESUMEN

SERCA2, a P-type ATPase located on the endoplasmic reticulum of cells, plays an important role in maintaining calcium balance within cells by transporting calcium from the cytoplasm to the endoplasmic reticulum against its concentration gradient. A multitude of studies have demonstrated that the expression of SERCA2 is abnormal in a wide variety of tumor cells. Consequently, research exploring compounds that target SERCA2 may offer a promising avenue for the development of novel anti-tumor drugs. This review has summarized the anti-tumor compounds targeting SERCA2, including thapsigargin, dihydroartemisinin, curcumin, galangin, etc. These compounds interact with SERCA2 on the endoplasmic reticulum membrane, disrupting intracellular calcium ion homeostasis, leading to tumor cell apoptosis, autophagy and cell cycle arrest, ultimately producing anti-tumor effects. Additionally, several potential research directions for compounds targeting SERCA2 as clinical anti-cancer drugs have been proposed in the review. In summary, SERCA2 is a promising anti-tumor target for drug discovery and development.

17.
Mol Nutr Food Res ; : e2400501, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39328034

RESUMEN

SCOPE: Previous study has demonstrated the chemical structure of chondroitin sulfate (CHS) from Halaelurus burgeri skin and its effects on insulin resistance. However, the precise impact of this phenomenon on endoplasmic reticulum (ER) stress and inflammation, which contribute to insulin resistance, remains unclear. This study is to investigate the impact of CHS on ER stress, inflammatory response and signaling, and gut microbiota in high-fat diet (HFD)-fed mice. METHODS AND RESULTS: HFD-fed C57BL/6J mice receive dietary gavage intervention of CHS for 18 weeks. Blood, liver tissue, and feces are harvested for further investigation. Results show that CHS inhibits ER stress, accompanied by lowered blood glucose, nitric oxide (NO), reactive oxygen (ROS), and free fatty acids (FFA) levels, and increases hepatic glycogen accumulation. Moreover, hepatic inflammation is improved by CHS treatment via inactivation of Toll-like receptor 4 (TLR4) signaling and its downstream c-jun N-terminal kinase (JNK) and nuclear factor kappa B (NFκB) pathways. Additionally, CHS regulates gut microbiota, particularly the decline in the Firmicutes to Bacteroidetes ratio. CHS also lowers fecal lipopolysaccharide and elevates several fecal short chain fatty acids. CONCLUSION: These findings suggest that CHS from H. burgeri skin may be an alternative functional food supplement for anti-ER stress, anti-inflammtion, and regulation of gut microbiota.

18.
Front Cardiovasc Med ; 11: 1448607, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39328237

RESUMEN

Introduction: Recent findings demonstrate that high density lipoprotein (HDL) function rather than HDL-cholesterol levels themselves may be a better indicator of cardiovascular disease risk. One mechanism by which HDL can become dysfunctional is through oxidative modification by reactive aldehydes. Previous studies from our group demonstrated that HDL modified by reactive aldehydes alters select cardioprotective functions of HDL in macrophages. To identify mechanisms by which dysfunctional HDL contributes to atherosclerosis progression, we designed experiments to test the hypothesis that HDL modified by reactive aldehydes triggers endoplasmic reticulum (ER) stress in primary murine macrophages. Methods and results: Peritoneal macrophages were harvested from wild-type C57BL/6J mice and treated with thapsigargin, oxLDL, and/or HDL for up to 48 hours. Immunoblot analysis and semi-quantitative PCR were used to measure expression of BiP, p-eIF2α, ATF6, and XBP1 to assess activation of the unfolded protein response (UPR). Through an extensive set of comprehensive experiments, and contrary to some published studies, our findings led us to three novel discoveries in primary murine macrophages: (i) oxLDL alone was unable to induce ER stress; (ii) co-incubation with oxLDL or HDL in the presence of thapsigargin had an additive effect in which expression of ER stress markers were significantly increased and prolonged as compared to cells treated with thapsigargin alone; and (iii) HDL, in the presence or absence of reactive aldehydes, was unable blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Conclusions: Our systematic approach to assess the role of native and modified HDL in mediating primary macrophage ER stress led to the discovery that lipoproteins on their own require the presence of thapsigargin to synergistically increase expression of ER stress markers. We further demonstrated that HDL, in the presence or absence of reactive aldehydes, was unable to blunt the ER stress induced by thapsigargin in the presence or absence of oxLDL. Together, our findings suggest the need for more detailed investigations to better understand the role of native and modified lipoproteins in mediating ER stress pathways.

19.
Chem Asian J ; : e202400980, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316060

RESUMEN

The hydroxyl radical (·OH), widely recognized as the most potent free radical, plays a crucial role in numerous physiological and pathological pathways due to its strong oxidizability. Ferroptosis, as a novel mode of cell death, is initiated by the accumulation of iron-dependent lipid peroxidation. Among them, ·OH as the original reactive oxygen species (ROSs) is mass-produced due to Fenton reaction in vivo and closely related to cancer treatment. Besides, endoplasmic reticulum (ER) as a membrane-rich structure organelle, is a crucial organelle in all eukaryotes where excessive expression of ROSs, including ·OH can trigger ER stress which was reported that was closely related to ferroptosis. So developing a new probe for their interrelationship research is important. In this paper, we constructed a 1,8-naphthalimide-based ER-targeted fluorescence probe named M-1 to monitor ·OH variation in vitro and vivo. What's more, we achieved the monitor of ·OH during ER stress and ferroptosis processes in cancer cells, and further explored the important role of ER stress and ferroptosis processes in SF (sorafenib) involved cancer cells.

20.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4031-4043, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39307738

RESUMEN

Vascular calcification is a pathological stage involved in the occurrence and development of cardiovascular diseases, seriously threatening human life and health. At present, few drugs can completely reverse or cure vascular calcification in clinical practice. The pathogenesis of vascular calcification mainly involves the disturbance of calcium and phosphorus homeostasis, autophagy dysfunction, loss of endogenous calcium inhibition, and the apoptosis, cytokine storm, cell osteoblastic transdifferentiation, and stromal vesicle release induced by endoplasmic reticulum stress. Following the therapeutic concepts of warming channels and dredging vessels, activating blood and resolving stasis, tonifying kidney and invigorating spleen, and removing dampness and eliminating turbid, a large number of traditional Chinese medicine(TCM) active compounds/extracts and TCM prescriptions/Chinese patent medicines have shown satisfactory performance in treating vascular calcification, while the specific mechanisms remain unclear and awaits further investigations. This article systematically summarized the pathogenesis of vascular calcification and the latest research progress of TCM in the prevention and treatment of vascular calcification, providing theoretical support for the clinical application of TCM in the prevention and treatment of vascular calcification.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Calcificación Vascular , Humanos , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/prevención & control , Calcificación Vascular/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Animales , Calcio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA