Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731820

RESUMEN

A significant number of patients with genetic epilepsy do not obtain seizure freedom, despite developments in new antiseizure drugs, suggesting a need for novel therapeutic approaches. Many genetic epilepsies are associated with misfolded mutant proteins, including GABRG2(Q390X)-associated Dravet syndrome, which we have previously shown to result in intracellular accumulation of mutant GABAA receptor γ2(Q390X) subunit protein. Thus, a potentially promising therapeutic approach is modulation of proteostasis, such as increasing endoplasmic reticulum (ER)-associated degradation (ERAD). To that end, we have here identified an ERAD-associated E3 ubiquitin ligase, HRD1, among other ubiquitin ligases, as a strong modulator of wildtype and mutant γ2 subunit expression. Overexpressing HRD1 or knockdown of HRD1 dose-dependently reduced the γ2(Q390X) subunit. Additionally, we show that zonisamide (ZNS)-an antiseizure drug reported to upregulate HRD1-reduces seizures in the Gabrg2+/Q390X mouse. We propose that a possible mechanism for this effect is a partial rescue of surface trafficking of GABAA receptors, which are otherwise sequestered in the ER due to the dominant-negative effect of the γ2(Q390X) subunit. Furthermore, this partial rescue was not due to changes in ER chaperones BiP and calnexin, as total expression of these chaperones was unchanged in γ2(Q390X) models. Our results here suggest that leveraging the endogenous ERAD pathway may present a potential method to degrade neurotoxic mutant proteins like the γ2(Q390X) subunit. We also demonstrate a pharmacological means of regulating proteostasis, as ZNS alters protein trafficking, providing further support for the use of proteostasis regulators for the treatment of genetic epilepsies.


Asunto(s)
Retículo Endoplásmico , Epilepsias Mioclónicas , Proteolisis , Receptores de GABA-A , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Animales , Retículo Endoplásmico/metabolismo , Ratones , Humanos , Convulsiones Febriles/metabolismo , Convulsiones Febriles/genética , Degradación Asociada con el Retículo Endoplásmico , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Mutación , Células HEK293 , Chaperón BiP del Retículo Endoplásmico/metabolismo
2.
Traffic ; 24(8): 312-333, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37188482

RESUMEN

Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Proteínas , Animales , Humanos , Proteolisis , Proteínas/metabolismo , Retículo Endoplásmico/metabolismo , Fenotipo , Mamíferos/genética , Mamíferos/metabolismo
3.
bioRxiv ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37163105

RESUMEN

Many multi-domain proteins including the serpin family of serine protease inhibitors contain non-sequential domains composed of regions that are far apart in sequence. Because proteins are translated vectorially from N- to C-terminus, such domains pose a particular challenge: how to balance the conformational lability necessary to form productive interactions between early and late translated regions while avoiding aggregation. This balance is mediated by the protein sequence properties and the interactions of the folding protein with the cellular quality control machinery. For serpins, particularly α1-antitrypsin (AAT), mutations often lead to polymer accumulation in cells and consequent disease suggesting that the lability/aggregation balance is especially precarious. Therefore, we investigated the properties of progressively longer AAT N-terminal fragments in solution and in cells. The N-terminal subdomain, residues 1-190 (AAT190), is monomeric in solution and efficiently degraded in cells. More ß-rich fragments, 1-290 and 1-323, form small oligomers in solution, but are still efficiently degraded, and even the polymerization promoting Siiyama (S53F) mutation did not significantly affect fragment degradation. In vitro, the AAT190 region is among the last regions incorporated into the final structure. Hydrogen-deuterium exchange mass spectrometry and enhanced sampling molecular dynamics simulations show that AAT190 has a broad, dynamic conformational ensemble that helps protect one particularly aggregation prone ß-strand from solvent. These AAT190 dynamics result in transient exposure of sequences that are buried in folded, full-length AAT, which may provide important recognition sites for the cellular quality control machinery and facilitate degradation and, under favorable conditions, reduce the likelihood of polymerization.

4.
Front Mol Biosci ; 9: 910709, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720120

RESUMEN

Yeasts are widely used and established production hosts for biopharmaceuticals. Despite of tremendous advances on creating human-type N-glycosylation, N-glycosylated biopharmaceuticals manufactured with yeasts are missing on the market. The N-linked glycans fulfill several purposes. They are essential for the properties of the final protein product for example modulating half-lives or interactions with cellular components. Still, while the protein is being formed in the endoplasmic reticulum, specific glycan intermediates play crucial roles in the folding of or disposal of proteins which failed to fold. Despite of this intricate interplay between glycan intermediates and the cellular machinery, many of the glycoengineering approaches are based on modifications of the N-glycan processing steps in the endoplasmic reticulum (ER). These N-glycans deviate from the canonical structures required for interactions with the lectins of the ER quality control system. In this review we provide a concise overview on the N-glycan biosynthesis, glycan-dependent protein folding and quality control systems and the wide array glycoengineering approaches. Furthermore, we discuss how the current glycoengineering approaches partially or fully by-pass glycan-dependent protein folding mechanisms or create structures that mimic the glycan epitope required for ER associated protein degradation.

5.
J Drug Target ; 29(10): 1102-1110, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33926356

RESUMEN

It has been previously reported that targeting and retaining antigens in the endoplasmic reticulum (ER) can induce an ER stress response. In this study, we evaluated the antitumor effect of E7 antigen fused to an ERresident protein, cyclooxygenase-2, which possesses a 19-aminoacid cassette that directs it to the endoplasmic reticulum-associated protein degradation (ERAD) pathway. The featured DNA constructs, COX2-E7 and COX2-E7ΔERAD, with a deletion in the 19-aminoacid cassette, were used to evaluate the importance of this sequence. In vitro analysis of protein expression and ER localisation were verified. We observed that both constructs induced an ER stress response. This finding correlated with the antitumor effect in mice injected with TC-1 cells and treated with different DNA constructs by biolistic vaccination. Immunisation with COX2-E7 and COX2-E7ΔERAD DNA constructs induced a significant antitumor effect in mice, without a significant difference between them, although the COX2-E7 construct induced a significant E7-specific immune response. These results demonstrate that targeting the E7 antigen to the ERAD pathway promotes a potent therapeutic antitumor effect. This strategy could be useful for the design of other antigen-specific therapies.


Asunto(s)
Vacunas contra el Cáncer/administración & dosificación , Ciclooxigenasa 2/química , Estrés del Retículo Endoplásmico/inmunología , Proteínas E7 de Papillomavirus/inmunología , Animales , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral , Ciclooxigenasa 2/administración & dosificación , Retículo Endoplásmico/inmunología , Degradación Asociada con el Retículo Endoplásmico/inmunología , Femenino , Células HEK293 , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/prevención & control , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/prevención & control , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología
6.
BMC Cancer ; 21(1): 237, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676427

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC), one of the most lethal cancers, is driven by oncogenic KRAS mutations. Farnesyl thiosalicylic acid (FTS), also known as salirasib, is a RAS inhibitor that selectively dislodges active RAS proteins from cell membrane, inhibiting downstream signaling. FTS has demonstrated limited therapeutic efficacy in PDAC patients despite being well tolerated. METHODS: To improve the efficacy of FTS in PDAC, we performed a genome-wide CRISPR synthetic lethality screen to identify genetic targets that synergize with FTS treatment. Among the top candidates, multiple genes in the endoplasmic reticulum-associated protein degradation (ERAD) pathway were identified. The role of ERAD inhibition in enhancing the therapeutic efficacy of FTS was further investigated in pancreatic cancer cells using pharmaceutical and genetic approaches. RESULTS: In murine and human PDAC cells, FTS induced unfolded protein response (UPR), which was further augmented upon treatment with a chemical inhibitor of ERAD, Eeyarestatin I (EerI). Combined treatment with FTS and EerI significantly upregulated the expression of UPR marker genes and induced apoptosis in pancreatic cancer cells. Furthermore, CRISPR-based genetic ablation of the key ERAD components, HRD1 and SEL1L, sensitized PDAC cells to FTS treatment. CONCLUSION: Our study reveals a critical role for ERAD in therapeutic response of FTS and points to the modulation of UPR as a novel approach to improve the efficacy of FTS in PDAC treatment.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Sistemas CRISPR-Cas/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Degradación Asociada con el Retículo Endoplásmico/genética , Farnesol/análogos & derivados , Farnesol/farmacología , Farnesol/uso terapéutico , Técnicas de Inactivación de Genes , Humanos , Hidrazonas/farmacología , Hidrazonas/uso terapéutico , Hidroxiurea/análogos & derivados , Hidroxiurea/farmacología , Hidroxiurea/uso terapéutico , Ratones , Neoplasias Pancreáticas/patología , Proteínas/genética , Salicilatos/farmacología , Salicilatos/uso terapéutico , Mutaciones Letales Sintéticas , Ubiquitina-Proteína Ligasas/genética , Respuesta de Proteína Desplegada/efectos de los fármacos
7.
J Biol Chem ; 296: 100019, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33144327

RESUMEN

Missense mutations in ATP1A3, the α3 isoform of Na,K-ATPase, cause neurological phenotypes that differ greatly in symptoms and severity. A mechanistic basis for differences is lacking, but reduction of activity alone cannot explain them. Isogenic cell lines with endogenous α1 and inducible exogenous α3 were constructed to compare mutation properties. Na,K-ATPase is made in the endoplasmic reticulum (ER), but the glycan-free catalytic α subunit complexes with glycosylated ß subunit in the ER to proceed through Golgi and post-Golgi trafficking. We previously observed classic evidence of protein misfolding in mutations with severe phenotypes: differences in ER retention of endogenous ß1 subunit, impaired trafficking of α3, and cytopathology, suggesting that they misfold during biosynthesis. Here we tested two mutations associated with different phenotypes: D923N, which has a median age of onset of hypotonia or dystonia at 3 years, and L924P, with severe infantile epilepsy and profound impairment. Misfolding during biosynthesis in the ER activates the unfolded protein response, a multiarmed program that enhances protein folding capacity, and if that fails, triggers apoptosis. L924P showed more nascent protein retention in ER than D923N; more ER-associated degradation of α3 (ERAD); larger differences in Na,K-ATPase subunit distributions among subcellular fractions; and greater inactivation of eIF2α, a major defensive step of the unfolded protein response. In L924P there was also altered subcellular distribution of endogenous α1 subunit, analogous to a dominant negative effect. Both mutations showed pro-apoptotic sensitization by reduced phosphorylation of BAD. Encouragingly, however, 4-phenylbutyrate, a pharmacological corrector, reduced L924P ER retention, increased α3 expression, and restored morphology.


Asunto(s)
Mutación , Pliegue de Proteína , ATPasa Intercambiadora de Sodio-Potasio/genética , Respuesta de Proteína Desplegada , Apoptosis/genética , Retículo Endoplásmico/enzimología , Células HEK293 , Humanos , Fosforilación , Transporte de Proteínas , Transducción de Señal , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
8.
J Biol Chem ; 296: 100063, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33184059

RESUMEN

HMG-CoA reductase (HMGR) undergoes feedback-regulated degradation as part of sterol pathway control. Degradation of the yeast HMGR isozyme Hmg2 is controlled by the sterol pathway intermediate GGPP, which causes misfolding of Hmg2, leading to degradation by the HRD pathway; we call this process mallostery. We evaluated the role of the Hmg2 sterol sensing domain (SSD) in mallostery, as well as the involvement of the highly conserved INSIG proteins. We show that the Hmg2 SSD is critical for regulated degradation of Hmg2 and required for mallosteric misfolding of GGPP as studied by in vitro limited proteolysis. The Hmg2 SSD functions independently of conserved yeast INSIG proteins, but its function was modulated by INSIG, thus imposing a second layer of control on Hmg2 regulation. Mutant analyses indicated that SSD-mediated mallostery occurred prior to and independent of HRD-dependent ubiquitination. GGPP-dependent misfolding was still extant but occurred at a much slower rate in the absence of a functional SSD, indicating that the SSD facilitates a physiologically useful rate of GGPP response and implying that the SSD is not a binding site for GGPP. Nonfunctional SSD mutants allowed us to test the importance of Hmg2 quaternary structure in mallostery: a nonresponsive Hmg2 SSD mutant strongly suppressed regulation of a coexpressed, normal Hmg2. Finally, we have found that GGPP-regulated misfolding occurred in detergent-solubilized Hmg2, a feature that will allow next-level analysis of the mechanism of this novel tactic of ligand-regulated misfolding.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Hidroximetilglutaril-CoA Reductasas/metabolismo , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Proteínas de la Membrana/genética , Mutación , Fosfatos de Poliisoprenilo/metabolismo , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
9.
J Biol Chem ; 295(49): 16743-16753, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32978261

RESUMEN

Mitochondrial dysfunction is associated with a variety of human diseases including neurodegeneration, diabetes, nonalcohol fatty liver disease (NAFLD), and cancer, but its underlying causes are incompletely understood. Using the human hepatic cell line HepG2 as a model, we show here that endoplasmic reticulum-associated degradation (ERAD), an ER protein quality control process, is critically required for mitochondrial function in mammalian cells. Pharmacological inhibition or genetic ablation of key proteins involved in ERAD increased cell death under both basal conditions and in response to proinflammatory cytokines, a situation frequently found in NAFLD. Decreased viability of ERAD-deficient HepG2 cells was traced to impaired mitochondrial functions including reduced ATP production, enhanced reactive oxygen species (ROS) accumulation, and increased mitochondrial outer membrane permeability. Transcriptome profiling revealed widespread down-regulation of genes underpinning mitochondrial functions, and up-regulation of genes associated with tumor growth and aggression. These results highlight a critical role for ERAD in maintaining mitochondrial functional and structural integrity and raise the possibility of improving cellular and organismal mitochondrial function via enhancing cellular ERAD capacity.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Transcriptoma , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Edición Génica , Células Hep G2 , Humanos , Interleucina-12/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/genética , Proteínas/genética , Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba
10.
J Biol Chem ; 295(26): 8647-8655, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32102847

RESUMEN

Protein maturation in the endoplasmic reticulum (ER) depends on a fine balance between oxidative protein folding and quality control mechanisms, which together ensure high-capacity export of properly folded proteins from the ER. Oxidative protein folding needs to be regulated to avoid hyperoxidation. The folding capacity of the ER is regulated by the unfolded protein response (UPR) and ER-associated degradation (ERAD). The UPR is triggered by unfolded protein stress and leads to up-regulation of cellular components such as chaperones and folding catalysts. These components relieve stress by increasing folding capacity and up-regulating ERAD components that remove non-native proteins. Although oxidative protein folding and the UPR/ERAD pathways each are well-understood, very little is known about any direct cross-talk between them. In this study, we carried out comprehensive in vitro activity and binding assays, indicating that the oxidative protein folding relay formed by ER oxidoreductin 1 (Ero1), and protein disulfide-isomerase can be inactivated by a feedback inhibition mechanism involving unfolded proteins and folding intermediates when their levels exceed the folding capacity of the system. This mechanism allows client proteins to remain mainly in the reduced state and thereby minimizes potential futile oxidation-reduction cycles and may also enhance ERAD, which requires reduced protein substrates. Relief from excess levels of non-native proteins by increasing the levels of folding factors removed the feedback inhibition. These results reveal regulatory cross-talk between the oxidative protein folding and UPR and ERAD pathways.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Oxidorreductasas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Degradación Asociada con el Retículo Endoplásmico , Humanos , Glicoproteínas de Membrana/química , Oxidación-Reducción , Oxidorreductasas/química , Consumo de Oxígeno , Proteína Disulfuro Isomerasas/química , Respuesta de Proteína Desplegada
11.
J Biol Chem ; 295(9): 2850-2865, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31911440

RESUMEN

Cholesterol synthesis is a tightly regulated process, both transcriptionally and post-translationally. Transcriptional control of cholesterol synthesis is relatively well-understood. However, of the ∼20 enzymes in cholesterol biosynthesis, post-translational regulation has only been examined for a small number. Three of the four sterol reductases in cholesterol production, 7-dehydrocholesterol reductase (DHCR7), 14-dehydrocholesterol reductase (DHCR14), and lamin-B receptor (LBR), share evolutionary ties with a high level of sequence homology and predicted structural homology. DHCR14 and LBR uniquely share the same Δ-14 reductase activity in cholesterol biosynthesis, yet little is known about their post-translational regulation. We have previously identified specific modes of post-translational control of DHCR7, but it is unknown whether these regulatory mechanisms are shared by DHCR14 and LBR. Using CHO-7 cells stably expressing epitope-tagged DHCR14 or LBR, we investigated the post-translational regulation of these enzymes. We found that DHCR14 and LBR undergo differential post-translational regulation, with DHCR14 being rapidly turned over, triggered by cholesterol and other sterol intermediates, whereas LBR remained stable. DHCR14 is degraded via the ubiquitin-proteasome system, and we identified several DHCR14 and DHCR7 putative interaction partners, including a number of E3 ligases that modulate DHCR14 levels. Interestingly, we found that gene expression across an array of human tissues showed a negative relationship between the C14-sterol reductases; one enzyme or the other tends to be predominantly expressed in each tissue. Overall, our findings indicate that whereas LBR tends to be the constitutively active C14-sterol reductase, DHCR14 levels are tunable, responding to the local cellular demands for cholesterol.


Asunto(s)
Colesterol/biosíntesis , Regulación de la Expresión Génica , Oxidorreductasas/genética , Procesamiento Proteico-Postraduccional , Receptores Citoplasmáticos y Nucleares/genética , Animales , Células CHO , Cricetulus , Humanos , Especificidad de Órganos , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/metabolismo , Receptor de Lamina B
12.
J Biol Chem ; 295(12): 3773-3782, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-31996377

RESUMEN

In the presence of galactose, lithium ions activate the unfolded protein response (UPR) by inhibiting phosphoglucomutase activity and causing the accumulation of galactose-related metabolites, including galactose-1-phosphate. These metabolites also accumulate in humans who have the disease classic galactosemia. Here, we demonstrate that Saccharomyces cerevisiae yeast strains harboring a deletion of UBX4, a gene encoding a partner of Cdc48p in the endoplasmic reticulum-associated degradation (ERAD) pathway, exhibit delayed UPR activation after lithium and galactose exposure because the deletion decreases galactose-1-phosphate levels. The delay in UPR activation did not occur in yeast strains in which key ERAD or proteasomal pathway genes had been disrupted, indicating that the ubx4Δ phenotype is ERAD-independent. We also observed that the ubx4Δ strain displays decreased oxygen consumption. The inhibition of mitochondrial respiration was sufficient to diminish galactose-1-phosphate levels and, consequently, affects UPR activation. Finally, we show that the deletion of the AMP-activated protein kinase ortholog-encoding gene SNF1 can restore the oxygen consumption rate in ubx4Δ strain, thereby reestablishing galactose metabolism, UPR activation, and cellular adaption to lithium-galactose challenge. Our results indicate a role for Ubx4p in yeast mitochondrial function and highlight that mitochondrial and endoplasmic reticulum functions are intertwined through galactose metabolism. These findings also shed new light on the mechanisms of lithium action and on the pathophysiology of galactosemia.


Asunto(s)
Galactosa/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Litio/farmacología , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Retículo Endoplásmico/metabolismo , Galactosa/metabolismo , Galactosafosfatos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Consumo de Oxígeno , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
13.
J Biol Chem ; 295(7): 2125-2134, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31848225

RESUMEN

The endoplasmic reticulum (ER) is the entry point to the secretory pathway and major site of protein biogenesis. Translocation of secretory and integral membrane proteins across or into the ER membrane occurs via the evolutionarily conserved Sec61 complex, a heterotrimeric channel that comprises the Sec61p/Sec61α, Sss1p/Sec61γ, and Sbh1p/Sec61ß subunits. In addition to forming a protein-conducting channel, the Sec61 complex also functions to maintain the ER permeability barrier, preventing the mass free flow of essential ER-enriched molecules and ions. Loss in Sec61 integrity is detrimental and implicated in the progression of disease. The Sss1p/Sec61γ C terminus is juxtaposed to the key gating module of Sec61p/Sec61α, and we hypothesize it is important for gating the ER translocon. The ER stress response was found to be constitutively induced in two temperature-sensitive sss1 mutants (sss1ts ) that are still proficient to conduct ER translocation. A screen to identify intergenic mutations that allow for sss1ts cells to grow at 37 °C suggests the ER permeability barrier to be compromised in these mutants. We propose the extreme C terminus of Sss1p/Sec61γ is an essential component of the gating module of the ER translocase and is required to maintain the ER permeability barrier.


Asunto(s)
Retículo Endoplásmico/genética , Biosíntesis de Proteínas/genética , Canales de Translocación SEC/genética , Proteínas de Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos/genética , Estrés del Retículo Endoplásmico/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación/genética , Permeabilidad , Transporte de Proteínas/genética , Canales de Translocación SEC/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
14.
J Biol Chem ; 294(51): 19814-19830, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31723032

RESUMEN

Endoplasmic reticulum (ER) stress occurs when the abundance of unfolded proteins in the ER exceeds the capacity of the folding machinery. Despite the expanding cadre of characterized cellular adaptations to ER stress, knowledge of the effects of ER stress on cellular physiology remains incomplete. We investigated the impact of ER stress on ER and inner nuclear membrane protein quality control mechanisms in Saccharomyces cerevisiae. We analyzed the turnover of substrates of four ubiquitin ligases (Doa10, Rkr1/Ltn1, Hrd1, and the Asi complex) and the metalloprotease Ste24 in induced models of ER stress. ER stress did not substantially impact Doa10 or Rkr1 substrates. However, Hrd1-mediated destruction of a protein that aberrantly engages the translocon (Deg1-Sec62) and substrates with luminal degradation signals was markedly impaired by ER stress; by contrast, Hrd1-dependent degradation of proteins with intramembrane degrons was largely unperturbed by ER stress. ER stress impaired the degradation of one of two Asi substrates analyzed and caused a translocon-clogging Ste24 substrate to accumulate in a form consistent with persistent translocon occupation. Degradation of Deg1-Sec62 in the absence of stress and stabilization during ER stress were independent of four ER stress-sensing pathways. Our results indicate ER stress differentially impacts degradation of protein quality control substrates, including those mediated by the same ubiquitin ligase. These observations suggest the existence of additional regulatory mechanisms dictating substrate selection during ER stress.


Asunto(s)
Núcleo Celular/metabolismo , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Membrana Nuclear/metabolismo , Animales , Bovinos , Regulación Fúngica de la Expresión Génica , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidasa/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Plásmidos/metabolismo , Transporte de Proteínas , Desplegamiento Proteico , Proteolisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
15.
J Biol Chem ; 294(50): 18992-19011, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31662433

RESUMEN

The protein quality control machinery of the endoplasmic reticulum (ERQC) ensures that client proteins are properly folded. ERQC substrates may be recognized as nonnative by the presence of exposed hydrophobic surfaces, free thiols, or processed N-glycans. How these features dictate which ERQC pathways engage a given substrate is poorly understood. Here, using metabolic labeling, immunoprecipitations, various biochemical assays, and the human serpin antithrombin III (ATIII) as a model, we explored the role of ERQC systems in mammalian cells. Although ATIII has N-glycans and a hydrophobic core, we found that its quality control depended solely on free thiol content. Mutagenesis of all six Cys residues in ATIII to Ala resulted in its efficient secretion even though the product was not natively folded. ATIII variants with free thiols were retained in the endoplasmic reticulum but not degraded. These results provide insight into the hierarchy of ERQC systems and reveal a fundamental vulnerability of ERQC in a case of reliance on the thiol-dependent quality control pathway.


Asunto(s)
Antitrombina III/metabolismo , Control de Calidad , Serpinas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetulus , Retículo Endoplásmico/metabolismo , Humanos
16.
J Biol Chem ; 294(32): 12122-12131, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221799

RESUMEN

Cholera toxin (CT) travels by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) where the catalytic A1 subunit of CT (CTA1) dissociates from the rest of the toxin, unfolds, and moves through a membrane-spanning translocon pore to reach the cytosol. Heat shock protein 90 (HSP90) binds to the N-terminal region of CTA1 and facilitates its ER-to-cytosol export by refolding the toxin as it emerges at the cytosolic face of the ER membrane. HSP90 also refolds some endogenous cytosolic proteins as part of a foldosome complex containing heat shock cognate 71-kDa protein (HSC70) and the HSC70/HSP90-organizing protein (HOP) linker that anchors HSP90 to HSC70. We accordingly predicted that HSC70 and HOP also function in CTA1 translocation. Inactivation of HSC70 by drug treatment disrupted CTA1 translocation to the cytosol and generated a toxin-resistant phenotype. In contrast, the depletion of HOP did not disrupt CT activity against cultured cells. HSC70 and HSP90 could bind independently to disordered CTA1, even in the absence of HOP. This indicated HSP90 and HSC70 recognize distinct regions of CTA1, which was confirmed by the identification of a YYIYVI-binding motif for HSC70 that spans residues 83-88 of the 192-amino acid CTA1 polypeptide. Refolding of disordered CTA1 occurred in the presence of HSC70 alone, indicating that HSC70 and HSP90 can each independently refold CTA1. Our work suggests a novel translocation mechanism in which sequential interactions with HSP90 and HSC70 drive the N- to C-terminal extraction of CTA1 from the ER.


Asunto(s)
Toxina del Cólera/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Secuencias de Aminoácidos , Animales , Células CHO , Toxina del Cólera/química , Cricetinae , Cricetulus , Citosol/metabolismo , Proteínas del Choque Térmico HSC70/antagonistas & inhibidores , Proteínas del Choque Térmico HSC70/genética , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/genética , Células HeLa , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Unión Proteica , Replegamiento Proteico , Transporte de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
17.
J Biol Chem ; 294(30): 11486-11497, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31177093

RESUMEN

Rhomboid-like proteins are evolutionarily conserved, ubiquitous polytopic membrane proteins, including the canonical rhomboid intramembrane serine proteases and also others that have lost protease activity during evolution. We still have much to learn about their cellular roles, and evidence suggests that some may have more than one function. For example, RHBDL4 (rhomboid-like protein 4) is an endoplasmic reticulum (ER)-resident protease that forms a ternary complex with ubiquitinated substrates and p97/VCP (valosin-containing protein), a major driver of ER-associated degradation (ERAD). RHBDL4 is required for ERAD of some substrates, such as the pre-T-cell receptor α chain (pTα) and has also been shown to cleave amyloid precursor protein to trigger its secretion. In another case, RHBDL4 enables the release of full-length transforming growth factor α in exosomes. Using the proximity proteomic method BioID, here we screened for proteins that interact with or are in close proximity to RHBDL4. Bioinformatics analyses revealed that BioID hits of RHBDL4 overlap with factors related to protein stress at the ER, including proteins that interact with p97/VCP. PTP1B (protein-tyrosine phosphatase nonreceptor type 1, also called PTPN1) was also identified as a potential proximity factor and interactor of RHBDL4. Analysis of RHBDL4 peptides highlighted the presence of tyrosine phosphorylation at the cytoplasmic RHBDL4 C terminus. Site-directed mutagenesis targeting these tyrosine residues revealed that their phosphorylation modifies binding of RHBDL4 to p97/VCP and Lys63-linked ubiquitinated proteins. Our work lays a critical foundation for future mechanistic studies of the roles of RHBDL4 in ERAD and other important cellular pathways.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteómica , Tirosina/metabolismo , Biología Computacional , Células HEK293 , Humanos , Proteínas de la Membrana/química , Fosforilación , Poliubiquitina/metabolismo , Unión Proteica , Especificidad por Sustrato
18.
J Biol Chem ; 294(20): 8134-8147, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30940729

RESUMEN

Squalene monooxygenase (SM) is a rate-limiting enzyme in cholesterol synthesis. The region comprising the first 100 amino acids, termed SM N100, represents the shortest cholesterol-responsive degron and enables SM to sense excess cholesterol in the endoplasmic reticulum (ER) membrane. Cholesterol accelerates the ubiquitination of SM by membrane-associated ring-CH type finger 6 (MARCH6), a key E3 ubiquitin ligase involved in ER-associated degradation. However, the ubiquitination site required for cholesterol regulation of SM N100 is unknown. Here, we used SM N100 fused to GFP as a model degron to recapitulate cholesterol-mediated SM degradation and show that neither SM lysine residues nor the N terminus impart instability. Instead, we discovered four serines (Ser-59, Ser-61, Ser-83, and Ser-87) that are critical for cholesterol-accelerated degradation, with MS analysis confirming Ser-83 as a ubiquitination site. Notably, these two clusters of closely spaced serine residues are located in disordered domains flanking a 12-amino acid-long amphipathic helix (residues Gln-62-Leu-73) that together confer cholesterol responsiveness. In summary, our findings reveal the degron architecture of SM N100, introducing the role of non-canonical ubiquitination sites and deepening our molecular understanding of how SM is degraded in response to cholesterol.


Asunto(s)
Colesterol/metabolismo , Proteínas de la Membrana/metabolismo , Proteolisis , Escualeno-Monooxigenasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Animales , Células CHO , Colesterol/genética , Cricetulus , Estabilidad de Enzimas/genética , Humanos , Proteínas de la Membrana/genética , Dominios Proteicos , Estructura Secundaria de Proteína , Escualeno-Monooxigenasa/genética , Ubiquitina-Proteína Ligasas/genética
19.
Adv Med Sci ; 64(2): 315-323, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30978662

RESUMEN

The endoplasmic reticulum (ER) is the site of synthesis and folding of membrane and secretory proteins. The fraction of protein passing through the ER represents a large proportion of the total protein in the cell. Protein folding, glycosylation, sorting and transport are essential tasks of the ER and a compromised ER folding network has been recognized to be a key component in the disease pathogenicity of common neurodegenerative, metabolic and malignant diseases. On the other hand, the ER protein folding machinery also holds significant potential for therapeutic interventions. Many causes can lead to ER stress. A disturbed calcium homeostasis, the generation of reactive oxygen species (ROS) and a persistent overload of misfolded proteins within the ER can drive the course of adisease. In this review the role of ER-stress in diseases of the liver and pancreas will be examined using pancreatitis and Wilson´s disease as examples. Potential therapeutic targets in ER-stress pathways will also be discussed.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Hígado/metabolismo , Páncreas/metabolismo , Animales , Humanos , Pliegue de Proteína , Respuesta de Proteína Desplegada/fisiología
20.
J Biol Chem ; 294(22): 8918-8929, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31006653

RESUMEN

Valosin-containing protein (VCP), also known as p97, is an ATPase with diverse cellular functions, although the most highly characterized is targeting of misfolded or aggregated proteins to degradation pathways, including the endoplasmic reticulum-associated degradation (ERAD) pathway. However, how VCP functions in the heart has not been carefully examined despite the fact that human mutations in VCP cause Paget disease of bone and frontotemporal dementia, an autosomal dominant multisystem proteinopathy that includes disease in the heart, skeletal muscle, brain, and bone. Here we generated heart-specific transgenic mice overexpressing WT VCP or a VCPK524A mutant with deficient ATPase activity. Transgenic mice overexpressing WT VCP exhibit normal cardiac structure and function, whereas mutant VCP-overexpressing mice develop cardiomyopathy. Mechanistically, mutant VCP-overexpressing hearts up-regulate ERAD complex components and have elevated levels of ubiquitinated proteins prior to manifestation of cardiomyopathy, suggesting dysregulation of ERAD and inefficient clearance of proteins targeted for proteasomal degradation. The hearts of mutant VCP transgenic mice also exhibit profound defects in cardiomyocyte nuclear morphology with increased nuclear envelope proteins and nuclear lamins. Proteomics revealed overwhelming interactions of endogenous VCP with ribosomal, ribosome-associated, and RNA-binding proteins in the heart, and impairment of cardiac VCP activity resulted in aggregation of large ribosomal subunit proteins. These data identify multifactorial functions and diverse mechanisms whereby VCP regulates cardiomyocyte protein and RNA quality control that are critical for cardiac homeostasis, suggesting how human VCP mutations negatively affect the heart.


Asunto(s)
Cardiomiopatías/patología , Corazón/fisiología , Miocardio/metabolismo , Proteína que Contiene Valosina/metabolismo , Animales , Cardiomiopatías/metabolismo , Células Cultivadas , Degradación Asociada con el Retículo Endoplásmico , Laminas/metabolismo , Ratones , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratas , Proteínas Ribosómicas/metabolismo , Ubiquitinación , Proteína que Contiene Valosina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA