Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros










Intervalo de año de publicación
1.
Arch Insect Biochem Physiol ; 116(3): e22132, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38993002

RESUMEN

Perilipins are evolutionarily conserved from insects to mammals. Drosophila lipid storage droplet-1 (LSD-1) is a lipid storage droplet membrane surface-binding protein family member and a counterpart to mammalian perilipin 1 and is known to play a role in lipolysis. However, the function of LSD-1 during specific tissue development remains under investigation. This study demonstrated the role of LSD-1 in salivary gland development. Knockdown of Lsd-1 in the salivary gland was established using the GAL4/UAS system. The third-instar larvae of knockdown flies had small salivary glands containing cells with smaller nuclei. The null mutant Drosophila also showed the same phenotype. The depletion of LSD-1 expression induced a delay of endoreplication due to decreasing CycE expression and increasing DNA damage. Lsd-1 genetically interacted with Myc in the third-instar larvae. These results demonstrate that LSD-1 is involved in cell cycle and cell death programs in the salivary gland, providing novel insight into the effects of LSD-1 in regulating salivary gland development and the interaction between LSD-1 and Myc.


Asunto(s)
Muerte Celular , Proteínas de Drosophila , Larva , Glándulas Salivales , Animales , Glándulas Salivales/metabolismo , Glándulas Salivales/citología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/genética , Drosophila/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Replicación del ADN , Proteínas de Unión al ADN , Oxidorreductasas N-Desmetilantes , Factores de Transcripción
2.
bioRxiv ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38645063

RESUMEN

The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that then positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.

3.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542329

RESUMEN

As a plant-specific endoreplication regulator, the SIAMESE-RELATED (SMR) family (a cyclin-dependent kinase inhibitor) plays an important role in plant growth and development and resistance to stress. Although the genes of the maize (Zea mays) SMR family have been studied extensively, the ZmSMR10 (Zm00001eb231280) gene has not been reported. In this study, the function of this gene was characterized by overexpression and silencing. Compared with the control, the transgenic plants exhibited the phenotypes of early maturation, dwarfing, and drought resistance. Expression of the protein in prokaryotes demonstrates that ZmSMR10 is a small protein, and the results of subcellular localization suggest that it travels functionally in the nucleus. Unlike ZmSMR4, yeast two-hybrid experiments demonstrated that ZmSMR10 does not interact strongly with with some cell cycle protein-dependent protein kinase (CDK) family members ZmCDKA;1/ZmCDKA;3/ZmCDKB1;1. Instead, it interacts strongly with ZmPCNA2 and ZmCSN5B. Based on these results, we concluded that ZmSMR10 is involved in the regulation of endoreplication through the interaction of ZmPCNA2 and ZmCSN5B. These findings provide a theoretical basis to understand the mechanism of the regulation of endoreplication and improve the yield of maize through the use of molecular techniques.


Asunto(s)
Arabidopsis , Endorreduplicación , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Sequías
4.
mBio ; 15(3): e0337923, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38329358

RESUMEN

In contrast to the canonical view that genomes cycle only between haploid and diploid states, many eukaryotes have dynamic genomes that change content throughout an individual's life cycle. However, the few detailed studies of microeukaryotic life cycles render our understanding of eukaryotic genome dynamism incomplete. Foraminifera (Rhizaria) are an ecologically important, yet understudied, clade of microbial eukaryotes with complex life cycles that include changes in ploidy and genome organization. Here, we apply fluorescence microscopy and image analysis techniques to over 2,800 nuclei in 110 cells to characterize the life cycle of Allogromia laticollaris strain Cold Spring Harbor (CSH), one of few cultivable foraminifera species. We show that haploidy and diploidy are brief moments in the A. laticollaris life cycle and that A. laticollaris nuclei endoreplicate up to 12,000 times the haploid genome size. We find that A. laticollaris reorganizes a highly endoreplicated nucleus into thousands of haploid genomes through a non-canonical mechanism called Zerfall, in which the nuclear envelope degrades and extrudes chromatin into the cytoplasm. Based on these findings, along with changes in nuclear architecture across the life cycle, we believe that A. laticollaris uses spatio-temporal mechanisms to delineate germline and somatic DNA within a single nucleus. The analyses here extend our understanding of the genome dynamics across the eukaryotic tree of life.IMPORTANCEIn traditional depictions of eukaryotes (i.e., cells with nuclei), life cycles alternate only between haploid and diploid phases, overlooking studies of diverse microeukaryotic lineages (e.g., amoebae, ciliates, and flagellates) that show dramatic variation in DNA content throughout their life cycles. Endoreplication of genomes enables cells to grow to large sizes and perhaps to also respond to changes in their environments. Few microeukaryotic life cycles have been studied in detail, which limits our understanding of how eukaryotes regulate and transmit their DNA across generations. Here, we use microscopy to study the life cycle of Allogromia laticollaris strain CSH, an early-diverging lineage within the Foraminifera (an ancient clade of predominantly marine amoebae). We show that DNA content changes significantly throughout their life cycle and further describe an unusual process called Zerfall, by which this species reorganizes a large nucleus with up to 12,000 genome copies into hundreds of small gametic nuclei, each with a single haploid genome. Our results are consistent with the idea that all eukaryotes demarcate germline DNA to pass on to offspring amidst more flexible somatic DNA and extend the known diversity of eukaryotic life cycles.


Asunto(s)
Foraminíferos , Genoma , Diploidia , Haploidia , ADN
5.
Elife ; 132024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38275142

RESUMEN

Organ formation requires precise regulation of cell cycle and morphogenetic events. Using the Drosophila embryonic salivary gland (SG) as a model, we uncover the role of the SP1/KLF transcription factor Huckebein (Hkb) in coordinating cell cycle regulation and morphogenesis. The hkb mutant SG exhibits defects in invagination positioning and organ size due to the abnormal death of SG cells. Normal SG development involves distal-to-proximal progression of endoreplication (endocycle), whereas hkb mutant SG cells undergo abnormal cell division, leading to cell death. Hkb represses the expression of key cell cycle and pro-apoptotic genes in the SG. Knockdown of cyclin E or cyclin-dependent kinase 1, or overexpression of fizzy-related rescues most of the morphogenetic defects observed in the hkb mutant SG. These results indicate that Hkb plays a critical role in controlling endoreplication by regulating the transcription of key cell cycle effectors to ensure proper organ formation.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , División Celular , Glándulas Salivales , Morfogénesis/genética , Ciclo Celular/genética
6.
BMC Biol ; 22(1): 22, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281940

RESUMEN

BACKGROUND: Hematophagous mosquitoes transmit many pathogens that cause human diseases. Pathogen acquisition and transmission occur when female mosquitoes blood feed to acquire nutrients for reproduction. The midgut epithelium of mosquitoes serves as the point of entry for transmissible viruses and parasites. RESULTS: We studied midgut epithelial dynamics in five major mosquito vector species by quantifying PH3-positive cells (indicative of mitotic proliferation), the incorporation of nucleotide analogs (indicative of DNA synthesis accompanying proliferation and/or endoreplication), and the ploidy (by flow cytometry) of cell populations in the posterior midgut epithelium of adult females. Our results show that the epithelial dynamics of post-emergence maturation and of mature sugar-fed guts were similar in members of the Aedes, Culex, and Anopheles genera. In the first three days post-emergence, ~ 20% of cells in the posterior midgut region of interest incorporated nucleotide analogs, concurrent with both proliferative activity and a broad shift toward higher ploidy. In mature mosquitoes maintained on sugar, an average of 3.5% of cells in the posterior midgut region of interest incorporated nucleotide analogs from five to eight days post-emergence, with a consistent presence of mitotic cells indicating constant cell turnover. Oral bacterial infection triggered a sharp increase in mitosis and nucleotide analog incorporation, suggesting that the mosquito midgut undergoes accelerated cellular turnover in response to damage. Finally, blood feeding resulted in an increase in cell proliferation, but the nature and intensity of the response varied by mosquito species and by blood source (human, bovine, avian or artificial). In An. gambiae, enterocytes appeared to reenter the cell cycle to increase ploidy after consuming blood from all sources except avian. CONCLUSIONS: We saw that epithelial proliferation, differentiation, and endoreplication reshape the blood-fed gut to increase ploidy, possibly to facilitate increased metabolic activity. Our results highlight the plasticity of the midgut epithelium in mosquitoes' physiological responses to distinct challenges.


Asunto(s)
Aedes , Anopheles , Animales , Femenino , Bovinos , Humanos , Endorreduplicación , Epitelio , Proliferación Celular , Azúcares , Nucleótidos
7.
Semin Cell Dev Biol ; 156: 35-43, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331841

RESUMEN

One of the important functions of regulated cell death is to prevent cells from inappropriately acquiring extra copies of their genome, a state known as polyploidy. Apoptosis is the primary cell death mechanism that prevents polyploidy, and defects in this apoptotic response can result in polyploid cells whose subsequent error-prone chromosome segregation are a major contributor to genome instability and cancer progression. Conversely, some cells actively repress apoptosis to become polyploid as part of normal development or regeneration. Thus, although apoptosis prevents polyploidy, the polyploid state can actively repress apoptosis. In this review, we discuss progress in understanding the antagonistic relationship between apoptosis and polyploidy in development and cancer. Despite recent advances, a key conclusion is that much remains unknown about the mechanisms that link apoptosis to polyploid cell cycles. We suggest that drawing parallels between the regulation of apoptosis in development and cancer could help to fill this knowledge gap and lead to more effective therapies.


Asunto(s)
Neoplasias , Poliploidía , Humanos , Neoplasias/genética , Apoptosis/genética , Segregación Cromosómica , Inestabilidad Genómica
8.
Plant Mol Biol ; 113(6): 367-382, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38091166

RESUMEN

Plant cell walls are dynamic structures that play crucial roles in growth, development, and stress responses. Despite our growing understanding of cell wall biology, the connections between cell wall integrity (CWI) and cell cycle progression in plants remain poorly understood. This review aims to explore the intricate relationship between CWI and cell cycle progression in plants, drawing insights from studies in yeast and mammals. We provide an overview of the plant cell cycle, highlight the role of endoreplication in cell wall composition, and discuss recent findings on the molecular mechanisms linking CWI perception to cell wall biosynthesis and gene expression regulation. Furthermore, we address future perspectives and unanswered questions in the field, such as the identification of specific CWI sensing mechanisms and the role of CWI maintenance in the growth-defense trade-off. Elucidating these connections could have significant implications for crop improvement and sustainable agriculture.


Asunto(s)
Plantas , Saccharomyces cerevisiae , Plantas/genética , Plantas/metabolismo , División Celular , Ciclo Celular , Pared Celular/metabolismo
9.
Plant Physiol Biochem ; 204: 108105, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37883918

RESUMEN

Cadmium (Cd) activates the DNA damage response (DDR) and inhibits the cell cycle in Arabidopsis thaliana through the transcription factor SUPPRESSOR OF GAMMA RESPONSE 1. The aim of this study was to investigate which individual leaf best reflects the Cd-induced effects on the regulation of the DDR and cell cycle progression in rosettes, enabling a more profound interpretation of the rosette data since detailed information, provided by the individual leaf responses, is lost when studying the whole rosette. Wild-type A. thaliana plants were cultivated in hydroponics and exposed to different Cd concentrations. Studied individual leaves were leaf 1 and 2, which emerged before Cd exposure, and leaf 3, which emerged upon Cd exposure. The DDR and cell cycle regulation were studied in rosettes as well as individual leaves after several days of Cd exposure. Varying concentration-dependent response patterns were observed between the entire rosette and individual leaves. Gene expression of selected DDR and cell cycle regulators showed higher similarity in their response between the rosette and the individual leaf emerged during Cd exposure than between both individual leaves. The same pattern was observed for plant growth and cell cycle-related parameters. We conclude that Cd-induced effects on the regulation of the DDR and cell cycle progression in the leaf that emerged during Cd exposure, resemble those observed in the rosette the most, which contributes to the interpretation of the rosette data in the framework of plant development and after exposure to Cd.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cadmio/metabolismo , Hojas de la Planta/metabolismo , Ciclo Celular/genética , Daño del ADN , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
BBA Adv ; 4: 100107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868661

RESUMEN

C-value paradox refers to the lack of correlation between biological complexity and the intuitively expected protein-coding genomic information or DNA content. Here I discuss five questions about this paradox: i) Do biologically complex organisms carry more protein-coding genes? ii) Does variable accumulation of selfish/ junk/ parasitic DNA underlie the c-value paradox? iii) Can nucleoskeletal or nucleotypic function of DNA explain the enigma of orders of magnitude high levels of DNA in some 'lower' taxa or in taxonomically related species? iv) Can the newly understood noncoding but functional DNA explain the c-value paradox? and, v) Does natural selection uniformly apply the anthropocentric parameters for 'optimum' and 'economy'? Answers to Q.1-5 are largely negative. Biology presents numerous 'anomalous' examples where the same end function/ phenotype is attained in different organisms through astoundingly diverse ways that appear 'illogical' in our perceptions. Such evolutionary oddities exist because natural selection, unlike a designer, exploits random and stochastic events to modulate the existing system. Consequently, persistence of the new-found 'solution/s' often appear bizarre, uneconomic, and therefore, paradoxical to human logic. The unexpectedly high c-values in diverse organisms are irreversible evolutionary accidents that persisted, and the additional DNA often got repurposed over the evolutionary time scale. Therefore, the c-value paradox is a redundant issue. Future integrative biological studies should address evolutionary mechanisms and processes underlying sporadic DNA expansions/ contractions, and how the newly acquired DNA content has been repurposed in diverse groups.

11.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37511616

RESUMEN

Endoreplication-a process that is common in plants and also accompanies changes in the development of animal organisms-has been seen from a new perspective in recent years. In the paper, we not only shed light on this view, but we would also like to promote an understanding of the application potential of this phenomenon in plant cultivation. Endoreplication is a pathway for cell development, slightly different from the classical somatic cell cycle, which ends with mitosis. Since many rounds of DNA synthesis take place within its course, endoreplication is a kind of evolutionary compensation for the relatively small amount of genetic material that plants possess. It allows for its multiplication and active use through transcription and translation. The presence of endoreplication in plants has many positive consequences. In this case, repeatedly produced copies of genes, through the corresponding transcripts, help the plant acquire the favorable properties for which proteins are responsible directly or indirectly. These include features that are desirable in terms of cultivation and marketing: a greater saturation of fruit and flower colors, a stronger aroma, a sweeter fruit taste, an accumulation of nutrients, an increased resistance to biotic and abiotic stress, superior tolerance to adverse environmental conditions, and faster organ growth (and consequently the faster growth of the whole plant and its biomass). The two last features are related to the nuclear-cytoplasmic ratio-the greater the content of DNA in the nucleus, the higher the volume of cytoplasm, and thus the larger the cell size. Endoreplication not only allows cells to reach larger sizes but also to save the materials used to build organelles, which are then passed on to daughter cells after division, thus ending the classic cell cycle. However, the content of genetic material in the cell nucleus determines the number of corresponding organelles. The article also draws attention to the potential practical applications of the phenomenon and the factors currently limiting its use.


Asunto(s)
Replicación del ADN , Endorreduplicación , Animales , Ciclo Celular , Mitosis , ADN , Plantas/genética
12.
Front Physiol ; 14: 1034584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113694

RESUMEN

Bumblebees are important pollinators of plants worldwide and they are kept for commercial pollination. By studying the process of oogenesis, we can understand their ontogenetic developmental strategy and reproduction. We describe the anatomy of the ovary of the bumblebee Bombus terrestris using 3D reconstruction by confocal microscopy. We found that an oocyte is accompanied by 63 endopolyploidy nurse cells. The number of nurse cells nuclei decreased during oogenesis and the cells are finally absorbed by the oocyte. We monitored the rate of DNA synthesis in vivo during 12 h in ovaries, fat body, and pericardial cells in B. terrestris queens and workers of different ages. The DNA replication activity was detected on the basis of visualization of incorporated 5-ethynyl-2'-deoxyuridine. DNA synthesis detected in differentiated nurse cells indicated endoreplication of nuclei. The dynamics of mitotic activity varied among different ages and statuses of queens. In 3- to 8-day-old virgin queens, intense mitotic activity was observed in all tissue types investigated. This might be related to the initial phase of oogenesis and the development of the hepato-nephrotic system. In 15- to 20-day-old mated pre-diapause queens, DNA synthesis was exclusively observed in the ovaries, particularly in the germarium and the anterior part of the vitellarium. In 1-year-old queens, replication occurred only in the peritoneal sheath of ovaries and in several cells of the fat body. The similar DNA synthesis patterns in the ovaries of mated pre-diapause queens, ovipositing workers, and non-egg-laying workers show that mitotic activity is related not only to age but also to the stage of ovarian maturation and is relatively independent of caste affiliation.

13.
BMC Biol ; 21(1): 88, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069617

RESUMEN

BACKGROUND: Endoreplication is involved in the development and function of many organs, the pathologic process of several diseases. However, the metabolic underpinnings and regulation of endoreplication have yet to be well clarified. RESULTS: Here, we showed that a zinc transporter fear-of-intimacy (foi) is necessary for Drosophila fat body endoreplication. foi knockdown in the fat body led to fat body cell nuclei failure to attain standard size, decreased fat body size and pupal lethality. These phenotypes could be modulated by either altered expression of genes involved in zinc metabolism or intervention of dietary zinc levels. Further studies indicated that the intracellular depletion of zinc caused by foi knockdown results in oxidative stress, which activates the ROS-JNK signaling pathway, and then inhibits the expression of Myc, which is required for tissue endoreplication and larval growth in Drosophila. CONCLUSIONS: Our results indicated that FOI is critical in coordinating fat body endoreplication and larval growth in Drosophila. Our study provides a novel insight into the relationship between zinc and endoreplication in insects and may provide a reference for relevant mammalian studies.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Endorreduplicación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cuerpo Adiposo/metabolismo , Zinc/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mamíferos
14.
Basic Res Cardiol ; 118(1): 8, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862248

RESUMEN

Whereas cardiomyocytes (CMs) in the fetal heart divide, postnatal CMs fail to undergo karyokinesis and/or cytokinesis and therefore become polyploid or binucleated, a key process in terminal CM differentiation. This switch from a diploid proliferative CM to a terminally differentiated polyploid CM remains an enigma and seems an obstacle for heart regeneration. Here, we set out to identify the transcriptional landscape of CMs around birth using single cell RNA sequencing (scRNA-seq) to predict transcription factors (TFs) involved in CM proliferation and terminal differentiation. To this end, we established an approach combining fluorescence activated cell sorting (FACS) with scRNA-seq of fixed CMs from developing (E16.5, P1, and P5) mouse hearts, and generated high-resolution single-cell transcriptomic maps of in vivo diploid and tetraploid CMs, increasing the CM resolution. We identified TF-networks regulating the G2/M phases of developing CMs around birth. ZEB1 (Zinc Finger E-Box Binding Homeobox 1), a hereto unknown TF in CM cell cycling, was found to regulate the highest number of cell cycle genes in cycling CMs at E16.5 but was downregulated around birth. CM ZEB1-knockdown reduced proliferation of E16.5 CMs, while ZEB1 overexpression at P0 after birth resulted in CM endoreplication. These data thus provide a ploidy stratified transcriptomic map of developing CMs and bring new insight to CM proliferation and endoreplication identifying ZEB1 as a key player in these processes.


Asunto(s)
Miocitos Cardíacos , Transcriptoma , Animales , Ratones , Proliferación Celular , Genes Homeobox , Ploidias , Poliploidía , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Dedos de Zinc
15.
Trends Plant Sci ; 28(6): 611-613, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36997439

RESUMEN

During hypocotyl development, an asymmetric auxin gradient causes differential cell elongation, leading to tissue bending and apical hook formation. Recently, Ma et al. identified a molecular pathway that links auxin with endoreplication and cell size through cell wall integrity sensing, cell wall remodeling, and regulation of cell wall stiffness.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Endorreduplicación , Ácidos Indolacéticos/metabolismo , Tamaño de la Célula , Regulación de la Expresión Génica de las Plantas
16.
Microbiol Spectr ; : e0325122, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36728437

RESUMEN

Tritrichomonas foetus and Trichomonas vaginalis are extracellular flagellated parasites that inhabit animals and humans, respectively. Cell division is a crucial process in most living organisms that leads to the formation of 2 daughter cells from a single mother cell. It has been assumed that T. vaginalis and T. foetus modes of reproduction are exclusively by binary fission. However, here, we showed that multinuclearity is a phenomenon regularly observed in different T. foetus and T. vaginalis strains in standard culture conditions. Additionally, we revealed that nutritional depletion or nutritional deprivation led to different dormant phenotypes. Although multinucleated T. foetus are mostly observed during nutritional depletion, numerous cells with 1 larger nucleus have been observed under nutritional deprivation conditions. In both cases, when the standard culture media conditions are restored, the cytoplasm of these multinucleated cells separates, and numerous parasites are generated in a short period of time by the fission multiple. We also revealed that DNA endoreplication occurs both in large and multiple nuclei of parasites under nutritional deprivation and depletion conditions, suggesting an important function in stress nutritional situations. These results provide valuable data about the cell division process of these extracellular parasites. IMPORTANCE Nowadays, it's known that T. foetus and T. vaginalis generate daughter cells by binary fission. Here, we report that both parasites are also capable of dividing by multiple fission under stress conditions. We also demonstrated, for the first time, that T. foetus can increase its DNA content per parasite without concluding the cytokinesis process (endoreplication) under stress conditions, which represents an efficient strategy for subsequent fast multiplication when the context becomes favorable. Additionally, we revealed the existence of novel dormant forms of resistance (multinucleated or mononucleated polyploid parasites), different than the previously described pseudocysts, that are formed under stress conditions. Thus, it is necessary to evaluate the role of these structures in the parasites' transmission in the future.

17.
Microorganisms ; 11(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838456

RESUMEN

Locus-specific gene amplification and genome-wide endoreplication generate the elevated copy number of ribosomal DNA (rDNA, 9000 C) and non-rDNA (90 C) chromosomes in the developing macronucleus of Tetrahymena thermophila. Subsequently, all macronuclear chromosomes replicate once per cell cycle during vegetative growth. Here, we describe an unanticipated, programmed switch in the regulation of replication initiation in the rDNA minichromosome. Early in development, the 21 kb rDNA minichromosome is preferentially amplified from 2 C to ~800 C from well-defined origins, concurrent with genome-wide endoreplication (2 C to 8-16 C) in starved mating Tetrahymena (endoreplication (ER) Phase 1). Upon refeeding, rDNA and non-rDNA chromosomes achieve their final copy number through resumption of just the endoreplication program (ER Phase 2). Unconventional rDNA replication intermediates are generated primarily during ER phase 2, consistent with delocalized replication initiation and possible formation of persistent RNA-DNA hybrids. Origin usage and replication fork elongation are affected in non-rDNA chromosomes as well. Despite the developmentally programmed 10-fold reduction in the ubiquitous eukaryotic initiator, the Origin Recognition Complex (ORC), active initiation sites are more closely spaced in ER phases 1 and 2 compared to vegetative growing cells. We propose that initiation site selection is relaxed in endoreplicating macronuclear chromosomes and may be less dependent on ORC.

18.
Methods Mol Biol ; 2545: 413-425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36720826

RESUMEN

Traditional methods used to study endoreplication have limitations when used to identify rare events of polyploidization in complex, densely-packed tissues. Here, we describe a method to identify and visualize polyploid cells in situ using an existing mosaic, multicolor labeling technique named "CoinFLP" (Bosch et al., Development 142(3):597-606, 2015). CoinFLP allows easy visualization of polyploid cells in situ and can be combined with other techniques such as immunofluorescence for cell-type-specific labeling and flow cytometry to perform quantifications and can also be used for genetic manipulations. Further, by modifying the time of labeling, this technique can also be used to distinguish events of cell fusion from endocycle (Nandakumar et al., eLife 25:9, 2020)-allowing one to infer the method of polyploidization.


Asunto(s)
Encéfalo , Drosophila , Animales , Fusión Celular , Citometría de Flujo , Poliploidía
19.
New Phytol ; 237(5): 1652-1666, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36451535

RESUMEN

The processes that contribute to plant organ morphogenesis are spatial-temporally organized. Within the meristem, mitosis produces new cells that subsequently engage in cell expansion and differentiation programs. The latter is frequently accompanied by endoreplication, being an alternative cell cycle that replicates the DNA without nuclear division, causing a stepwise increase in somatic ploidy. Here, we show that the Arabidopsis SCL28 transcription factor promotes organ growth by modulating cell expansion dynamics in both root and leaf cells. Gene expression studies indicated that SCL28 regulates members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) family, encoding cyclin-dependent kinase inhibitors with a role in promoting mitotic cell cycle (MCC) exit and endoreplication, both in response to developmental and environmental cues. Consistent with this role, mutants in SCL28 displayed reduced endoreplication, both in roots and leaves. We also found evidence indicating that SCL28 co-expresses with and regulates genes related to the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall. Our results suggest that SCL28 controls, not only cell proliferation as reported previously but also cell expansion and differentiation by promoting MCC exit and endoreplication and by modulating aspects of the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Endorreduplicación , Regulación de la Expresión Génica de las Plantas , Mitosis
20.
Front Cell Dev Biol ; 10: 1003219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483678

RESUMEN

Adipocytes can increase in volume up to a thousand-fold, storing excess calories as triacylglycerol in large lipid droplets. The dramatic morphological changes required of adipocytes demands extensive cytoskeletal remodeling, including lipid droplet and plasma membrane expansion. Cell growth-related signalling pathways are activated, stimulating the production of sufficient amino acids, functional lipids and nucleotides to meet the increasing cellular needs of lipid storage, metabolic activity and adipokine secretion. Continued expansion gives rise to enlarged (hypertrophic) adipocytes. This can result in a failure to maintain growth-related homeostasis and an inability to cope with excess nutrition or respond to stimuli efficiently, ultimately leading to metabolic dysfunction. We summarize recent studies which investigate the functional and cellular structure remodeling of hypertrophic adipocytes. How adipocytes adapt to an enlarged cell size and how this relates to cellular dysfunction are discussed. Understanding the healthy and pathological processes involved in adipocyte hypertrophy may shed light on new strategies for promoting healthy adipose tissue expansion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA