Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.734
Filtrar
1.
Stem Cell Res Ther ; 15(1): 295, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256862

RESUMEN

BACKGROUND: Premature infants requiring mechanical ventilation and supplemental oxygen for respiratory support are at increased risk for bronchopulmonary dysplasia (BPD), wherein inflammation have been proposed as a driver of hyperoxia-induced injuries, including persistent loss of endothelial progenitor cells (EPCs), impaired vascularization and eventual alveolar simplification in BPD lungs. However, the underlying mechanisms linking these phenomena remain poorly defined. METHODS: We used clodronate liposomes to deplete macrophages in a mouse model of neonatal hyperoxia-induced lung injury to evaluate if EPC loss in BPD lungs could be an effect of macrophage infiltration. We further generated in vitro culture systems initiated with cord blood (CB)-derived CD34+ EPCs and neonatal macrophages either polarized from CB-derived monocytes or isolated from tracheal aspirates of human preterm infants requiring mechanical ventilation and oxygen supplementation, to identify EV-transmitted molecular mechanism that is critical for inhibitory actions of hyperoxic macrophages on EPCs. RESULTS: Initial experiments using mouse model identified the crucial role of macrophage infiltration in eliciting significant reduction of c-Kit+ EPCs in BPD lungs. Further examination of this concept in human system, we found that hyperoxia-exposed neonatal macrophages hamper human CD34+ EPC maintenance and impair endothelial function in the differentiated progeny via the EV transmission of miR-23a-3p. Notably, treatment with antagomiR-23a-3p to silence miR-23a-3p in vivo enhances c-Kit+ EPC maintenance, and increases capillary density, and consequently mitigates simplified alveolarization in BPD lungs. CONCLUSION: Our findings highlight the importance of pulmonary intercellular communication in the pathophysiology of BPD, by identifying a linkage through vesicle transfer of miR-23a-3p from hyperoxic macrophages to EPCs, and thus demonstrating potential for novel therapeutic target in BPD.


Asunto(s)
Células Progenitoras Endoteliales , Vesículas Extracelulares , Hiperoxia , Lesión Pulmonar , Macrófagos , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Animales , Células Progenitoras Endoteliales/metabolismo , Hiperoxia/metabolismo , Vesículas Extracelulares/metabolismo , Ratones , Macrófagos/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/metabolismo , Recién Nacido , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/genética , Animales Recién Nacidos , Modelos Animales de Enfermedad
2.
Regen Ther ; 26: 458-468, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100534

RESUMEN

Purpose: Venous leg ulcers (VLUs) are prevalent chronic wounds with limited treatment options. This study aimed to investigate the potential of berberine to enhance endothelial progenitor cell (EPC) function in VLU healing. Methods: Histopathological changes and inflammatory cytokine levels in a deep venous thrombosis (DVT) mouse model were assessed using HE staining and ELISA assays. A luciferase reporter assay was employed to identify the miR-21-3p and RRAGB targeting relationship. EPC proliferation, migration, and tube formation were evaluated through CCK-8, Transwell, and tubule formation assays, while the mTOR pathway and autophagy-related proteins were analyzed by immunofluorescence staining and western blotting. Results: Berberine significantly improved EPC functions, such as proliferation, migration, and tube formation in vitro, and enhanced in vivo EPC-mediated wound healing in a DVT mouse model. Furthermore, miR-21-3p was downregulated in EPCs from VLU patients, and its overexpression improved model EPC functions. Mechanistically, RRAGB, which regulates the mTOR pathway, was identified as a potential miR-21-3p target in EPCs. Overexpression of RRAGB inhibited autophagic activity and impaired EPC function. Conclusion: Berberine shows promise in ameliorating EPC function and promoting wound healing in VLUs. The regulation of the miR-21-3p/RRAGB axis by berberine could offer a promising therapeutic approach for managing VLUs.

3.
Sci Rep ; 14(1): 18469, 2024 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122748

RESUMEN

Endothelial progenitor cells (EPCs) play a crucial role in maintaining vascular health and aiding in the repair of damaged blood vessels. However, the specific impact of EPCs-derived exosomes on vascular endothelial cell injury caused by lipopolysaccharide (LPS) remains inadequately understood. This study aims to explore the potential benefits of EPC-exosomes in mitigating LPS-induced vascular injury and to elucidate the underlying mechanism. Initially, EPCs were isolated from mouse peripheral blood, and their identity was confirmed through flow cytometry and immunocytochemistry. Subsequently, the exosomes derived from EPCs were identified using transmission electron microscopy (TEM) and western blot analysis. A sepsis model was induced by subjecting brain microvascular endothelial cells (BMECs) to LPS-induced injury. Both EPC and their exosomes demonstrated a significant increase in BMECs proliferation, reduced apoptosis, decreased levels of pro-inflammatory factors (TNF-α, IL-6, and caspase-3), and enhanced sprouting and angiogenesis of BMECs. Notable, the Exosomes demonstrated a more pronounced impact on these parameters. Furthermore, both EPCs and Exosomes exhibited significantly increased levels of miR-126a-5p, with the Exosomes showing a more substantial enhancement. These findings suggest that supplementing exosomal miR-126a-5p from EPCs can provide protective effects on BMECs, offering a potential therapeutic option for treating sepsis-induced microvascular endothelial cell injury.


Asunto(s)
Encéfalo , Células Endoteliales , Células Progenitoras Endoteliales , Exosomas , Lipopolisacáridos , MicroARNs , Exosomas/metabolismo , Animales , Células Progenitoras Endoteliales/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Lipopolisacáridos/toxicidad , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Células Endoteliales/metabolismo , Apoptosis , Proliferación Celular , Microvasos/metabolismo , Masculino , Sepsis/metabolismo , Ratones Endogámicos C57BL
4.
Mater Today Bio ; 28: 101174, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39211289

RESUMEN

Articular cartilage regeneration is a major challenge in orthopedic medicine. Endothelial progenitor cells (EPCs) are a promising cell source for regenerative medicine applications. However, their roles and functions in cartilage regeneration are not well understood. Additionally, thermosensitive chitosan hydrogels have been widely used in tissue engineering, but further development of these hydrogels incorporating vascular lineage cells for cartilage repair is insufficient. Thus, this study aimed to characterize the ability of EPCs to undergo endothelial-mesenchymal stem cell transdifferentiation and chondrogenic differentiation and investigate the ability of chondrogenic EPC-seeded thermosensitive chitosan-graft-poly (N-isopropylacrylamide) (CEPC-CSPN) scaffolds to improve healing in a rabbit osteochondral defect (OCD) model. EPCs were isolated and endothelial-to-mesenchymal transition (EndMT) was induced by transforming growth factor-ß1 (TGF-ß1); these EPCs are subsequently termed transdifferentiated EPCs (tEPCs). The stem cell-like properties and chondrogenic potential of tEPCs were evaluated by a series of in vitro assays. Furthermore, the effect of CEPC-CSPN scaffolds on OCD repair was evaluated. Our in vitro results confirmed that treatment of EPC with TGF-ß1 induced EndMT and the acquisition of stem cell-like properties, producing tEPCs. Upon inducing chondrogenic differentiation of tEPCs (CEPCs), the cells exhibited significantly enhanced chondrogenesis and chondrocyte surface markers after 25 days. The TGF-ß1-induced differentiation of EPCs is mediated by both the TGF-ß/Smad and extracellular signal-regulated kinase (Erk) pathways. The CEPC-CSPN scaffold reconstructed well-integrated translucent cartilage and repaired subchondral bone in vivo, exhibiting regenerative capacity. Collectively, our results suggest that the CEPC-CSPN scaffold induces OCD repair, representing a promising approach to articular cartilage regeneration.

5.
J Immunoassay Immunochem ; 45(5): 481-491, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39135454

RESUMEN

Multiple myeloma (MM) is a prevalent yet incurable hematologic malignancy. Despite the proven efficacy of proteasome inhibitors in treating MM, resistance to Bortezomib-based treatments persists in a subset of patients. This case control study explores the potential of circulating endothelial progenitor cells (EPCs) as biomarkers for predicting response to Proteasome Inhibitor based therapy combined with Dexamethasone in MM patients. This study was conducted on 105 MM patients receiving bortezomib plus dexamethasone therapy and 90 healthy individuals as a control group. Utilizing 8-color multi-parameter flow cytometry, we assessed the levels of circulating EPCs, identified through CD34 FITC and CD309 PE markers at diagnosis and after one treatment cycle (4 weeks). Our findings revealed that patients exhibiting poor response to therapy showed significantly higher CD34/CD309 values than those with a good response (p < 0.001). The delineation of response based on CD34/CD309 expression was established with a cutoff ≤ 0.9 for percentage (yielding 100% sensitivity and 94.1% specificity) and ≤ 12.5 for absolute value (also with 100% sensitivity and 94.1% specificity). These results underscore the potential of EPC population levels, as quantified by CD34/CD309, to serve as a predictive biomarker for immunomodulatory treatment in MM patients undergoing Proteasome Inhibitor and Dexamethasone therapy.


Asunto(s)
Antígenos CD34 , Bortezomib , Células Progenitoras Endoteliales , Mieloma Múltiple , Humanos , Bortezomib/farmacología , Bortezomib/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Mieloma Múltiple/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Antígenos CD34/sangre , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Anciano , Pronóstico , Adulto , Dexametasona/farmacología , Dexametasona/uso terapéutico , Estudios de Casos y Controles , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
6.
Tissue Cell ; 90: 102527, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181089

RESUMEN

Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are prevalent and debilitating conditions with a significant impact on patients' quality of life. In this study, we conducted a comprehensive investigation into the histological characteristics of renal progenitor/stem cells (RPCs), renal mesenchymal stem-like cells, and endothelial progenitor cells (EPCs) in CKD and ESRD patients. Additionally, we performed a molecular docking analysis to explore potential drug-receptor interactions involving common medications prescribed to CKD patients. Our histological examination revealed a noteworthy increase in the number of CD24- and CD133-positive cells in CKD and ESRD patients, representing RPCs. These cells are implicated in kidney repair and regeneration, underscoring their potential role in CKD management. Moreover, we observed an elevation in the number of EPCs within the kidneys of CKD and ESRD patients, suggesting a protective role of EPCs in kidney preservation. The molecular docking analysis unveiled intriguing insights into potential drug interventions. Notably, digoxin exhibited the highest in-silico binding affinity to numerous receptors associated with the functions of RPCs, renal mesenchymal stem-like cells, and EPCs, emphasizing the potential multifaceted effects of this cardiac glycoside in CKD patients. Other drugs, including apixaban, glimepiride, and glibenclamide, also displayed strong in-silico affinities to specific receptors, indicating their potential influence on various renal cell functions. In conclusion, this study provides valuable insights into the histological alterations in renal cell populations in CKD and ESRD patients and underscores the potential roles of RPCs and EPCs in kidney repair and preservation. The molecular docking analysis reveals the complex interactions between common drugs and renal cells, suggesting the need for further in-vitro and in-vivo research to fully understand these relationships. These findings contribute to our understanding of CKD and offer new avenues for research into potential therapeutic interventions.


Asunto(s)
Células Progenitoras Endoteliales , Fallo Renal Crónico , Células Madre Mesenquimatosas , Simulación del Acoplamiento Molecular , Insuficiencia Renal Crónica , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Fallo Renal Crónico/patología , Fallo Renal Crónico/metabolismo , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Riñón/patología , Riñón/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto
7.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201580

RESUMEN

Congenital heart disease (CHD) can be complicated by pulmonary arterial hypertension (PAH). Cardiopulmonary bypass (CPB) for corrective surgery may cause endothelial dysfunction, involving endothelin-1 (ET-1), circulating endothelial cells (CECs), and endothelial progenitor cells (EPCs). These markers can gauge disease severity, but their levels in children's peripheral blood still lack consensus for prognostic value. The aim of our study was to investigate changes in ET-1, cytokines, and the absolute numbers (Ɲ) of CECs and EPCs in children 24 h before and 48 h after CPB surgery to identify high-risk patients of complications. A cohort of 56 children was included: 41 cases with CHD-PAH (22 with high pulmonary flow and 19 with low pulmonary flow) and 15 control cases. We observed that Ɲ-CECs increased in both CHD groups and that Ɲ-EPCs decreased in the immediate post-surgical period, and there was a strong negative correlation between ET-1 and CEC before surgery, along with significant changes in ET-1, IL8, IL6, and CEC levels. Our findings support the understanding of endothelial cell precursors' role in endogenous repair and contribute to knowledge about endothelial dysfunction in CHD.


Asunto(s)
Puente Cardiopulmonar , Citocinas , Células Endoteliales , Células Progenitoras Endoteliales , Endotelina-1 , Cardiopatías Congénitas , Humanos , Endotelina-1/sangre , Endotelina-1/metabolismo , Células Progenitoras Endoteliales/metabolismo , Cardiopatías Congénitas/cirugía , Cardiopatías Congénitas/sangre , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Masculino , Femenino , Puente Cardiopulmonar/efectos adversos , Células Endoteliales/metabolismo , Citocinas/sangre , Citocinas/metabolismo , Niño , Preescolar , Lactante , Biomarcadores/sangre , Estudios de Casos y Controles
8.
Br J Haematol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189039

RESUMEN

Bone marrow endothelial progenitor cells (BM EPCs) are crucial in supporting haematopoietic regeneration, while the BM EPCs of haematological patients with chemotherapy-induced thrombocytopenia (CIT) are unavoidably damaged. Therefore, the present study aimed to examine the effect of thrombopoietin (TPO) on the recovery of BM EPCs of CIT patients and to identify the underlying mechanisms. The cell functions were determined by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil)-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake and fluorescein isothiocyanate (FITC)-labeled Ulex europaeus agglutinin-I (FITC-UEA-I) binding assay, as well as proliferation, migration and tube formation experiments. Endothelial cells were transfected with METTL16 lentivirus, followed by methylated RNA immunoprecipitation sequencing. Zebrafish with vascular defect was used as the in vivo model. TPO significantly improved the quantity and functions of BM EPCs from CIT patients in vitro and restored the subintestinal vein area of zebrafish with vascular defect in vivo. Mechanically, TPO enhanced the BM EPC functions through Akt signal mediated by METTL16, which was downregulated in BM EPCs of CIT patients and involved in the regulation of endothelial functions. The present study demonstrates that TPO improves the recovery of BM EPCs from CIT patients with haematological malignancies via METTL16/Akt signalling, which provides new insights into the role of TPO in treating CIT in addition to direct megakaryopoiesis.

9.
Stem Cell Rev Rep ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39186241

RESUMEN

Endothelial progenitor cells (EPCs) are stem cells that can repair injured blood vessels through neovascularisation. This is achieved through secretion of growth factors and endothelial maturation. EPC numbers and function have been studied to determine their diagnostic, prognostic and therapeutic potential in many ischaemic diseases such as stroke. However their activation homing and migration is not definitively understood in stroke patients. In this study, we profiled the non-stroke control group recruited into the Dunhill Medical Trust Endothelial Progenitor Cell Study. Demographic, clinical and plasma levels of angiogenic regulators of participants were analysed to determine if there was any correlation with EPC numbers, subtypes and function. Participants with diabetes had significantly supressed EPC numbers (CD45-CD34 + CD133 + KDR+) and CD34 + KDR + and KDR + EPC subtypes. Male participants had significantly lower EPC numbers compared to female participants and the proliferative capacity of endothelial colony forming cells significantly decreased with increasing participant age. Pro-angiogenic proteins such as granulocyte colony-stimulating factor and stromal cell-derived factor were positively correlated with both undifferentiated and endothelial-committed EPC subtype numbers (CD133+, KDR+, CD34 + CD133+, CD34 + KDR+), whereas anti-angiogenic proteins such as thrombospondin-1 showed a negative correlation with undifferentiated EPC subtypes (CD133+, CD34 + CD133+) but a positive correlation with endothelial-committed EPC subtype numbers (KDR+, CD34 + KDR+). These results show that EPC numbers and subtypes are affected by many factors and larger studies which can analyse and deconvolute the interactions between comorbidities, plasma biomarker levels and EPC are needed.

10.
Front Cell Neurosci ; 18: 1456775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193428

RESUMEN

Cerebral aneurysm (CA) is a significant health concern that results from pathological dilations of blood vessels in the brain and can lead to severe and potentially life-threatening conditions. While the pathogenesis of CA is complex, emerging studies suggest that endothelial progenitor cells (EPCs) play a crucial role. In this paper, we conducted a comprehensive literature review to investigate the potential role of EPCs in the pathogenesis and treatment of CA. Current research indicates that a decreased count and dysfunction of EPCs disrupt the balance between endothelial dysfunction and repair, thus increasing the risk of CA formation. Reversing these EPCs abnormalities may reduce the progression of vascular degeneration after aneurysm induction, indicating EPCs as a promising target for developing new therapeutic strategies to facilitate CA repair. This has motivated researchers to develop novel treatment options, including drug applications, endovascular-combined and tissue engineering therapies. Although preclinical studies have shown promising results, there is still a considerable way to go before clinical translation and eventual benefits for patients. Nonetheless, these findings offer hope for improving the treatment and management of this condition.

11.
Stem Cells Dev ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39030822

RESUMEN

Endothelial cells (ECs) are a multifaceted component of the vascular system with roles in immunity, maintaining tissue fluid balance, and vascular tone. Dysregulation or dysfunction of ECs can have far-reaching implications, leading pathologies ranging from cardiovascular diseases, such as hypertension and atherosclerosis, ischemia, chronic kidney disease, blood-brain barrier integrity, dementia, and tumor metastasis. Recent advancements in regenerative medicine have highlighted the potential of stem cell-derived ECs, particularly from induced pluripotent stem cells, to treat ischemic tissues, as well as models of vascular integrity. This review summarizes what is known in the generation of ECs with an emphasis on tissue-specific ECs and EC subphenotypes important in the development of targeted cell-based therapies for patient treatment.

12.
Acta Pharmacol Sin ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060522

RESUMEN

Delta like non-canonical Notch ligand 1 (DLK1), as a member of epidermal growth factor-like family, plays a critical role in somatic growth, tissue development and possibly tissue renewal. Though previous studies had indicated that DLK1 contributed to adipogenesis and myogenesis, it's still controversial whether DLK1 affects angiogenesis and how it interacts with Notch signaling with numerous conflicting reports from different models. Based on our preliminary finding that DLK1 expression was up-regulated in mice ischemic gastrocnemius and in the border zone of infarcted myocardium, we administered either recombinant DLK1 (rDLK1) or PBS in C57BL/6 mice after establishment of hindlimb ischemia (HLI) and myocardial infarction (MI), respectively. Exogenous rDLK1 administration significantly improved both blood perfusion of mice ischemic hindlimbs and muscle motor function on the 3rd, 7th day after HLI, by promoting neovascularization. Similar effect on neovascularization was verified in mice on the 28th day after MI as well as improvement of cardiac failure. Correspondingly, the number of CD34+KDR+ cells, indicated as endothelial progenitor cells (EPCs), was significantly in mice ischemic gastrocnemius by rDLK1 administration, which was abrogated by DAPT as the specific inhibitor of Notch intracellular domain (NICD). Furthermore, bone marrow mononuclear cells were obtained from C57BL/6 mice and differentiated to EPCs ex vivo. Incubation with rDLK1 triggered Notch1 mRNA and NICD protein expressions in EPCs as exposed to hypoxia and serum deprivation, promoting EPCs proliferation, migration, anti-apoptosis and tube formation. Otherwise, rDLK1 incubation significantly decreased intracellular and mitochondrial reactive oxygen species, increased ATP content and mitochondrial membrane potential, downregulated short isoform of OPA-1 expression whereas upregulated mitofusin (-1, -2) expression in EPCs by Notch1 signaling, which were all abrogated by DAPT. In summary, the present study unveils the pro-angiogenesis and its mechanism of rDLK1 through activation of Notch1 signaling in endothelial progenitor cells.

13.
J Cell Mol Med ; 28(13): e18523, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957039

RESUMEN

This research explores the role of microRNA in senescence of human endothelial progenitor cells (EPCs) induced by replication. Hsa-miR-134-5p was found up-regulated in senescent EPCs where overexpression improved angiogenic activity. Hsa-miR-134-5p, which targeted transforming growth factor ß-activated kinase 1-binding protein 1 (TAB1) gene, down-regulated TAB1 protein, and inhibited phosphorylation of p38 mitogen-activated protein kinase (p38) in hsa-miR-134-5p-overexpressed senescent EPCs. Treatment with siRNA specific to TAB1 (TAB1si) down-regulated TAB1 protein and subsequently inhibited p38 activation in senescent EPCs. Treatment with TAB1si and p38 inhibitor, respectively, showed angiogenic improvement. In parallel, transforming growth factor Beta 1 (TGF-ß1) was down-regulated in hsa-miR-134-5p-overexpressed senescent EPCs and addition of TGF-ß1 suppressed the angiogenic improvement. Analysis of peripheral blood mononuclear cells (PBMCs) disclosed expression levels of hsa-miR-134-5p altered in adult life, reaching a peak before 65 years, and then falling in advanced age. Calculation of the Framingham risk score showed the score inversely correlates with the hsa-miR-134-5p expression level. In summary, hsa-miR-134-5p is involved in the regulation of senescence-related change of angiogenic activity via TAB1-p38 signalling and via TGF-ß1 reduction. Hsa-miR-134-5p has a potential cellular rejuvenation effect in human senescent EPCs. Detection of human PBMC-derived hsa-miR-134-5p predicts cardiovascular risk.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Enfermedades Cardiovasculares , Senescencia Celular , Células Progenitoras Endoteliales , Leucocitos Mononucleares , MicroARNs , Proteínas Quinasas p38 Activadas por Mitógenos , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Células Progenitoras Endoteliales/metabolismo , Senescencia Celular/genética , Leucocitos Mononucleares/metabolismo , Persona de Mediana Edad , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Masculino , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Femenino , Anciano , Neovascularización Fisiológica/genética , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Adulto , Factores de Riesgo
14.
Am J Transl Res ; 16(6): 2278-2289, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006266

RESUMEN

OBJECTIVES: Endothelial progenitor cells (EPCs) play a crucial role in acquired angiogenesis and endothelial injury repair. Transient receptor potential canonical channel 4 (TRPC4), a key component of store-operated calcium channels, is essential for EPC function. While the role of TRPCs has been clarified in vascular diseases, the relationship between TRPC4 and EPC function, along with the underlying molecular mechanisms, remains unclear and requires further elucidation. METHODS: EPCs were isolated from canine bone marrow and identified by morphology and flow cytometry. TRPC4 was transfected into EPCs using lentivirus or negative control, and its expression was assessed using real-time polymerase chain reaction (RT-PCR). Proliferation, migration, and tube formation were evaluated using Cell Counting Kit-8 (CCK-8), Transwell, and Matrigel assays, respectively. Levels of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS: TRPC4 mRNA expression was significantly reduced in TRPC4-short hairpin RNA (shRNA) transfected EPCs compared to the normal control (NC)-shRNA groups. Migration and tube formation were significantly decreased after TRPC4 silencing, while proliferation showed no difference. Additionally, levels of SDF-1 and VEGF in EPCs were markedly reduced following TRPC4 silencing. CONCLUSION: TRPC4 plays a crucial role in regulating angiogenesis in EPCs. Silencing of TRPC4 can lead to decreased angiogenesis by inhibiting VEGF and SDF-1 expression, suggesting that TRPC4 knockdown might be a novel therapeutic strategy for vascular diseases.

15.
J Cell Mol Med ; 28(12): e18489, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899522

RESUMEN

This study explores the impact of senescence on autocrine C-C motif chemokine ligand 5 (CCL5) in human endothelial progenitor cell (EPCs), addressing the poorly understood decline in number and function of EPCs during ageing. We examined the effects of replication-induced senescence on CCL5/CCL5 receptor (CCR5) signalling and angiogenic activity of EPCs in vitro and in vivo. We also explored microRNAs controlling CCL5 secretion in senescent EPCs, its impact on EPC angiogenic activity, and validated our findings in humans. CCL5 secretion and CCR5 levels in senescent EPCs were reduced, leading to attenuated angiogenic activity. CCL5 enhanced EPC proliferation via the CCR5/AKT/P70S6K axis and increased vascular endothelial growth factor (VEGF) secretion. Up-regulation of miR-409 in senescent EPCs resulted in decreased CCL5 secretion, inhibiting the angiogenic activity, though these negative effects were counteracted by the addition of CCL5 and VEGF. In a mouse hind limb ischemia model, CCL5 improved the angiogenic activity of senescent EPCs. Analysis involving 62 healthy donors revealed a negative association between CCL5 levels, age and Framingham Risk Score. These findings propose CCL5 as a potential biomarker for detection of EPC senescence and cardiovascular risk assessment, suggesting its therapeutic potential for age-related cardiovascular disorders.


Asunto(s)
Senescencia Celular , Quimiocina CCL5 , Células Progenitoras Endoteliales , MicroARNs , Neovascularización Fisiológica , Animales , Humanos , Masculino , Ratones , Angiogénesis , Proliferación Celular , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Regulación hacia Abajo/genética , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/citología , Isquemia/metabolismo , Isquemia/patología , Isquemia/genética , MicroARNs/genética , MicroARNs/metabolismo , Neovascularización Fisiológica/genética , Receptores CCR5/metabolismo , Receptores CCR5/genética , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
16.
Biomed Pharmacother ; 177: 117022, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917756

RESUMEN

BACKGROUND: The transplantation of endothelial progenitor cells (EPCs) has been shown to reduce neointimal hyperplasia following arterial injury. However, the efficacy of this approach is hampered by limited homing of EPCs to the injury site. Additionally, the in vivo recruitment and metabolic activity of transplanted EPCs have not been continuously monitored. METHODS: EPCs were labeled with indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoparticles (SPIONs) and subjected to external magnetic field targeting to enhance their delivery to a carotid balloon injury (BI) model in Sprague-Dawley rats. Magnetic particle imaging (MPI)/ fluorescence imaging (FLI) multimodal in vivo imaging, 3D MPI/CT imaging and MPI/FLI ex vivo imaging was performed after injury. Carotid arteries were collected and analyzed for pathology and immunofluorescence staining. The paracrine effects were analyzed by enzyme-linked immunosorbent assay. RESULTS: The application of a magnetic field significantly enhanced the localization and retention of SPIONs@PEG-ICG-EPCs at the site of arterial injury, as evidenced by both in vivo continuous monitoring and ex vivo by observation. This targeted delivery approach effectively inhibited neointimal hyperplasia and increased the presence of CD31-positive cells at the injury site. Moreover, serum levels of SDF-1α, VEGF, IGF-1, and TGF-ß1 were significantly elevated, indicating enhanced paracrine activity. CONCLUSIONS: Our findings demonstrate that external magnetic field-directed delivery of SPIONs@PEG-ICG-EPCs to areas of arterial injury can significantly enhance their therapeutic efficacy. This enhancement is likely mediated through increased paracrine signaling. These results underscore the potential of magnetically guided SPIONs@PEG-ICG-EPCs delivery as a promising strategy for treating arterial injuries.


Asunto(s)
Traumatismos de las Arterias Carótidas , Células Progenitoras Endoteliales , Hiperplasia , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Hierro , Neointima , Ratas Sprague-Dawley , Animales , Células Progenitoras Endoteliales/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/química , Neointima/patología , Traumatismos de las Arterias Carótidas/patología , Masculino , Ratas
17.
Front Cardiovasc Med ; 11: 1351567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854655

RESUMEN

Background: ST-segment elevation myocardial infarction (STEMI) persists to be prevalent in the elderly with a dismal prognosis. The capacity of endothelial progenitor cells (EPCs) is reduced with aging. Nevertheless, the influence of aging on the functionality of EPCs in STEMI is not fully understood. Method: This study enrolled 20 younger STEMI patients and 21 older STEMI patients. We assessed the Thrombolysis in Myocardial Infarction (TIMI) and Global Registry of Acute Coronary Events Risk (GRACE) scores in two groups. Then, we detected EPC migration, proliferation, adhesion, and plasma interleukin (IL)-18 and IL-23 concentrations in two groups. In addition, we analyzed the interconnection between age, EPC function, plasma IL-18 and IL-23 concentrations, and GRACE or TIMI scores in STEMI patients. Result: GRACE and TIMI scores in older STEMI patients were higher than in younger STEMI patients, whereas EPC function declined. GRACE and TIMI scores were found to have an inverse relationship with the EPC function. In older STEMI patients, plasma concentrations of IL-18 and IL-23 increased. Plasma IL-18 and IL-23 concentrations were adversely connected to EPC capacity and positively related to GRACE and TIMI scores. Moreover, age was positively correlated with plasma IL-18 or IL-23 concentrations, as well as GRACE or TIMI scores. However, age was adversely correlated with EPC function. Conclusion: In patients with STEMI, aging results in declined EPC function, which may be associated with inflammatory cytokines. The current investigation may offer new perception about mechanism and therapeutic targets of aging STEMI.

18.
Explor Med ; 5(2): 193-214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854406

RESUMEN

Aim: Endothelial dysfunction has been associated with both cerebrovascular pathology and Alzheimer's disease (AD). However, the connection between circulating endothelial cells and the risk of AD remains uncertain. The objective was to leverage data from the Framingham Heart Study to investigate various circulating endothelial subtypes and their potential correlations with the risk of AD. Methods: The study conducted data analyses using Cox proportional hazard regression and linear regression methods. Additionally, genome-wide association study (GWAS) was carried out to further explore the data. Results: Among the eleven distinct circulating endothelial subtypes, only circulating endothelial progenitor cells (EPCs) expressing CD34+CD133+ were found to be negatively and dose-dependently associated with reduced AD risk. This association persisted even after adjusting for age, sex, years of education, apolipoprotein E (APOE) ε4 status, and various vascular diseases. Particularly noteworthy was the significant association observed in individuals with hypertension and cerebral microbleeds. Consistently, positive associations were identified between CD34+CD133+ EPCs and specific brain regions, such as higher proportions of circulating CD34+CD133+ cells correlating with increased volumes of white matter and the hippocampus. Additionally, a GWAS study unveiled that CD34+CD133+ cells influenced AD risk specifically in individuals with homozygous genotypes for variants in two stem cell-related genes: kirre like nephrin family adhesion molecule 3 (KIRREL3, rs580382 CC and rs4144611 TT) and exocyst complex component 6B (EXOC6B, rs61619102 CC). Conclusions: The findings suggest that circulating CD34+CD133+ EPCs possess a protective effect and may offer a new therapeutic avenue for AD, especially in individuals with vascular pathology and those carrying specific genotypes of KIRREL3 and EXOC6B genes.

19.
Mol Med ; 30(1): 84, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867168

RESUMEN

BACKGROUND: Deep vein thrombosis (DVT) is a common vascular surgical disease caused by the coagulation of blood in the deep veins, and predominantly occur in the lower limbs. Endothelial progenitor cells (EPCs) are multi-functional stem cells, which are precursors of vascular endothelial cells. EPCs have gradually evolved into a promising treatment strategy for promoting deep vein thrombus dissolution and recanalization through the stimulation of various physical and chemical factors. METHODS: In this study, we utilized a mouse DVT model and performed several experiments including qRT-PCR, Western blot, tube formation, wound healing, Transwell assay, immunofluorescence, flow cytometry analysis, and immunoprecipitation to investigate the role of HOXD9 in the function of EPCs cells. The therapeutic effect of EPCs overexpressing HOXD9 on the DVT model and its mechanism were also explored. RESULTS: Overexpression of HOXD9 significantly enhanced the angiogenesis and migration abilities of EPCs, while inhibiting cell apoptosis. Additionally, results indicated that HOXD9 specifically targeted the HRD1 promoter region and regulated the downstream PINK1-mediated mitophagy. Interestingly, intravenous injection of EPCs overexpressing HOXD9 into mice promoted thrombus dissolution and recanalization, significantly decreasing venous thrombosis. CONCLUSIONS: The findings of this study reveal that HOXD9 plays a pivotal role in stimulating vascular formation in endothelial progenitor cells, indicating its potential as a therapeutic target for DVT management.


Asunto(s)
Modelos Animales de Enfermedad , Células Progenitoras Endoteliales , Proteínas de Homeodominio , Mitofagia , Neovascularización Fisiológica , Trombosis de la Vena , Animales , Células Progenitoras Endoteliales/metabolismo , Ratones , Trombosis de la Vena/metabolismo , Trombosis de la Vena/genética , Trombosis de la Vena/terapia , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Mitofagia/genética , Neovascularización Fisiológica/genética , Movimiento Celular , Masculino , Apoptosis , Humanos , Angiogénesis
20.
Neuromolecular Med ; 26(1): 25, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886284

RESUMEN

This comprehensive review explores the multifaceted role of endothelial progenitor cells (EPCs) in vascular diseases, focusing on their involvement in the pathogenesis and their contributions to enhancing the efficacy of endovascular treatments for intracranial aneurysms (IAs). Initially discovered as CD34+ bone marrow-derived cells implicated in angiogenesis, EPCs have been linked to vascular repair, vasculogenesis, and angiogenic microenvironments. The origin and differentiation of EPCs have been subject to debate, challenging the conventional notion of bone marrow origin. Quantification methods, including CD34+ , CD133+ , and various assays, reveal the influence of factors, like age, gender, and comorbidities on EPC levels. Cellular mechanisms highlight the interplay between bone marrow and angiogenic microenvironments, involving growth factors, matrix metalloproteinases, and signaling pathways, such as phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK). In the context of the pathogenesis of IAs, EPCs play a role in maintaining vascular integrity by replacing injured and dysfunctional endothelial cells. Recent research has also suggested the therapeutic potential of EPCs after coil embolization and flow diversion, and this has led the development of device surface modifications aimed to enhance endothelialization. The comprehensive insights underscore the importance of further research on EPCs as both therapeutic targets and biomarkers in IAs.


Asunto(s)
Células Progenitoras Endoteliales , Aneurisma Intracraneal , Humanos , Aneurisma Intracraneal/terapia , Células Progenitoras Endoteliales/fisiología , Células Progenitoras Endoteliales/trasplante , Procedimientos Endovasculares/métodos , Diferenciación Celular , Animales , Transducción de Señal , Neovascularización Fisiológica , Embolización Terapéutica , Neovascularización Patológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA