Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13969, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886503

RESUMEN

Periodontitis is a chronic inflammatory disease that affects the periodontal tissues. Although it is associated with various systemic diseases, the impact of periodontitis on kidney transplantation (KT) outcomes, particularly allograft rejection, remains unclear. This study investigated the effect of periodontitis on transplant immunity, specifically examining Porphyromonas gingivalis-derived lipopolysaccharide (LPS-PG). In vitro experiments revealed that LPS-PG increased regulatory T cells (Tregs) in Lewis rat spleen cells. In a mixed lymphocyte reaction assay, concentrations of interferon-γ, indicative of alloreactivity, were lower than in controls when LPS-PG was added to the culture and when LPS-PG-administered Lewis rat spleen cells were used as responders. In a rat KT model, LPS-PG administration to recipients promoted mild tubulitis and low serum creatinine and blood urea nitrogen levels 5 days post-KT compared with PBS-administered controls. Furthermore, LPS-PG-administered recipients had an elevated Treg proportion in their peripheral blood and spleen cells, and increased infiltrating Tregs in kidney allografts, compared with controls. The elevated Treg proportion in peripheral blood and spleen cells had a significant negative correlation with serum creatinine, suggesting elevated Tregs modulated allograft rejection. These findings suggest that periodontitis might modulate alloimmune reactivity through LPS-PG and Tregs, offering insights to refine immunosuppressive strategies for KT recipients.


Asunto(s)
Rechazo de Injerto , Trasplante de Riñón , Lipopolisacáridos , Porphyromonas gingivalis , Ratas Endogámicas Lew , Linfocitos T Reguladores , Animales , Porphyromonas gingivalis/inmunología , Trasplante de Riñón/efectos adversos , Ratas , Linfocitos T Reguladores/inmunología , Masculino , Rechazo de Injerto/inmunología , Aloinjertos , Periodontitis/inmunología , Periodontitis/microbiología , Modelos Animales de Enfermedad , Bazo/inmunología
2.
Front Immunol ; 15: 1393283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742111

RESUMEN

For decades, innate immune cells were considered unsophisticated first responders, lacking the adaptive memory of their T and B cell counterparts. However, mounting evidence demonstrates the surprising complexity of innate immunity. Beyond quickly deploying specialized cells and initiating inflammation, two fascinating phenomena - endotoxin tolerance (ET) and trained immunity (TI) - have emerged. ET, characterized by reduced inflammatory response upon repeated exposure, protects against excessive inflammation. Conversely, TI leads to an enhanced response after initial priming, allowing the innate system to mount stronger defences against subsequent challenges. Although seemingly distinct, these phenomena may share underlying mechanisms and functional implications, blurring the lines between them. This review will delve into ET and TI, dissecting their similarities, differences, and the remaining questions that warrant further investigation.


Asunto(s)
Endotoxinas , Tolerancia Inmunológica , Inmunidad Innata , Memoria Inmunológica , Humanos , Animales , Endotoxinas/inmunología , Inflamación/inmunología , Inmunidad Adaptativa , Inmunidad Entrenada
3.
Int Immunopharmacol ; 132: 111994, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38581992

RESUMEN

Acute liver failure (ALF) is a potentially fatal disorder characterized by extensive hepatocyte necrosis and rapid decline in liver function. Numerous factors, including oxidative stress, cell death, and inflammatory responses, are associated with its pathogenesis. Endotoxin tolerance (ET) refers to the phenomenon in which the body or cells exhibit low or no response to high-dose lipopolysaccharide (LPS) stimulation after pre-stimulation with low-dose LPS. However, the specific mechanism through which ET regulates LPS/D-galactosamine (D-GalN)-induced ALF remains unclear. An ALF mouse model was established by intraperitoneal injection of D-GalN (400 mg/kg) and LPS (10 mg/kg). A low dose of LPS (0.1 mg/kg/d) was continuously administered to mice for 5 d before modeling to assess the protective effect of ET. The data from this study showed that ET alleviated the inflammatory response in mice with LPS/D-GalN-induced ALF. ET inhibited LPS-induced oxidative damage and pyroptosis in macrophages in vitro. RNA sequencing analysis showed that the NF-κB/NLRP3 pathway was linked to the anti-inflammatory and antioxidative effects of ET. Furthermore, using western blot, RT-qPCR, and immunofluorescence, we verified that ET inhibited the NF-κB/NLRP3 pathway and triggered the Nrf2/HO-1 signaling pathway to attenuate oxidative stress and cell pyroptosis. Sirt1 knockdown reversed this protective effect. In summary, our research elucidates that ET prevents ALF advancement by upregulating Sirt1 levels, triggering the Nrf2/HO-1 signaling axis, and suppressing the NF-κB/NLRP3 signaling cascade to inhibit oxidative stress and cell pyroptosis. Our results provide a mechanistic explanation for the protective effect of ET against ALF.


Asunto(s)
Galactosamina , Lipopolisacáridos , Fallo Hepático Agudo , Transducción de Señal , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Endotoxinas/toxicidad , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo Oxigenasa (Desciclizante)/genética , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Tolerancia Inmunológica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Hígado/inmunología , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/inmunología , Fallo Hepático Agudo/metabolismo , Fallo Hepático Agudo/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Sirtuina 1/genética
4.
Nitric Oxide ; 147: 1-5, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547960

RESUMEN

Endotoxin tolerance (ET) is the hyporesponsiveness to lipopolysaccharide (LPS) after prior exposure. It is characterized by the downregulation of pro-inflammatory cytokine levels. Although ET protects against inflammation, its abolishment or recovery is critical for immunity. Nitric oxide (NO) plays various roles in the development of ET; however, its specific role in ET recovery remains unknown. To induce ET, RAW264.7 cells (a murine macrophage cell line) were pre-exposed to LPS (LPS1, 100 ng/mL for 24 h) and subsequently re-stimulated with LPS (LPS2, 100 ng/mL for 24 h). Expression of cytokines, NO, nitrite and inducible NO synthase (iNOS) were measured after 0, 12, 24, and 36 h of resting after LPS1 treatment with or without the iNOS-specific inhibitor, 1400W. LPS2-induced tumor necrosis factor-⍺ (TNF-⍺) and interleukin-6 (IL-6) were downregulated after LPS1 treatment, confirming the development of ET. Notably, TNF-⍺ and IL-6 levels spontaneously rebounded after 12-24 h of resting following LPS1 treatment. In contrast, levles of NO, nitrite and iNOS increased during ET development and decreased during ET recovery. Moreover, 1400W inhibited ET development and blocked the early production of NO (<12 h) during ET recovery. Our findings suggest a negative correlation between iNOS-induced NO and cytokine levels in the abolishment of ET.


Asunto(s)
Lipopolisacáridos , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico , Factor de Necrosis Tumoral alfa , Animales , Óxido Nítrico/metabolismo , Ratones , Lipopolisacáridos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Células RAW 264.7 , Interleucina-6/metabolismo , Endotoxinas/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo
5.
Cancers (Basel) ; 15(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37894480

RESUMEN

Endotoxin tolerance (ET) is an adaptive phenomenon of the immune system that protects the host from clinical complications due to repeated exposure of the body to endotoxins such as lipopolysaccharide (LPS). Since ET is an immunosuppressive mechanism in which a significant reprogramming of macrophages is observed, we hypothesized that it could influence cancer development by modifying the tumour environment. This study aimed to explore whether ET influences cancer progression by altering the tumour microenvironment. Endotoxin-tolerant macrophages (MoET) were examined for their impact on breast and colon cancer cells via direct interaction and conditioned media exposure. We characterized cancer cell behaviour by viability, clonogenic potential, motility, scratch assays, and 3D spheroidal assays. MoET-derived factors increased cancer cell viability, motility, and clonogenicity, suggesting a conducive environment for cancer development. Remarkably, despite reduced TNFα and IL-6 levels, MoET exhibited M1 polarization. These findings uncover an ET-associated macrophage reprogramming that fosters a favourable context for cancer progression across diverse tumours. Targeting ET could emerge as a promising avenue for cancer therapy and prevention.

6.
Cell Chem Biol ; 30(12): 1525-1541.e7, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37858336

RESUMEN

We report a novel translation-regulatory function of G9a, a histone methyltransferase and well-understood transcriptional repressor, in promoting hyperinflammation and lymphopenia; two hallmarks of endotoxin tolerance (ET)-associated chronic inflammatory complications. Using multiple approaches, we demonstrate that G9a interacts with multiple translation regulators during ET, particularly the N6-methyladenosine (m6A) RNA methyltransferase METTL3, to co-upregulate expression of certain m6A-modified mRNAs that encode immune-checkpoint and anti-inflammatory proteins. Mechanistically, G9a promotes m6A methyltransferase activity of METTL3 at translational/post-translational level by regulating its expression, its methylation, and its cytosolic localization during ET. Additionally, from a broader view extended from the G9a-METTL3-m6A translation regulatory axis, our translatome proteomics approach identified numerous "G9a-translated" proteins that unite the networks associated with inflammation dysregulation, T cell dysfunction, and systemic cytokine response. In sum, we identified a previously unrecognized function of G9a in protein-specific translation that can be leveraged to treat ET-related chronic inflammatory diseases.


Asunto(s)
Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina , Inflamación , Humanos , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Inflamación/genética , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Antígenos de Histocompatibilidad/genética , Antígenos de Histocompatibilidad/metabolismo
7.
BMC Genomics ; 24(1): 595, 2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805492

RESUMEN

BACKGROUND: Monocytes are key mediators of innate immunity to infection, undergoing profound and dynamic changes in epigenetic state and immune function which are broadly protective but may be dysregulated in disease. Here, we aimed to advance understanding of epigenetic regulation following innate immune activation, acutely and in endotoxin tolerant states. METHODS: We exposed human primary monocytes from healthy donors (n = 6) to interferon-γ or differing combinations of endotoxin (lipopolysaccharide), including acute response (2 h) and two models of endotoxin tolerance: repeated stimulations (6 + 6 h) and prolonged exposure to endotoxin (24 h). Another subset of monocytes was left untreated (naïve). We identified context-specific regulatory elements based on epigenetic signatures for chromatin accessibility (ATAC-seq) and regulatory non-coding RNAs from total RNA sequencing. RESULTS: We present an atlas of differential gene expression for endotoxin and interferon response, identifying widespread context specific changes. Across assayed states, only 24-29% of genes showing differential exon usage are also differential at the gene level. Overall, 19.9% (6,884 of 34,616) of repeatedly observed ATAC peaks were differential in at least one condition, the majority upregulated on stimulation and located in distal regions (64.1% vs 45.9% of non-differential peaks) within which sequences were less conserved than non-differential peaks. We identified enhancer-derived RNA signatures specific to different monocyte states that correlated with chromatin accessibility changes. The endotoxin tolerance models showed distinct chromatin accessibility and transcriptomic signatures, with integrated analysis identifying genes and pathways involved in the inflammatory response, detoxification, metabolism and wound healing. We leveraged eQTL mapping for the same monocyte activation states to link potential enhancers with specific genes, identifying 1,946 unique differential ATAC peaks with 1,340 expression associated genes. We further use this to inform understanding of reported GWAS, for example involving FCHO1 and coronary artery disease. CONCLUSION: This study reports context-specific regulatory elements based on transcriptomic profiling and epigenetic signatures for enhancer-derived RNAs and chromatin accessibility in immune tolerant monocyte states, and demonstrates the informativeness of linking such elements and eQTL to inform future mechanistic studies aimed at defining therapeutic targets of immunosuppression and diseases.


Asunto(s)
Epigénesis Genética , Monocitos , Humanos , Monocitos/metabolismo , Tolerancia a Endotoxinas , Epigenómica , Cromatina/genética , Inmunidad Innata/genética , Transcriptoma , Endotoxinas/toxicidad , Proteínas de la Membrana/genética
8.
Crit Care ; 27(1): 372, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759239

RESUMEN

BACKGROUND: Sepsis-induced immunosuppression is a frequent cause of opportunistic infections and death in critically ill patients. A better understanding of the underlying mechanisms is needed to develop targeted therapies. Circulating bile acids with immunosuppressive effects were recently identified in critically ill patients. These bile acids activate the monocyte G-protein coupled receptor TGR5, thereby inducing profound innate immune dysfunction. Whether these mechanisms contribute to immunosuppression and disease severity in sepsis is unknown. The aim of this study was to determine if immunosuppressive bile acids are present in endotoxemia and septic shock and, if so, which patients are particularly at risk. METHODS: To induce experimental endotoxemia in humans, ten healthy volunteers received 2 ng/kg E. coli lipopolysaccharide (LPS). Circulating bile acids were profiled before and after LPS administration. Furthermore, 48 patients with early (shock onset within < 24 h) and severe septic shock (norepinephrine dose > 0.4 µg/kg/min) and 48 healthy age- and sex-matched controls were analyzed for circulating bile acids. To screen for immunosuppressive effects of circulating bile acids, the capability to induce TGR5 activation was computed for each individual bile acid profile by a recently published formula. RESULTS: Although experimental endotoxemia as well as septic shock led to significant increases in total bile acids compared to controls, this increase was mild in most cases. By contrast, there was a marked and significant increase in circulating bile acids in septic shock patients with severe liver failure compared to healthy controls (61.8 µmol/L vs. 2.8 µmol/L, p = 0.0016). Circulating bile acids in these patients were capable to induce immunosuppression, as indicated by a significant increase in TGR5 activation by circulating bile acids (20.4% in severe liver failure vs. 2.8% in healthy controls, p = 0.0139). CONCLUSIONS: Circulating bile acids capable of inducing immunosuppression are present in septic shock patients with severe liver failure. Future studies should examine whether modulation of bile acid metabolism can improve the clinical course and outcome of sepsis in these patients.


Asunto(s)
Endotoxemia , Fallo Hepático , Sepsis , Choque Séptico , Humanos , Choque Séptico/metabolismo , Endotoxemia/complicaciones , Ácidos y Sales Biliares , Lipopolisacáridos , Escherichia coli , Enfermedad Crítica
9.
Methods Mol Biol ; 2700: 93-116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37603176

RESUMEN

Dendritic cells (DCs) are key regulators of immunogenic and tolerogenic immune responses. Both these immune responses require DCs respectively to activate effector T cells or to induce their anergy and T regulatory activity. Modifications of DCs in the laboratory and several pharmacological agents can enhance and stabilize their tolerogenic properties. Recent evidences demonstrate that activation of specific toll-like receptors (TLRs) can be involved in induction of DCs with tolerogenic properties able to initiate T regulatory cell responses.In the present chapter, we show a detail protocol to obtain in vitro regulatory conventional DCs (cDCs) in response to repeated exposure to lipopolysaccharide (LPS), a ligand of TLR4, by mimicking the mechanism of endotoxin tolerance. Subsequently, the protective effect of cDCs' conditionate with LPS will be describe in in vivo inflammatory model of endotoxemia. Finally, we illustrate the method to study the ability of LPS-conditionate cDCs to promote T regulatory cells in ex vivo system.


Asunto(s)
Tolerancia a Endotoxinas , Linfocitos T Reguladores , Lipopolisacáridos , Células Dendríticas
10.
Immun Inflamm Dis ; 11(7): e925, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37506157

RESUMEN

INTRODUCTION: Sepsis is characterized by an endotoxin tolerance phenotype that occurs in the stage of infection. Persistent bacterial infection can lead to immune cell exhaustion. Triad3A, an E3 ubiquitin ligase, negatively regulates its activation by TLR4. However, the effect of Triad3A on endotoxin tolerance and bactericidal ability in the state of endotoxin tolerance remains unclear. METHODS: Using single dose LPS and repeated LPS stimulated macrophage cell lines at indicated times, we investigated miR-191, Tirad3A, TRAF3, TLR4, p-P65, TNF-α, IL-1ß, and iNOS expression, the effect of miR-191 on Triad3A and TRAF3, gene loss-of-function analyses, the effect of Triad3A on TLR4, p-P65, cytokine, and mycobactericidal activity in endotoxin tolerant cells infected with Mycobacterium marinum. RESULTS: Here we found that Triad3A is involved in regulating endotoxin tolerance. Our result also displayed that miR-191 expression is downregulated in macrophages in the state of endotoxin tolerance. miR-191 can directly bind to Triad3A and TRAF3. Additionally, knockdown of Triad3A can reverse the effect of decreasing TNF-α and IL-1ß in endotoxin tolerant macrophages. Furthermore, we demonstrated that the TLR4-NF-κB-NO pathway was associated with Triad3A and responsible for the killing of intracellular mycobacteria in a tuberculosis sepsis model. CONCLUSIONS: These results provide new insight into the mechanisms of Triad3A induced tolerogenic phenotype in macrophages, which can help the better comprehension of the pathogenesis involved in septic shock with infection of Mycobacterium tuberculosis, and suggest that Triad3A may be a potential drug target for the treatment of severe septic tuberculosis.


Asunto(s)
MicroARNs , Sepsis , Humanos , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Lipopolisacáridos/farmacología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Tolerancia a Endotoxinas , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Endotoxinas , MicroARNs/genética
11.
Inflammation ; 46(5): 2011-2023, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37365417

RESUMEN

The development of microglial endotoxin tolerance (ET) is a critical event in protecting neurons against excessive immune responses when microglia are administered two consecutive lipopolysaccharide (LPS) challenges. However, the intrinsic mechanisms of microglia shape ET programs and protect neurons remain unclear. This study aimed to determine whether extracellular autocrine cascades or intracellular signaling pathways are involved in ET microglia-mediated tumor necrosis factor-alpha (TNF-α) reduction and neuroprotection. Neuron-glia cultures composed of astroglia, neurons, and microglia were performed in different conditions: with or without serum or LPS-binding proteins (LBP), along with an induction approach of ET. Enzyme-linked immunosorbent assay results revealed that LPS induced TNF-α tolerance of microglia in an LBP-dependent manner. Furthermore, we determined whether the early pro-inflammatory cytokines induced by LPS might contribute to the development of microglial ET. Our data showed that the neutralization of TNF-α using an anti-TNF-α antibody had no change in the TNF-α tolerance of microglia during the ET challenge. Furthermore, pre-incubation of TNF-α, interleukin-1 beta, and prostaglandin E2 failed to induce any TNF-α tolerance in microglia after LPS treatment. Moreover, using three specific chemical inhibitors that respectively blocked the activities of the mitogen-activated protein kinases (MAPKs) namely p38, c-Jun N-terminal kinase and extracellular signal-related kinases revealed that inhibition of p38 MAPK by SB203580 disrupted the tolerated microglia-mediated TNF-α reduction and neuroprotection. In summary, our findings demonstrated that the LPS pre-treatment immediately programmed the microglial ET to prevent endotoxin-induced TNF-α production and neuronal damage through the intracellular p38 MAPK signaling pathway.


Asunto(s)
Endotoxinas , Sistema de Señalización de MAP Quinasas , Microglía , Neuronas , Factor de Necrosis Tumoral alfa , Endotoxinas/toxicidad , Lipopolisacáridos , Microglía/metabolismo , Neuronas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
12.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37047205

RESUMEN

Garlic (Allium sativum) has historically been associated with antioxidant, immunomodulatory, and microbiocidal properties, mainly due to its richness in thiosulfates and sulfur-containing phytoconstituents. Sepsis patients could benefit from these properties because it involves both inflammatory and refractory processes. We evaluated the effects of thiosulfinate-enriched Allium sativum extract (TASE) on the immune response to bacterial lipopolysaccharide (LPS) by monocytes from healthy volunteers (HVs) and patients with sepsis. We also explored the TASE effects in HIF-1α, described as the key transcription factor leading to endotoxin tolerance in sepsis monocytes through IRAK-M expression. Our results showed TASE reduced the LPS-triggered reactive oxygen species (ROS) production in monocytes from both patients with sepsis and HVs. Moreover, this extract significantly reduced tumor necrosis factor (TNF)-α, interleukin-1ß, and interleukin-6 production in LPS-stimulated monocytes from HVs. However, TASE enhanced the inflammatory response in monocytes from patients with sepsis along with increased expression of human leukocyte antigen-DR. Curiously, these dual effects of TASE on immune response were also found when the HV cohort was divided into low- and high-LPS responders. Although TASE enhanced TNFα production in the LPS-low responders, it decreased the inflammatory response in the LPS-high responders. Furthermore, TASE decreased the HIF-1α pathway-associated genes IRAK-M, VEGFA and PD-L1 in sepsis cells, suggesting HIF-1α inhibition by TASE leads to higher cytokine production in these cells as a consequence of IRAK-M downregulation. The suppression of this pathway by TASE was confirmed in vitro with the prolyl hydroxylase inhibitor dimethyloxalylglycine. Our data revealed TASE's dual effect on monocyte response according to status/phenotype and suggested the HIF-1α suppression as the possible underlying mechanism.


Asunto(s)
Ajo , Sepsis , Humanos , Antioxidantes/farmacología , Ajo/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Monocitos/metabolismo , Sepsis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
13.
Inflamm Res ; 72(3): 531-540, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36633616

RESUMEN

BACKGROUND: Endotoxin tolerance (ET) is a protective mechanism in the process of sepsis, septic shock, and their sequelae including uncontrolled inflammation. Accumulating evidence has shown that peripheral T cells contribute to the induction of ET. However, what and how T-cell development contributes to ET inductions remain unclear. METHODS: Mice were intraperitoneally injected with LPS at a concentration of 5 mg/kg to establish an LPS tolerance model and were divided into two groups: a group examined 72 h after LPS injection (72-h group) and a group examined 8 days after LPS injection (8-day group). Injection of PBS was used as a control. We performed high-throughput sequencing to analyze the characteristics and changes of CD4+SP TCRß CDR3 repertoires with respect to V direct to J rearrangement during the ET induction. Moreover, the proportion and proliferation, as well as surface molecules such as CD80 and CD86, of F4/80+ macrophages were analyzed using FCM. Furthermore, ACT assay was designed and administered by the tail vein into murine LPS-induced mouse model to evaluate the role of F4/80+ macrophages on the development of CD4+SP thymocytes in ET condition. RESULTS: We found that the frequency and characteristics of the TCRß chain CDR3 changed obviously under condition of ET, indicating the occurrence of TCR rearrangement and thymocyte diversification. Moreover, the absolute numbers of F4/80+ macrophages, but not other APCs, were increased in thymic medulla at 72-h group, accompanied by the elevated function-related molecules of F4/80+ macrophages. Furthermore, adoptively transferred OVA332-339 peptide-loaded macrophages into Rag-1-/- mice induced the clone deletion of OVA-specific CD4+SP, thereby ameliorating the pathology in lung tissue in LPS challenge. CONCLUSIONS: These data reveal that the frequency and characteristics of the TCRß chain CDR3 undergo dynamic programming under conditions of LPS tolerance. Furthermore, the peripheral macrophages may be a key factor which carry peripheral antigen to thymic medulla and affect the negative selection of T-cell population, thereby contributing to the formation of ET. These results suggest that the clone selection in thymus in ET may confer protection against microbial sepsis.


Asunto(s)
Tolerancia a Endotoxinas , Lipopolisacáridos , Ratones , Animales , Lipopolisacáridos/farmacología , Linfocitos T , Timo , Receptores de Antígenos de Linfocitos T , Células Clonales
14.
Front Immunol ; 13: 1051514, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466921

RESUMEN

Metabolic adaptations shape immune cell function. In the acute response, a metabolic switch towards glycolysis is necessary for mounting a proinflammatory response. During the clinical course of sepsis, both suppression and activation of immune responses take place simultaneously. Leukocytes from septic patients present inhibition of cytokine production while other functions such as phagocytosis and production of reactive oxygen species (ROS) are preserved, similarly to the in vitro endotoxin tolerance model, where a first stimulation with lipopolysaccharide (LPS) affects the response to a second stimulus. Here, we sought to investigate how cellular metabolism is related to the modulation of immune responses in sepsis and endotoxin tolerance. Proteomic analysis in peripheral blood mononuclear cells (PBMCs) from septic patients obtained at intensive care unit admission showed an upregulation of proteins related to glycolysis, the pentose phosphate pathway (PPP), production of ROS and nitric oxide, and downregulation of proteins in the tricarboxylic acid cycle and oxidative phosphorylation compared to healthy volunteers. Using the endotoxin-tolerance model in PBMCs from healthy subjects, we observed increased lactate production in control cells upon LPS stimulation, while endotoxin-tolerant cells presented inhibited tumor necrosis factor-α and lactate production along with preserved phagocytic capacity. Inhibition of glycolysis and PPP led to impairment of phagocytosis and cytokine production both in control and in endotoxin-tolerant cells. These data indicate that glucose metabolism supports leukocyte functions even in a condition of endotoxin tolerance.


Asunto(s)
Endotoxinas , Sepsis , Humanos , Proteoma , Leucocitos Mononucleares , Lipopolisacáridos/farmacología , Proteómica , Especies Reactivas de Oxígeno , Leucocitos , Vía de Pentosa Fosfato , Lactatos , Glucosa , Citocinas
15.
Immun Inflamm Dis ; 10(12): e737, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36444621

RESUMEN

INTRODUCTION: It is important to control both inflammation and immunosuppression after severe insults, such as sepsis, trauma, and surgery. Endotoxin tolerance is one of the immunosuppressive conditions and it has been known that endotoxin tolerance relates to poorer clinical outcomes in patients with severe insults. This study investigated whether whey protein hydrolysate (WPH) mitigates inflammation and endotoxin tolerance in THP-1 human monocytic leukemia cells. METHODS: Endotoxin tolerance can be experimentally reproduced by two consecutive stimulations with lipopolysaccharide (LPS). THP-1 cells were incubated with LPS and WPH (first stimulation). After collecting the culture supernatant to evaluate the effect on inflammation, the cells were washed and restimulated by 100 ng/ml LPS (second stimulation). The culture supernatant was again collected to evaluate the effect on endotoxin tolerance. Concentrations of LPS and WPH in the first stimulation were adjusted to evaluate their dose dependency. Cytokine levels in the supernatant were determined by enzyme-linked immunosorbent assay. Statistical analysis was performed using the student's t-test or Dunnett's test. RESULTS: Five mg/ml WPH significantly decreased interleukin (IL)-6 (p = .006) and IL-10 (p < .001) levels after the first LPS stimulation (1000 ng/ml). WPH significantly increased tumor necrosis factor-alpha (p < .001) and IL-10 (p = .014) levels after the second LPS stimulation. The suppressive effect of WPH on inflammation and endotoxin tolerance was dependent on the concentrations of LPS and WPH. The effective dose of WPH for endotoxin tolerance was lower than its effective dose for inflammation. CONCLUSION: WPH mitigated both inflammation and endotoxin tolerance. Therefore, WPH might be a candidate for valuable food ingredients to control both inflammation and immunosuppression after severe insults.


Asunto(s)
Interleucina-10 , Leucemia , Humanos , Células THP-1 , Hidrolisados de Proteína , Lipopolisacáridos , Tolerancia a Endotoxinas , Suero Lácteo , Inflamación/tratamiento farmacológico , Interleucina-6
16.
Mol Immunol ; 152: 1-13, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36215827

RESUMEN

Transcriptome analysis was used to characterise the in vitro primary and secondary immune responses induced in horse peripheral blood mononuclear cells (PBMC) stimulated for 24 h with the individual recombinant proteins of a virulent AHSV serotype 4 (AHSV4) field isolate (rAHSV4 proteins) that were previously expressed in Escherichia coli (E. coli). The results showed that the E. coli contamination products greatly affected the innate and humoral immune response transcripts. Hence, the impact of E. coli contamination products present in the individual rAHSV4 proteins on the translational immune response was determined. The combined amplification effects of synergistic pattern recognition receptors (PRRs), TNF-α and IL-1ß signalling induced potent pro-inflammatory responses that were too overwhelming for the anti-inflammatory cytokines and regulators to control. In addition to inducing robust B cell and antibody-mediated responses, lipopolysaccharide (LPS) activation of the innate-like B cells and subsequent polyreactive (natural) antibody responses could potentially contribute to endotoxin tolerance.


Asunto(s)
Virus de la Enfermedad Equina Africana , Enfermedad Equina Africana , Infecciones por Escherichia coli , Animales , Caballos , Escherichia coli , Leucocitos Mononucleares , Serogrupo , Inmunidad Humoral , Proteínas Recombinantes
17.
J Clin Transl Hepatol ; 10(5): 879-890, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36304491

RESUMEN

Background and Aims: Acute liver failure (ALF) is a potentially fatal clinical syndrome with no effective treatment. This study aimed to explore the role of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway in modulating the phenotype and immune function of endotoxin-tolerant dendritic cells (ETDCs). In addition, we explored the use of EDTCs in an experimental model of ALF and investigated the associated mechanisms. Methods: In the in vitro experiment, ETDCs were transfected with adenovirus to induce SOCS1+/+ETDCs and SOCS1-/-ETDCs. Thereafter, costimulatory molecules and mixed lymphocyte reaction were assessed. Experimental mice were randomly divided into normal control, ALF, ALF+mock-ETDCs, ALF+SOCS1+/+ETDCs, ALF+AG490, and ALF+AG490+SOCS1+/+ETDCs groups. We examined the therapeutic effect of adoptive cellular immunotherapy by tail-vein injection of target ETDCs 12 h before ALF modeling. AG490, a JAK2/STAT3 inhibitor, was used in the in vivo experiment to further explore the protective mechanism of SOCS1+/+ETDCs. Results: Compared with control ETDCs, SOCS1+/+ETDCs had lower expression of costimulatory molecules, weaker allostimulatory ability, lower levels of IL-6 and TNF-α expression and higher IL-10 secretion. SOCS1-/-ETDCs showed the opposite results. In the in vivo experiments, the ALF+SOCS1+/+ETDCs and ALF+AG490+SOCS1+/+ETDCs groups showed less pathological damage and suppressed activation of JAK2/STAT3 pathway. The changes were more pronounced in the ALF+AG490+SOCS1+/+ETDCs group. Infusion of SOCS1+/+ETDCs had a protective effect against ALF possibly via inhibition of JAK2 and STAT3 phosphorylation. Conclusions: The SOCS1 gene had an important role in induction of endotoxin tolerance. SOCS1+/+ETDCs alleviated lipopolysaccharide/D-galactosamine-induced ALF by downregulating the JAK2/STAT3 signaling pathway.

18.
J Innate Immun ; : 1-14, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35940121

RESUMEN

Cytokine production by ex vivo (EV)-stimulated leukocytes is commonly used to gauge immune function and frequently proposed to guide immunomodulatory therapy. However, whether EV cytokine production capacity accurately reflects the in vivo (IV) immune status is largely unknown. We investigated relationships between EV monocyte cytokine responses and IV cytokine responses in a large cohort of healthy volunteers using a highly standardized IV model of short-lived LPS-induced systemic inflammation, which captures hallmarks of both hyperinflammation and immunological tolerance. Therefore, 110 healthy volunteers were intravenously challenged with 1 ng/kg LPS twice: on day 0 to determine the extent of the IV (hyper)inflammatory response and on day 7 to determine the degree of IV endotoxin tolerance. Baseline EV monocyte cytokine production capacity was assessed prior to LPS administration. Short-term and long-term EV tolerance was assessed in monocytes isolated 4 h and 7 days after LPS administration, respectively. No robust correlations were observed between baseline EV cytokine production capacity and IV cytokine responses following LPS administration. However, highly robust inverse correlations were observed between IV cytokine responses and EV cytokine responses of monocytes isolated 4 h after IV LPS administration. No correlations between IV and EV tolerance were found. In conclusion, attenuated EV cytokine production capacity reflects ongoing IV inflammation rather than immune suppression. Results of EV assays should be interpreted with caution at the risk of improper use of immuno-stimulatory drugs.

19.
Front Immunol ; 13: 938944, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016936

RESUMEN

Initial lipopolysaccharide (LPS) exposure leads to a hypo-responsive state by macrophages to a secondary stimulation of LPS, known as endotoxin tolerance. However, recent findings show that functions of endotoxin-tolerant macrophages are not completely suppressed, whereas they undergo a functional re-programming process with upregulation of a panel of molecules leading to enhanced protective functions including antimicrobial and tissue-remodeling activities. However, the underlying molecular mechanisms are still elusive. Erythropoietin (EPO), a glycoprotein regulated by hypoxia-inducible factor 1α (HIF-1α), exerts anti-inflammatory and tissue-protective activities. Nevertheless, the potential effects of EPO on functional re-programming of endotoxin-tolerant macrophages have not been investigated yet. Here, we found that initial LPS exposure led to upregulation of HIF-1α/EPO in macrophages and that EPO enhanced tolerance in tolerized macrophages and mice as demonstrated by suppressed proinflammatory genes such as Il1b, Il6, and Tnfa after secondary LPS stimulation. Moreover, we showed that EPO improved host protective genes in endotoxin-tolerant macrophages and mice, such as the anti-bacterial genes coding for cathelicidin-related antimicrobial peptide (Cnlp) and macrophage receptor with collagenous structure (Marco), and the tissue-repairing gene vascular endothelial growth factor C (Vegfc). Therefore, our findings indicate that EPO mediates the functional re-programming of endotoxin-tolerant macrophages. Mechanistically, we found that PI3K/AKT signaling contributed to EPO-mediated re-programming through upregulation of Irak3 and Wdr5 expression. Specifically, IL-1 receptor-associated kinase 3 (IRAK3) was responsible for inhibiting proinflammatory genes Il1b, Il6, and Tnfa in tolerized macrophages after LPS rechallenge, whereas WDR5 contributed to the upregulation of host beneficial genes including Cnlp, Marco, and Vegfc. In a septic model of mice, EPO pretreatment significantly promoted endotoxin-tolerant re-programming, alleviated lung injury, enhanced bacterial clearance, and decreased mortality in LPS-tolerized mice after secondary infection of Escherichia coli. Collectively, our results reveal a novel role for EPO in mediating functional re-programming of endotoxin-tolerant macrophages; thus, targeting EPO appears to be a new therapeutic option in sepsis and other inflammatory disorders.


Asunto(s)
Coinfección , Eritropoyetina , Animales , Endotoxinas , Eritropoyetina/genética , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Interleucina-1 , Interleucina-6/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Factor C de Crecimiento Endotelial Vascular
20.
Mol Immunol ; 147: 101-114, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35533409

RESUMEN

TRAF-associated NF-κB activator (TANK)-binding kinase 1 (TBK1), a nonclassical IκB kinase (IKK), and its effect on inflammation have not been entirely clarified. Here, we identified that TBK1 participates in the catabolism of glutamine by mediating the phosphorylation of receptor-interacting protein kinase 3 (RIPK3) and promoting macrophage endotoxin tolerance (ET). We found that the TBK1 protein directly interacts with the RIPK3 protein and mediates the phosphorylation of RIPK3 in macrophages. Activated RIPK3 can directly bind to glutamate dehydrogenase 1 (GLUD1), which is known to be a critical enzyme for catalyzing glutamine decomposition, to improve its catalytic activity and increase the production of α-ketoglutarate (α-KG) in macrophages. α-KG generated from glutaminolysis can promote M2 activation and restrict M1 polarization, which plays a crucial role in promoting lipopolysaccharide (LPS)-induced ET. As a result of TBK1 regulating the phosphorylation level of RIPK3, overexpressed TBK1 could enhance the tolerance of macrophages to endotoxin through glutaminolysis. Overall, these findings reveal a novel mechanism for the metabolic control of inflammation and for the induction of ET by modulating glutamine metabolism.


Asunto(s)
Glutamina , Proteínas Serina-Treonina Quinasas , Tolerancia a Endotoxinas , Glutamina/metabolismo , Humanos , Quinasa I-kappa B/metabolismo , Inflamación , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA