Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
J Environ Sci (China) ; 147: 665-676, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003081

RESUMEN

Microplastics (MPs) are of particular concern due to their ubiquitous occurrence and propensity to interact and concentrate various waterborne contaminants from aqueous surroundings. Studies on the interaction and joint toxicity of MPs on engineered nanoparticles (ENPs) are exhaustive, but limited research on the effect of MPs on the properties of ENPs in multi-solute systems. Here, the effect of MPs on adsorption ability of ENPs to antibiotics was investigated for the first time. The results demonstrated that MPs enhanced the adsorption affinity of ENPs to antibiotics and MPs before and after aging showed different effects on ENPs. Aged polyamide prevented aggregation of ZnONPs by introducing negative charges, whereas virgin polyamide affected ZnONPs with the help of electrostatic attraction. FT-IR and XPS analyses were used to probe the physicochemical interactions between ENPs and MPs. The results showed no chemical interaction and electrostatic interaction was the dominant force between them. Furthermore, the adsorption rate of antibiotics positively correlated with pH and humic acid but exhibited a negative correlation with ionic strength. Our study highlights that ENPs are highly capable of accumulating and transporting antibiotics in the presence of MPs, which could result in a widespread distribution of antibiotics and an expansion of their environmental risks and toxic effects on biota. It also improves our understanding of the mutual interaction of various co-existing contaminants in aqueous environments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Óxido de Zinc , Adsorción , Microplásticos/química , Contaminantes Químicos del Agua/química , Óxido de Zinc/química , Nanopartículas/química , Modelos Químicos , Antibacterianos/química , Sustancias Húmicas
2.
J Agric Food Chem ; 72(19): 11251-11258, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699857

RESUMEN

Engineered nanoparticles (ENPs) have been increasingly used in agricultural operations, leading to an urgent need for robust methods to analyze co-occurring ENPs in plant tissues. In response, this study advanced the simultaneous extraction of coexisting silver, cerium oxide, and copper oxide ENPs in lettuce shoots and roots using macerozyme R-10 and analyzed them by single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Additionally, the standard stock suspensions of the ENPs were stabilized with citrate, and the long-term stability (up to 5 months) was examined for the first time. The method performance results displayed satisfactory accuracies and precisions and achieved low particle concentration and particle size detection limits. Significantly, the oven drying process was proved not to impact the properties of the ENPs; therefore, oven-dried lettuce tissues were used in this study, which markedly expanded the applicability of this method. This robust methodology provides a timely approach to characterize and quantify multiple coexisting ENPs in plants.


Asunto(s)
Lactuca , Espectrometría de Masas , Nanopartículas del Metal , Raíces de Plantas , Nanopartículas del Metal/química , Lactuca/química , Espectrometría de Masas/métodos , Raíces de Plantas/química , Cobre/análisis , Brotes de la Planta/química , Plata/química , Cerio/química , Tamaño de la Partícula
3.
Sci Total Environ ; 918: 170673, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38316301

RESUMEN

The impact of particle size of engineered nanoparticles (ENPs) on plant response has marginally been investigated under the foliar application so far. Concerning the significance of particle diameter for their properties and interaction with plants, the effect of size should be considered in the analysis of the effect of micronutrient-based ENPs on plants. It is of particular importance for ENPs containing Cu due to plants needing a relatively low amount of this element, thus there is a risk of overdosing during application as a fertilizer or pesticide. Here, we examined the biochemical and transcriptional response of barley (Hordeum vulgare L.) to Cu nanoparticles (nano-Cu) with different diameters (25 nm, 50 nm, 70 nm), microparticles (micro-Cu), and chelated Cu (EDTA-Cu). The plants suffering from Cu deficiency were foliar sprayed with Cu compounds at 1000 mg/L during the tillering stage. 1- and 7-day plants were analyzed in terms of biomass, Cu content, the activity of enzymes involved with antioxidant response, the content of low molecular weight compounds, and the expression of genes regulated metal homeostasis, aquaporins, and defense. The results showed that the Cu leaf level was differentiated over time and after 7 days it was higher under exposure to the smallest nano-Cu than other particulate Cu. Regardless of the duration of exposure, the Cu content was highest in plants treated with Cu-EDTA. The cluster analysis of all markers revealed a clear distinct response to the smallest nano-Cu and other particulate and ionic treatments. The bigger nano-Cu, depending on the markers, caused the medium effects between the nano-Cu 25 nm and micro-Cu and Cu-EDTA. The found size thresholds at the nanoscale will be useful for the fabrication of safe-by-design agrochemicals to provide crop security and attenuate environmental impact.


Asunto(s)
Hordeum , Nanopartículas , Hordeum/genética , Cobre/toxicidad , Cobre/análisis , Ácido Edético , Minerales
4.
Part Fibre Toxicol ; 21(1): 7, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368385

RESUMEN

BACKGROUND: Airborne environmental and engineered nanoparticles (NPs) are inhaled and deposited in the respiratory system. The inhaled dose of such NPs and their deposition location in the lung determines their impact on health. When calculating NP deposition using particle inhalation models, a common approach is to use the bulk material density, ρb, rather than the effective density, ρeff. This neglects though the porous agglomerate structure of NPs and may result in a significant error of their lung-deposited dose and location. RESULTS: Here, the deposition of various environmental NPs (aircraft and diesel black carbon, wood smoke) and engineered NPs (silica, zirconia) in the respiratory system of humans and mice is calculated using the Multiple-Path Particle Dosimetry model accounting for their realistic structure and effective density. This is done by measuring the NP ρeff which was found to be up to one order of magnitude smaller than ρb. Accounting for the realistic ρeff of NPs reduces their deposited mass in the pulmonary region of the respiratory system up to a factor of two in both human and mouse models. Neglecting the ρeff of NPs does not alter significantly the distribution of the deposited mass fractions in the human or mouse respiratory tract that are obtained by normalizing the mass deposited at the head, tracheobronchial and pulmonary regions by the total deposited mass. Finally, the total deposited mass fraction derived this way is in excellent agreement with those measured in human studies for diesel black carbon. CONCLUSIONS: The doses of inhaled NPs are overestimated by inhalation particle deposition models when the ρb is used instead of the real-world effective density which can vary significantly due to the porous agglomerate structure of NPs. So the use of realistic ρeff, which can be measured as described here, is essential to determine the lung deposition and dosimetry of inhaled NPs and their impact on public health.


Asunto(s)
Exposición por Inhalación , Nanopartículas , Humanos , Ratones , Animales , Tamaño de la Partícula , Exposición por Inhalación/análisis , Pulmón , Hollín , Nanopartículas/química , Carbono
5.
Environ Sci Technol ; 58(6): 2598-2614, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38291652

RESUMEN

The widespread application of nanotechnology inevitably leads to an increased release of engineered nanoparticles (ENPs) into the environment. Due to their specific physicochemical properties, ENPs may interact with other contaminants and exert combined effects on the microbial community and metabolism of anaerobic digestion (AD), an important process for organic waste reduction, stabilization, and bioenergy recovery. However, the complicated interactions between ENPs and other contaminants as well as their combined effects on AD are often overlooked. This review therefore focuses on the co-occurrence of ENPs and cocontaminants in the AD process. The key interactions between ENPs and cocontaminants and their combined influences on AD are summarized from the available literature, including the critical mechanisms and influencing factors. Some sulfides, coagulants, and chelating agents have a dramatic "detoxification" effect on the inhibition effect of ENPs on AD. However, some antibiotics and surfactants increase the inhibition of ENPs on AD. The reasons for these differences may be related to the interactive effects between ENPs and cocontaminants, changes of key enzyme activities, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS) production, and microbial communities. New scientific opportunities for a better understanding of the coexistence in real world situations are converging on the scale of nanoparticles.


Asunto(s)
Nanopartículas , Anaerobiosis , Nanopartículas/química , Nanotecnología , Especies Reactivas de Oxígeno
6.
Sci Total Environ ; 915: 169638, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38181944

RESUMEN

This review discussed the research statuses, shortcomings, and outlooks for the fate of nanoplastics (NPs) and engineered nanoparticles (ENPs) in porous media and borrowable sections from ENPs for NPs. Firstly, the most important section was that we reviewed the research statuses on the fate of NPs in porous media and the main influencing factors, and explained the influencing mechanisms. Secondly, in order to give NPs a reference of research ideas and influence mechanisms, we also reviewed the research statuses on the fate of ENPs in porous media and the factors and mechanisms influencing the fate. The main mechanisms affecting the transport of ENPs were summarized (Retention or transport modes: advection, diffusion, dispersion, deposition, adsorption, blocking, ripening, and straining; Main forces and actions: Brownian motion, gravity, electrostatic forces, van der Waals forces, hydration, filtration, bridging; Affecting elements of the forces and actions: the ENP and media grain surface functional groups, size, shape, zeta potential, density, hydrophobicity, and roughness). Instead of using the findings of ENPs, thorough study on NPs was required because NPs and ENPs differed greatly. Based on the limited existing studies on the NP transport in porous media, we found that although the conclusions of ENPs could not be applied to NPs, most of the influencing mechanisms summarized from ENPs were applicable to NPs. Combining the research thoughts of ENPs, the research statuses of NPs, and some of our experiences and reflections, we reviewed the shortcomings of the current studies on the NP fate in porous media as well as the outlooks of future research. This review is very meaningful for clarifying the research statuses and influence mechanisms for the NP fate in porous media, as well as providing a great deal of inspiration for future research directions about the NP fate in porous media.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38063467

RESUMEN

Nanotechnology has attained significant attention from researchers in past decades due to its numerous advantages, such as biocompatibility, biodegradability, and improved stability over conventional drug delivery systems. The fabrication of engineered nanoparticles (ENPs), including carbon nanotubes (CNTs), fullerenes, metallic and metal oxide-based NPs, has been steadily increasing day due to their wide range of applications from household to industrial applications. Fabricated ENPs can release different materials into the environment during their fabrication process. The effect of such materials on the environment is the primary concern with due diligence on the safety and efficacy of prepared NPs. In addition, an understanding of chemistry, reactivity, fabrication process, and viable mechanism of NPs involved in the interaction with the environment is very important. To date, only a limited number of techniques are available to assess ENPs in the natural environment which makes it difficult to ascertain the impact of ENPs in natural settings. This review extensively examines the environmental effects of ENPs and briefly discusses useful tools for determining NP size, surface charge, surface area, and external appearance. In conclusion, the review highlights the potential risks associated with ENPs and suggests possible solutions.


Asunto(s)
Fulerenos , Nanopartículas , Nanotubos de Carbono , Ecosistema , Nanotecnología
8.
Sci Total Environ ; 914: 169590, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38154635

RESUMEN

With the rapid development and widespread application of engineered nanoparticles (ENPs), understanding the fundamental interactions between ENPs and biological systems is essential to assess and predict the fate of ENPs in vivo. When ENPs are exposed to complex physiological environments, biomolecules quickly and inevitably adsorb to ENPs to form a biomolecule corona, such as a protein corona (PC). The formed PC has a significant effect on the physicochemical properties of ENPs and gives them a brand new identity in the biological environment, which determines the subsequent ENP-cell/tissue/organ interactions. Controlling the formation of PCs is therefore of utmost importance to accurately predict and optimize the behavior of ENPs within living organisms, as well as ensure the safety of their applications. In this review, we provide an overview of the fundamental aspects of the PC, including the formation mechanism, composition, and frequently used characterization techniques. We comprehensively discuss the potential impact of the PC on ENP toxicity, including cytotoxicity, immune response, and so on. Additionally, we summarize recent advancements in manipulating PC formation on ENPs to achieve the desired biological outcomes. We further discuss the challenges and prospects, aiming to provide valuable insights for a better understanding and prediction of ENP behaviors in vivo, as well as the development of low-toxicity ENPs.


Asunto(s)
Nanopartículas , Corona de Proteínas , Nanopartículas/toxicidad , Nanopartículas/química
9.
Toxics ; 11(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38133395

RESUMEN

The widespread use of metal nanoparticles in different fields has raised many doubts regarding their possible toxicity to living organisms and the accumulation and discharge of metals in fish species. Among these nanoparticles, titanium dioxide (TiO2) and cerium oxide (CeO2) nanoparticles have mainly been employed in photocatalysis and water depuration. The aim of this research was to evaluate the potential toxic effects, after a co-exposure of TiO2-3%CeO2 nanoparticles, on zebrafish development, using an acute toxicity test. Increasing concentrations of TiO2-3%CeO2 nanoparticles were used (0.1-1-10-20 mg/L). The heartbeat rate was assessed using DanioscopeTM software (version 1.2) (Noldus, Leesburg, VA, USA), and the responses to two biomarkers of exposure (Heat shock proteins-70 and Metallothioneins) were evaluated through immunofluorescence. Our results showed that the co-exposure to TiO2-3%CeO2 nanoparticles did not affect the embryos' development compared to the control group; a significant difference (p < 0.05) at 48 hpf heartbeat for the 1, 10, and 20 mg/L groups was found compared to the unexposed group. A statistically significant response (p < 0.05) to Heat shock proteins-70 (Hsp70) was shown for the 0.1 and 1 mg/L groups, while no positivity was observed in all the exposed groups for Metallothioneins (MTs). These results suggest that TiO2-3%CeO2 nanocomposites do not induce developmental toxicity; instead, when considered separately, TiO2 and CeO2 NPs are harmful to zebrafish embryos, as previously shown.

10.
Environ Sci Technol ; 57(48): 19223-19235, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37933439

RESUMEN

Insights into how biological systems respond to high- and low-dose acute environmental stressors are a fundamental aspect of exposome research. However, studying the impact of low-level environmental exposure in conventional in vitro settings is challenging. This study employed a three-dimensional (3D) biomimetic microfluidic lung-on-chip (µLOC) platform and RNA-sequencing to examine the effects of two model anthropogenic engineered nanoparticles (NPs): zinc oxide nanoparticles (Nano-ZnO) and copier center nanoparticles (Nano-CCP). The airway epithelium exposed to these NPs exhibited dose-dependent increases in cytotoxicity and barrier dysregulation (dominance of the external exposome). Interestingly, even nontoxic and low-level exposure (10 µg/mL) of the epithelium compartment to Nano-ZnO triggered chemotaxis of lung fibroblasts toward the epithelium. An increase in α smooth muscle actin (α-SMA) expression and contractile activity was also observed in these cells, indicating a bystander-like adaptive response (dominance of internal exposome). Further bioinformatics and network analysis showed that a low-dose Nano-ZnO significantly induced a robust transcriptomic response and upregulated several hub genes associated with the development of lung fibrosis. We propose that Nano-ZnO, even at a no observable effect level (NOEL) dose according to conventional standards, can function as a potent nanostressor to disrupt airway epithelium homeostasis. This leads to a cascade of profibrotic events in a cross-tissue compartment fashion. Our findings offer new insights into the early acute events of respiratory harm associated with environmental NPs exposure, paving the way for better exposomic understanding of this emerging class of anthropogenic nanopollutants.


Asunto(s)
Exposoma , Nanopartículas , Óxido de Zinc , Biomimética , Microfluídica , Nanopartículas/toxicidad , Fibroblastos , Óxido de Zinc/toxicidad
11.
Aquat Toxicol ; 264: 106713, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37866164

RESUMEN

With the growing age of human civilization, industrialization has paced up equally which is followed by the innovation of newer concepts of science and technology. One such example is the invention of engineered nanoparticles and their flagrant use in widespread applications. While ENPs serve their intended purposes, they also disrupt the ecological balance by contaminating pristine aquatic ecosystems. This review encompasses a comprehensive discussion about the potent toxicity of ENPs on aquatic ecosystems, with a particular focus on their impact on aquatic higher plants. The discussion extends to elucidating the fate of ENPs upon release into aquatic environments, covering aspects ranging from morphological and physiological effects to molecular-level phytotoxicity. Furthermore, this level of toxicity has been correlated with the determination of competent plants for the phytoremediation process towards the mitigation of this ecological stress. However, this review further illustrates the path of future research which is yet to be explored. Determination of the genotoxicity level of aquatic higher plants could explain the entire process comprehensively. Moreover, to make it suitable to be used in natural ecosystems phytoremediation potential of co-existing plant species along with the presence of different ENPs need to be evaluated. This literature will undoubtedly offer readers a comprehensive understanding of the stress induced by the irresponsible release of engineered nanoparticles (ENP) into aquatic environments, along with insights into the resilience characteristics of these pristine ecosystems.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Humanos , Biodegradación Ambiental , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Plantas
12.
Curr Environ Health Rep ; 10(4): 410-416, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884803

RESUMEN

PURPOSE OF REVIEW: Control banding (CB) is a risk assessment strategy that has been applied globally to a variety of occupational hazards. This article describes how this method can be applied, recent developments in the CB literature, an example of how it is utilized for a large, diverse worksite, and where the future of CB is headed. RECENT FINDINGS: Over the past several years, the applications of CB have widened significantly and have accordingly helped bolster the public and occupational safety, health, and hygiene (OSHH) professionals' understanding of occupational exposure to various hazards. The fields of workplace chemicals, nanomaterials, and airborne pathogens (i.e., COVID-19), specifically have seen remarkable increases in the development of CB tools. Extensive CB tool validation efforts have also lent increasing credibility to this alternative approach. CB is a simplified strategy of assessing occupational exposures and providing commensurate controls and solutions to reduce workplace risks. CB can be used as a primary or tiered risk assessment and risk management approach which can be utilized by both OSHH professionals and nonexperts alike to identify solutions for reducing work-related exposures. The need for health and safety expertise will continue to grow as technological advancements, environmental changes, and economic forces increase workplace hazard complexity, and CB will continue to be a useful tool for those performing risk assessments.


Asunto(s)
Nanoestructuras , Exposición Profesional , Salud Laboral , Humanos , Medición de Riesgo/métodos , Exposición Profesional/efectos adversos , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Lugar de Trabajo
13.
Sci Total Environ ; 905: 167176, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730026

RESUMEN

Single particle-inductively coupled plasma-time of flight-mass spectrometers (SP-ICP-TOF-MS) generates large datasets of the multi-elemental composition of nanoparticles. However, extracting useful information from such datasets is challenging. Hierarchical clustering (HC) has been successfully applied to extract elemental fingerprints from multi-element nanoparticle data obtained by SP-ICP-TOF-MS. However, many other clustering approaches can be applied to analyze SP-ICP-TOF-MS data that have not yet been evaluated. This study fills this knowledge gap by comparing the performance of three clustering approaches: HC, spectral clustering, and t-distributed Stochastic Neighbor Embedding coupled with Density-Based Spatial Clustering of Applications with Noise (tSNE-DBSCAN) for analyzing SP-ICP-TOF-MS data. The performance of these clustering techniques was evaluated by comparing the size of the extracted clusters and the similarity of the elemental composition of nanoparticles within each cluster. Hierarchical clustering often failed to achieve an optimal clustering solution for SP-ICP-TOF-MS data because HC is sensitive to the presence of outliers. Spectral clustering and tSNE-DBSCAN extracted clusters that were not identified by HC. This is because spectral clustering, a method developed based on graph theory, reveals the global and local structure in the data. tSNE reduces and maps the data into a lower-dimensional space, enabling clustering algorithms such as DBSCAN to identify subclusters with subtle differences in their elemental composition. However, tSNE-DBSCAN can lead to unsatisfactory clustering solutions because tuning the perplexity hyperparameter of tSNE is a difficult and a time-consuming task, and the relative distance between datapoints is not maintained. Although the three clustering approaches successfully extract useful information from SP-ICP-TOF-MS data, spectral clustering outperforms HC and tSNE-DBSCAN by generating clusters of a large number of nanoparticles with similar elemental compositions.

14.
Mil Med Res ; 10(1): 36, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37587531

RESUMEN

Skin wounds are characterized by injury to the skin due to trauma, tearing, cuts, or contusions. As such injuries are common to all human groups, they may at times represent a serious socioeconomic burden. Currently, increasing numbers of studies have focused on the role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in skin wound repair. As a cell-free therapy, MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy. Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures, including the regeneration of vessels, nerves, and hair follicles. In addition, MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization, wound angiogenesis, cell proliferation, and cell migration, and by inhibiting excessive extracellular matrix production. Additionally, these structures can serve as a scaffold for components used in wound repair, and they can be developed into bioengineered EVs to support trauma repair. Through the formulation of standardized culture, isolation, purification, and drug delivery strategies, exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair. In conclusion, MSC-derived EVs-based therapies have important application prospects in wound repair. Here we provide a comprehensive overview of their current status, application potential, and associated drawbacks.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Traumatismos de los Tejidos Blandos , Humanos , Piel , Cicatrización de Heridas
16.
Chemosphere ; 340: 139836, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37595691

RESUMEN

Zero-valent copper engineered nanoparticles (Cu-ENPs) released through unintentional or intentional actions into the agricultural soils can alter the availability of inorganic phosphorus (IP) to plants. In this study, we used adsorption-desorption experiments to evaluate the effect of particle size of 1% Cu-ENPs (25 nm and 40-60 nm) on IP availability in Santa Barbara (SB) volcanic ash soil. X-Ray Diffraction results showed that Cu-ENPs were formed by a mixture of Cu metallic and Cu oxides (Cu2O or/and CuO) species, while specific surface area values showed that Cu-ENPs/25 nm could form larger aggregate particles compared to Cu-ENPs/40-60 nm. The kinetic IP adsorption of SB soil without and with 1% Cu-ENPs (25 nm and 40-60 nm) followed the mechanism described by the pseudo-second-order (k2 = 0.45-1.13 x 10-3 kg mmol-1 min-1; r2 ≥ 0.999, and RSS ≤ 0.091) and Elovich (α = 14621.10-3136.20 mmol kg-1 min-1; r2 ≥ 0.984, and RSS ≤ 69) models. Thus, the rate-limiting step for IP adsorption in the studied systems was chemisorption on a heterogeneous surface. Adsorption equilibrium isotherms without Cu-ENPs were fitted well to the Freundlich model, while with 1% Cu-ENPs (25 nm and 40-60 nm), isotherms were described best by the Freundlich and/or Langmuir model. The IP relative adsorption capacity (KF) was higher with 1% Cu-ENPs/40-60 nm (KF = 110.41) than for 1% Cu-ENPs/25 nm (KF = 74.40) and for SB soil (KF = 48.17). This study showed that plausible IP retention mechanisms in the presence of 1% Cu-ENPs in SB soil were: i) ligand exchange, ii) electrostatic attraction, and iii) co-precipitate formation. The desorption study demonstrated that 1% Cu-ENPs/40-60 nm increased the affinity of IP in SB soil with a greater effect than 1% Cu-ENPs/25 nm. Thus, both the studied size ranges of Cu-ENPs could favor an accumulation of IP in volcanic ash soils.


Asunto(s)
Lepidópteros , Suelo , Animales , Tamaño de la Partícula , Cobre , Adsorción , Erupciones Volcánicas , Fósforo
17.
J Environ Manage ; 345: 118786, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591104

RESUMEN

Engineered titanium dioxide nanoparticles (nano-TiO2) in consumer products such as sunscreens widely used by swimmers in aquatic settings have raised concerns about their potential adverse impact on ecosystems and human health due to their small size and unique physicochemical properties. Therefore, this research paper aims to investigate the fate and behaviour of nano-TiO2 from sunscreens in swimming pools using System Dynamics Modelling. The study developed a dynamic simulation model that considers various factors, including weather conditions, sunscreen and pool usage behaviour, filtration efficacy, pool maintenance, water chemistry, pool chemicals, and TiO2 concentration levels, which can affect exposure levels for different scenarios. The study considered non-linear interdependent relationships, feedback structures, and temporal changes and dealt with parameter uncertainties through Monte Carlo analyses. The results reveal that the regular use of sunscreen leads to nano-TiO2 concentrations ranging from 0.001 to 0.05 mg/L within a year, reflecting seasonal and pool usage variations. The study also found that changes in the weight percentage of TiO2 in the sunscreen formulation and the filtration duration per day are the most sensitive factors affecting TiO2 concentrations. Scenario analyses exploring different nano-TiO2 removal strategies suggested that one daily turnover is necessary for sufficient removal. Regular manual pool maintenance and monthly use of a pool clarifier are recommended for enhanced and accelerated removal without substantial additional costs. The study is novel in its integrated approach, combining empirical work with dynamic simulations, resulting in a novel approach to model the environmental fate and behaviour of nano-TiO2. The study makes important methodological contributions to the field and has initiated an interdisciplinary collaboration to create more accurate models. This study is of great significance as it presents a pioneering analysis of the impact of sunscreen properties, user behaviour, and environmental stressors on the fate and behaviour of nano-TiO2 in swimming pools.


Asunto(s)
Nanopartículas , Piscinas , Humanos , Protectores Solares/química , Ecosistema , Titanio
18.
NanoImpact ; 31: 100472, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37453617

RESUMEN

For safe and effective nutrient management, the cutting-edge approaches to plant fertilization are continuously developed. The aim of the study was to analyze the transcriptional response of barley suffering from Cu deficiency to foliar application of nanoparticulate Cu (nano-Cu) and its ionic form (CuSO4) at 100 and 1000 mg L-1 for the examination of their supplementing effect. The initial interactions of Cu-compounds with barley leaves were analyzed with spectroscopic (ICP-OES) and microscopic (SEM-EDS) methods. To determine Cu cellular status, the impact of Cu-compounds on the expression of genes involved in regulating Cu homeostasis (PAA1, PAA2, RAN1, COPT5), aquaporins (NIP2.1, PIP1.1, TIP1.1, TIP1.2) and antioxidant defense response (SOD CuZn, SOD Fe, SOD Mn, CAT) after 1 and 7 days of exposure was analyzed. Although Cu accumulation in plant leaves was detected overtime, the Cu content in leaves exposed to nano-Cu for 7 days was 44.5% lower than in CuSO4 at 100 mg L-1. However, nano-Cu aggregates remaining on the leaf surface indicated a potential difference between measured Cu content and the real Cu pool present in the plant. Our study revealed significant changes in the pattern of gene expression overtime depending on Cu-compound type and dose. Despite the initial puzzling patterns of gene expression, after 7 days all Cu transporters showed significant down-regulation under Cu-compounds exposure to prevent Cu excess in plant cells. Conversely, aquaporin gene expression was induced after 7 days, especially by nano-Cu and CuSO4 at 100 mg L-1 due to the stimulatory effect of low Cu doses. Our study revealed that the gradual release of Cu ions from nano-Cu at a lower rate provided a milder molecular response than CuSO4. It might indicate that nano-Cu maintained better metal balance in plants than the conventional compounds, thus may be considered as a long-term supplier of Cu.


Asunto(s)
Hordeum , Hordeum/genética , Antioxidantes/metabolismo , Homeostasis , Superóxido Dismutasa/genética
19.
Polymers (Basel) ; 15(14)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37514377

RESUMEN

This review focuses on the opportunities provided by sol-gel chemistry for the production of silica/epoxy nanocomposites, with significant representative examples of the "extra situ" approach and an updated description of the "in situ" strategy. The "extra situ" strategy enables the creation of nanocomposites containing highly engineered nanoparticles. The "in situ" approach is a very promising synthesis route that allows us to produce, in a much easier and eco-friendly manner, properly flame-retarded silica/epoxy nanocomposites endowed with very interesting properties. The review highlights the recently proposed mechanism of nanoparticles formation, which is expected to help to design the synthesis strategies of nanocomposites, changing their composition (both for the nanoparticle and matrix nature) and with in situ-generated nanoparticles possibly more complex than the ones obtained, until today, through this route.

20.
Int J Nanomedicine ; 18: 3489-3508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404851

RESUMEN

Asthma is a chronic respiratory disease that is highly sensitive to environmental pollutants, including engineered nanoparticles (NPs). Exposure to NPs has become a growing concern for human health, especially for susceptible populations. Toxicological studies have demonstrated strong associations between ubiquitous NPs and allergic asthma. In this review, we analyze articles that focus on adverse health effects induced by NPs in animal models of allergic asthma to highlight their critical role in asthma. We also integrate potential mechanisms that could stimulate and aggravate asthma by NPs. The toxic effects of NPs are influenced by their physicochemical properties, exposure dose, duration, route, as well as the exposure order between NPs and allergens. The toxic mechanisms involve oxidative stress, various inflammasomes, antigen presenting cells, immune cells, and signaling pathways. We suggest that future research should concentrate on establishing standardized models, exploring mechanistic insights at the molecular level, assessing the combined effects of binary exposures, and determining safe exposure levels of NPs. This work provides concrete evidence of the hazards posed by NPs in animals with compromised respiratory health and supports the modifying role of NPs exposure in allergic asthma.


Asunto(s)
Asma , Nanopartículas , Animales , Humanos , Asma/inducido químicamente , Modelos Animales , Estrés Oxidativo , Nanopartículas/toxicidad , Alérgenos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA