Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Animal Model Exp Med ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828754

RESUMEN

BACKGROUND: The forest musk deer, a rare fauna species found in China, is famous for its musk secretion which is used in selected Traditional Chinese medicines. However, over-hunting has led to musk deer becoming an endangered species, and their survival is also greatly challenged by various high incidence and high mortality respiratory and intestinal diseases such as septic pneumonia and enteritis. Accumulating evidence has demonstrated that Akkermannia muciniphila (AKK) is a promising probiotic, and we wondered whether AKK could be used as a food additive in animal breeding programmes to help prevent intestinal diseases. METHODS: We isolated one AKK strain from musk deer feces (AKK-D) using an improved enrichment medium combined with real-time PCR. After confirmation by 16S rRNA gene sequencing, a series of in vitro tests was conducted to evaluate the probiotic effects of AKK-D by assessing its reproductive capability, simulated gastrointestinal fluid tolerance, acid and bile salt resistance, self-aggregation ability, hydrophobicity, antibiotic sensitivity, hemolysis, harmful metabolite production, biofilm formation ability, and bacterial adhesion to gastrointestinal mucosa. RESULTS: The AKK-D strain has a probiotic function similar to that of the standard strain in humans (AKK-H). An in vivo study found that AKK-D significantly ameliorated symptoms in the enterotoxigenic Escherichia coli (ETEC)-induced murine diarrhea model. AKK-D improved organ damage, inhibited inflammatory responses, and improved intestinal barrier permeability. Additionally, AKK-D promoted the reconstitution and maintenance of the homeostasis of gut microflora, as indicated by the fact that AKK-D-treated mice showed a decrease in Bacteroidetes and an increase in the proportion of other beneficial bacteria like Muribaculaceae, Muribaculum, and unclassified f_Lachnospiaceae compared with the diarrhea model mice. CONCLUSION: Taken together, our data show that this novel AKK-D strain might be a potential probiotic for use in musk deer breeding, although further extensive systematic research is still needed.

2.
J Anim Sci Biotechnol ; 15(1): 79, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760843

RESUMEN

BACKGROUND: Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases. Oleanolic acid (OA) is a pentacyclic triterpene that is ubiquitous in plants. Our previous work demonstrated the protective effect of OA on intestinal health, but the underlying molecular mechanisms remain unclear. This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli (ETEC) in piglets. The key molecular role of bile acid receptor signaling in this process has also been explored. RESULTS: Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets (P < 0.05). OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum (P < 0.05). This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets. In addition, as a natural ligand of bile acid receptors, OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR (P < 0.05). Specifically, OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream cAMP-PKA-CREB signaling pathway (P < 0.05). Furthermore, OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR (P < 0.05), thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells. CONCLUSIONS: In conclusion, our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response, which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.

3.
Anim Nutr ; 17: 110-122, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38766519

RESUMEN

The use of next-generation probiotics (NGP) in pigs for combating diseases has been subject to limited research. Here we explored the potential of a well-known NGP candidate Akkermansia muciniphila targeting pig gut health. In the first screening experiment, we found that the abundance of A. muciniphila peaked at 14 d old but decreased at weaning (21 d old; P < 0.05), suggesting the weaning period may be an effective window for A. muciniphila intervention. Following that, 48 crossbred weaned pigs at 28 d old were randomly assigned to five groups: control (CON), high/low live A. muciniphila (HA/LA), and high/low heat-killed A. muciniphila (HIA/LIA). From 1 to 28 d old, the CON group received gastric infusion of anaerobic sterile saline every other day; the HA and LA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL live A. muciniphila, respectively; and the HIA and LIA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL heat-killed A. muciniphila, respectively. At d 29, pigs in the CON group were randomly and equally divided into two groups, one of which was named the enterotoxigenic Escherichia coli (ETEC) group, and all groups except CON received a 5-d ETEC challenge. The supplementation of A. muciniphila numerically reduced the diarrhea rate of weaned pigs compared to the pigs that only received the ETEC challenge (P = 0.57), but the LIA group had a higher diarrhea rate than the CON group (P < 0.05). Consistent with this, the supplementation of A. muciniphila improved the small intestinal morphology and structure, proportion of CD4+ T lymphocytes in the blood, as well as the expression of genes related to intestinal barrier and antioxidant indices of pigs with ETEC challenge, especially for the LA group (P < 0.05). Meanwhile, A. muciniphila supplementation reduced the expression of ETEC virulence factor genes in the ileum and colon of pigs challenged by ETEC (P < 0.05). Therefore, A. muciniphila may protect the intestinal health of weaned piglets from damage caused by ETEC infection, but the effect may vary depending on the concentration and activity of A. muciniphila.

4.
Trop Anim Health Prod ; 56(5): 179, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809309

RESUMEN

We evaluated the effects of supplementing yeast mannan-reach-fraction on growth performance, jejunal morphology and lymphoid tissue characteristics in weaned piglets challenged with E. Coli F4. A total of 20 crossbred piglets were used. At weaning, piglets were assigned at random to one of four groups: piglets challenged and fed the basal diet supplemented with yeast mannan-rich fraction (C-MRF, n = 5); piglets challenged and fed the basal diet (C-BD, n = 5); piglets not challenged and fed the basal diet supplemented with yeast mannan-rich fraction (NC-MRF, n = 5), and piglets not challenged and fed the basal diet (NC-BD). Each dietary treatment had five replicates. On days 4, 5 and 10, piglets were orally challenged with 108 CFU/mL of E. Coli F4. C-MRF piglets had higher BW (p = 0.002; interactive effect) than C-BD piglets. C-MRF piglets had higher (p = 0.02; interactive effect) ADG in comparison with C-BD piglets. C-MRF piglets had higher (p = 0.04; interactive effect) ADFI than C-BD piglets. The diameter of lymphoid follicles was larger (p = 0.010; interactive effect) in the tonsils of C-MRF piglets than C-BD piglets. Lymphoid cells proliferation was greater in the mesenteric lymphnodes and ileum (p = 0.04 and p = 0.03, respectively) of C-MRF piglets. A reduction (p > 0.05) in E. Coli adherence in the ileum of piglets fed MRF was observed. In conclusion, the results of the present study demonstrate that dietary yeast mannan-rich fraction supplementation was effective in protecting weaned piglets against E. Coli F4 challenge.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Infecciones por Escherichia coli , Escherichia coli , Tejido Linfoide , Mananos , Enfermedades de los Porcinos , Animales , Suplementos Dietéticos/análisis , Alimentación Animal/análisis , Mananos/administración & dosificación , Mananos/farmacología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/prevención & control , Porcinos/crecimiento & desarrollo , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/microbiología , Dieta/veterinaria , Destete , Intestinos , Distribución Aleatoria , Yeyuno , Masculino
5.
Microorganisms ; 12(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38792795

RESUMEN

Conjugation of carbohydrates to nanomaterials has been extensively studied and recognized as an alternative in the biomedical field. Dendrimers synthesized with mannose at the end group and with entrapped zero-valent copper/silver could be a potential candidate against bacterial proliferation. This study is aimed at investigating the bactericidal activity of metal-glycodendrimers. The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction was used to synthesize a new mannosylated dendrimer containing 12 mannopyranoside residues in the periphery. The enterotoxigenic Escherichia coli fimbriae 4 (ETEC:F4) viability, measured at 600 nm, showed the half-inhibitory concentration (IC50) of metal-free glycodendrimers (D), copper-loaded glycodendrimers (D:Cu) and silver-loaded glycodendrimers (D:Ag) closed to 4.5 × 101, 3.5 × 101 and to 1.0 × 10-2 µg/mL, respectively, and minimum inhibitory concentration (MIC) of D, D:Cu and D:Ag of 2.0, 1.5 and 1.0 × 10-4 µg/mL, respectively. The release of bacteria contents onto broth and the inhibition of ETEC:F4 biofilm formation increased with the number of metallo-glycodendrimer materials, with a special interest in silver-containing nanomaterial, which had the highest activity, suggesting that glycodendrimer-based materials interfered with bacteria-bacteria or bacteria-polystyrene interactions, with bacteria metabolism and can disrupt bacteria cell walls. Our findings identify metal-mannose-dendrimers as potent bactericidal agents and emphasize the effect of entrapped zero-valent metal against ETEC:F4.

6.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119711, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574824

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is recognized globally as a major gastrointestinal pathogen that impairs intestinal function. ETEC infection can lead to oxidative stress and disruption of intestinal integrity. The present study investigated the mechanism of increased oxidative stress and whether restoration of antioxidant defense could improve intestinal integrity in a piglet model with ETEC infection. Weaned piglets were divided into three groups: control, ETEC-infection and ETEC-infection with antibiotic supplementation. The infection caused a significant elevation of serum diamine oxidase activity and D-lactate levels coupled with a reduced intestinal (mid-jejunum) tight-junction protein expression, suggesting increased intestinal permeability and impaired gut function. The infection also inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) activation, decreased the expression of glutathione synthesizing enzymes, superoxide dismutase-1 (SOD1), and heme oxygenase-1 (HO-1) in the intestine. This led to a decreased antioxidant glutathione level and an increased lipid peroxidation in the intestine and serum, indicating oxidative stress. The infection stimulated the expression of pro-inflammatory cytokines (IL-6, TNF-α). Antibiotic supplementation attenuated oxidative stress, in part, through restoration of glutathione levels and antioxidant enzyme expression in the intestine. Such a treatment enhanced tight-junction protein expression and improved intestinal function. Furthermore, induction of oxidative stress in Caco2 cells by hydrogen peroxide inhibited tight-junction protein expression and stimulated inflammatory cytokine expression. Glutathione supplementation effectively attenuated oxidative stress and restored tight-junction protein expression. These results suggest that downregulation of Nrf2 activation may weaken antioxidant defense and increase oxidative stress in the intestine. Mitigation of oxidative stress can improve intestinal function after infection.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Mucosa Intestinal , Estrés Oxidativo , Animales , Porcinos , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Glutatión/metabolismo , Células CACO-2 , Intestinos/microbiología , Antioxidantes/metabolismo
7.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612450

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) strains are significant contributors to postweaning diarrhea in piglets. Of the ETEC causing diarrhea, K88 and F18 accounted for 92.7%. Despite the prevalence of ETEC K88 and F18, there is currently no effective vaccine available due to the diversity of these strains. This study presents an innovative approach by isolating chicken-derived single-chain variable fragment antibodies (scFvs) specific to K88 and F18 fimbrial antigens from chickens immunized against these ETEC virulence factors. These scFvs effectively inhibited adhesion of K88 and F18 to porcine intestinal epithelial cells (IPEC-J2), with the inhibitory effect demonstrating a dose-dependent increase. Furthermore, a bispecific scFv was designed and expressed in Pichia pastoris. This engineered construct displayed remarkable potency; at a concentration of 25.08 µg, it significantly reduced the adhesion rate of ETEC strains to IPEC-J2 cells by 72.10% and 69.11% when challenged with either K88 or F18 alone. Even in the presence of both antigens, the adhesion rate was notably decreased by 57.92%. By targeting and impeding the initial adhesion step of ETEC pathogenesis, this antibody-based intervention holds promise as a potential alternative to antibiotics, thereby mitigating the risks associated with antibiotic resistance and residual drug contamination in livestock production. Overall, this study lays the groundwork for the development of innovative treatments against ETEC infections in piglets.


Asunto(s)
Anticuerpos Biespecíficos , Escherichia coli Enterotoxigénica , Inmunoglobulinas , Anticuerpos de Cadena Única , Animales , Porcinos , Anticuerpos de Cadena Única/farmacología , Pollos , Diarrea/veterinaria
8.
J Agric Food Chem ; 72(13): 7219-7229, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38507577

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Humanos , Animales , Porcinos , Ovomucina , Adhesión Bacteriana , Células CACO-2 , FN-kappa B/genética , FN-kappa B/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Diarrea/microbiología , Células Epiteliales/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mucosa Intestinal/metabolismo
9.
Microb Pathog ; 190: 106636, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556103

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in children and travelers in low-income regions. The virulence of ETEC is attributed to its heat-labile and heat-stable enterotoxins, as well as its colonization factors (CFs). CFs are essential for ETEC adherence to the intestinal epithelium. However, its invasive capability remains unelucidated. In this study, we demonstrated that the CS6-positive ETEC strain 4266 can invade mammalian epithelial cells. The invasive capability was reduced in the 4266 ΔCS6 mutant but reintroduction of CS6 into this mutant restored the invasiveness. Additionally, the laboratory E. coli strain Top 10, which lacks the invasive capability, was able to invade Caco-2 cells after gaining the CS6-expressing plasmid pCS6. Cytochalasin D inhibited cell invasion in both 4266 and Top10 pCS6 cells, and F-actin accumulation was observed near the bacteria on the cell membrane, indicating that CS6-positive bacteria were internalized via actin polymerization. Other cell signal transduction inhibitors, such as genistein, wortmannin, LY294002, PP1, and Ro 32-0432, inhibited the CS6-mediated invasion of Caco-2 cells. The internalized bacteria of both 4266 and Top10 pCS6 strains were able to survive for up to 48 h, and 4266 cells were able to replicate within Caco-2 cells. Immunofluorescence microscopy revealed that the internalized 4266 cells were present in bacteria-containing vacuoles, which underwent a maturation process indicated by the recruitment of the early endosomal marker EEA-1 and late endosomal marker LAMP-1 throughout the infection process. The autophagy marker LC3 was also observed near these vacuoles, indicating the initiation of LC-3-associated phagocytosis (LAP). However, intracellular bacteria continued to replicate, even after the initiation of LAP. Moreover, intracellular filamentation was observed in 4266 cells at 24 h after infection. Overall, this study shows that CS6, in addition to being a major CF, mediates cell invasion. This demonstrates that once internalized, CS6-positive ETEC is capable of surviving and replicating within host cells. This capability may be a key factor in the extended and recurrent nature of ETEC infections in humans, thus highlighting the critical role of CS6.


Asunto(s)
Citocalasina D , Escherichia coli Enterotoxigénica , Proteínas de Escherichia coli , Humanos , Células CACO-2 , Escherichia coli Enterotoxigénica/patogenicidad , Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Citocalasina D/farmacología , Actinas/metabolismo , Células Epiteliales/microbiología , Adhesión Bacteriana , Infecciones por Escherichia coli/microbiología , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/genética , Morfolinas/farmacología , Transducción de Señal , Androstadienos/farmacología , Wortmanina/farmacología , Endocitosis , Cromonas/farmacología , Plásmidos/genética
10.
Microbiol Spectr ; 12(4): e0398823, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38451226

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is one of the major pathogens contributing to piglet diarrhea, with significant implications for both piglet health and the economic aspects of the livestock industry. SW207 is an isolate of Bacillus halotolerans isolated from the cold- and disease-resistant Leixiang pigs in Northeastern China. We have discovered that SW207 can survive in the pig's gastrointestinal fluid and under conditions of high bile salt concentration, displaying potent antagonistic activity against ETEC. In this study, we established a weaned piglet diarrhea model infected with ETEC to investigate the role of SW207 in preventing diarrhea and improving intestinal health. Results indicate that SW207 upregulates the expression of tight junction proteins, including claudin-1, occludin, and zonula occludens-1, at both the transcriptional and translational levels. Furthermore, SW207 reduces serum endotoxin, D-lactic acid, and various oxidative stress markers while enhancing piglet mechanical barrier function. In terms of immune barrier, SW207 suppressed the activation of the TLR4/MyD88/NF-κB pathway, reducing the expression of various inflammatory factors and upregulating the expression of small intestine mucosal sIgA. Concerning the biological barrier, SW207 significantly reduces the content of E. coli in the intestines and promotes the abundance of beneficial bacteria, thereby mitigating the microbiota imbalance caused by ETEC. In summary, SW207 has the potential to prevent weaned piglet diarrhea caused by ETEC, alleviate intestinal inflammation and epithelial damage, and facilitate potential beneficial changes in the intestinal microbiota. This contributes to elucidating the potential mechanisms of host-microbe interactions in preventing pathogen infections.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC) has consistently been one of the significant pathogens causing mortality in weaned piglets in pig farming. The industry has traditionally relied on antibiotic administration to control ETEC-induced diarrhea. However, the overuse of antibiotics has led to the emergence of drug-resistant zoonotic bacterial pathogens, posing a threat to public health. Therefore, there is an urgent need to identify alternatives to control pathogens and reduce antibiotic usage. In this study, we assessed the protective effect of a novel probiotic in a weaned piglet model infected with ETEC and analyzed its mechanisms both in vivo and in vitro. The study results provide theoretical support and reference for implementing interventions in the gut microbiota to alleviate early weaned piglet diarrhea and improve intestinal health.


Asunto(s)
Bacillus , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Microbioma Gastrointestinal , Enfermedades de los Porcinos , Animales , Porcinos , Escherichia coli Enterotoxigénica/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Intestinos/microbiología , Mucosa Intestinal/microbiología , Diarrea/prevención & control , Diarrea/veterinaria , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Antibacterianos/farmacología , Bacterias/metabolismo , Enfermedades de los Porcinos/microbiología
11.
Vaccines (Basel) ; 12(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543938

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) causes severe diarrhea in piglets. The current primary approach for ETEC prevention and control relies on antibiotics, as few effective vaccines are available. Consequently, an urgent clinical demand exists for developing an effective vaccine to combat this disease. Here, we utilized food-grade Lactococcus lactis NZ3900 and expression plasmid pNZ8149 as live vectors, together with the secreted expression peptide Usp45 and the cell wall non-covalent linking motif LysM, to effectively present the mutant LTA subunit, the LTB subunit of heat-labile enterotoxin, and the FaeG of F4 pilus on the surface of recombinant lactic acid bacteria (LAB). Combining three recombinant LAB as a live vector oral vaccine, we assessed its efficacy in preventing F4+ ETEC infection. The results demonstrate that oral immunization conferred effective protection against F4+ ETEC infection in mice and piglets lacking maternal antibodies during weaning. Sow immunization during late pregnancy generated significantly elevated antibodies in colostrum, which protected piglets against F4+ ETEC infection during lactation. Moreover, booster immunization on piglets during lactation significantly enhanced their resistance to F4+ ETEC infection during the weaning stage. This study highlights the efficacy of an oral LAB vaccine in preventing F4+ ETEC infection in piglets by combining the sow immunization and booster immunization of piglets, providing a promising vaccination strategy for future prevention and control of ETEC-induced diarrhea in piglets.

12.
Vaccine ; 42(7): 1445-1453, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38036392

RESUMEN

The global public health nonprofit organization PATH hosted the third Vaccines Against Shigella and Enterotoxigenic Escherichia coli (VASE) Conference in Washington, DC, from November 29 to December 1, 2022. This international gathering focused on cutting-edge research related to the development of vaccines against neglected diarrheal pathogens including Shigella, enterotoxigenic Escherichia coli (ETEC), Campylobacter, and non-typhoidal Salmonella. In addition to the conference's plenary content, the agenda featured ten breakout workshops on topics of importance to the enteric vaccine field. This unique aspect of VASE Conferences allows focused groups of attendees to engage in in-depth discussions on subjects of interest to the enteric vaccine development community. In 2022, the workshops covered a range of topics. Two focused on the public health value of enteric vaccines, with one examining how to translate evidence into policy and the other on the value proposition of potential combination vaccines against bacterial enteric pathogens. Two more workshops explored new tools for the development and evaluation of vaccines, with the first on integrating antigen/antibody technologies for mucosal vaccine and immunoprophylactic development, and the second on adjuvants specifically for Shigella vaccines for children in low- and middle-income countries. Another pair of workshops covered the status of vaccines against two emerging enteric pathogens, Campylobacter and invasive non-typhoidal Salmonella. The remaining four workshops examined the assessment of vaccine impact on acute and long-term morbidity. These included discussions on the nature and severity of intestinal inflammation; cellular immunity and immunological memory in ETEC and Shigella infections; clinical and microbiologic endpoints for Shigella vaccine efficacy studies in children; and intricacies of protective immunity to enteric pathogens. This article provides a brief summary of the presentations and discussions at each workshop in order to share these sessions with the broader enteric vaccine field.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Vacunas contra Escherichia coli , Oligopéptidos , Vacunas contra la Shigella , Shigella , Niño , Humanos , Diarrea/prevención & control , Salmonella
13.
Vaccine ; 42(7): 1454-1460, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38030421

RESUMEN

The global nonprofit organization PATH hosted the third Vaccines Against Shigella and Enterotoxigenic Escherichia coli (VASE) Conference in Washington, DC, on November 29 to December 1, 2022. With a combination of plenary sessions and posters, keynote presentations, and breakout workshops, the 2022 VASE Conference featured key updates on research related to the development of vaccines against neglected diarrheal pathogens including Shigella, enterotoxigenic Escherichia coli (ETEC), Campylobacter, and Salmonella. The presentations and discussions highlighted the significant impact of these diarrheal pathogens, particularly on the health of infants and young children in low- and middle-income countries, reflecting the urgent need for the development and licensure of new enteric vaccines. Oral and poster presentations at the VASE Conference explored a range of topics, including: the global burden and clinical presentation of disease, epidemiology, and the impact of interventions; the assessment of the value of vaccines against enteric pathogens; preclinical evaluations of vaccine candidates and models of enteric diseases; vaccine candidates in clinical trials and human challenge models; host parameters and genomics that predict responses to infection and disease; the application of new omics technologies for characterization of emerging pathogens and host responses; novel adjuvants, vaccine delivery platforms, and immunization strategies; and strategies for combination/co-administered vaccines. The conference agenda also featured ten breakout workshop sessions on topics of importance to the enteric vaccine field, which are summarized separately. This article reviews key points and highlighted research presented in each of the plenary conference sessions and poster presentations at the 2022 VASE Conference.


Asunto(s)
Disentería Bacilar , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Vacunas contra Escherichia coli , Oligopéptidos , Vacunas contra la Shigella , Shigella , Humanos , Diarrea/epidemiología
14.
Biosci Biotechnol Biochem ; 88(4): 453-459, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38159930

RESUMEN

Enterotoxigenic Escherichia coli (ETEC), one of the diarrheagenic E. coli, is the most common cause of diarrhea in developing country and in travelers to those areas. In this study, Caenorhabditis elegans was used as an alternative model host to evaluate ETEC infections. The ETEC strain ETEC1, which was isolated from a patient with diarrhea, possessed enterotoxins STh, LT1, and EAST1 and colonization factors CS2 and CS3. Live ETEC1 shortened the life span and body size of C. elegans in association with increased expression of enterotoxin genes and intestinal colonization. In contrast, heat-killed ETEC1 did not affect the life span of C. elegans. Caenorhabditis elegans infected with ETEC1 showed upregulated expression of genes related to insulin-like peptides and host defense responses. These results suggest that ETEC1 exhibits pathogenicity through intestinal colonization and enterotoxin production in C. elegans. This system is useful as an ETEC infection model.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Humanos , Escherichia coli Enterotoxigénica/genética , Caenorhabditis elegans/metabolismo , Virulencia , Enterotoxinas , Diarrea , Proteínas de Escherichia coli/genética
15.
Trends Microbiol ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38052687

RESUMEN

Colonization factors (CFs) are major virulence factors of enterotoxigenic Escherichia coli (ETEC). This pathogen is among the most common causes of bacterial diarrhea in children in low- and middle-income countries, travelers, and livestock. CFs are major candidate antigens in vaccines under development as preventive measures against ETEC infections in humans and livestock. Recent molecular studies have indicated that newly identified CFs on human ETEC are closely related to animal ETEC CFs. Increased knowledge of pathogenic mechanisms, immunogenicity, regulation, and expression of ETEC CFs, as well as the possible spread of animal ETEC to humans, may facilitate the future development of ETEC vaccines for humans and animals. Here, we present an updated review of CFs in ETEC.

16.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044688

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) causes post-weaning diarrhea in piglets, significantly impacting animal welfare and production efficiency. The two primary ETEC pathotypes associated with post-weaning diarrhea are ETEC F4 and ETEC F18. During the post-weaning period, piglets may be exposed to both ETEC F4 and ETEC F18. However, the effects of coinfection by both strains have not been studied. Short chain fatty acid feed additives, such as butyrate and valerate, are being investigated for their potential to improve animal performance and disease resistance. Therefore, this pilot experiment aimed to test the effects of butyrate glycerides or valerate glycerides on growth performance, diarrhea incidence, and immune responses of piglets under ETEC F4-ETEC F18 coinfection conditions. Twenty piglets were individually housed and assigned to one of the three dietary treatments immediately at weaning (21 to 24 d of age). The dietary treatments included control (basal diet formulation), control supplemented with 0.1% butyrate glycerides or 0.1% valerate glycerides. After a 7-d adaptation, all pigs were inoculated with ETEC F4 and ETEC F18 (0.5 × 109 CFU/1.5 mL dose for each strain) on three consecutive days. Pigs and feeders were weighed throughout the trial to measure growth performance. Fecal cultures were monitored for hemolytic coliforms, and blood samples were collected for whole blood and serum analysis. Pigs fed valerate glycerides tended (P = 0.095) to have higher final body weight compared with control. The overall severity of diarrhea was significantly (P < 0.05) lower in both treatment groups than control. Pigs fed valerate glycerides tended (P = 0.061) to have lower neutrophils and had significantly (P < 0.05) lower serum TNF-α on day 4 post-inoculation. This pilot experiment established an appropriate experimental dose for an ETEC F4-ETEC F18 coinfection disease model in weaned piglets. Results also suggest that butyrate glycerides and valerate glycerides alleviated diarrhea and regulated immune responses in piglets coinfected with ETEC F4 and ETEC F18.


Piglets suffer from post-weaning diarrhea associated with Enterotoxigenic Escherichia coli (ETEC) F4 and F18, two prevalent strains on swine farms globally. Short chain fatty acids (SCFAs), such as butyrate and valerate, are natural, organic compounds that could potentially promote intestinal health when used as dietary supplements. During the post-weaning period, piglets are vulnerable to simultaneous infection by ETEC F4 and F18. Therefore, this experiment aimed to develop an experimental disease model for coinfection with ETEC F4 and F18, employing a dose of 0.5 × 109 CFU/1.5 mL of each strain, administered over three consecutive days. In addition, the experiment evaluated treatment diets supplemented with 0.1% butyrate or valerate glycerides compared with the control diet. Results from this experiment revealed that the inoculation dose incited infection and diarrhea in piglets, implying its suitability for use in a disease challenge model. Moreover, the results indicated that the inclusion of butyrate and valerate glycerides to pig's diet reduced the severity of diarrhea. Furthermore, pigs fed SCFA glycerides exhibited lowered levels of inflammatory blood markers. In conclusion, the experimental dose induced diarrhea in piglets, and dietary supplementation of butyrate and valerate glycerides alleviated the severity of diarrhea while augmenting inflammatory status.


Asunto(s)
Coinfección , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Enfermedades de los Porcinos , Porcinos , Animales , Escherichia coli Enterotoxigénica/fisiología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/veterinaria , Butiratos/farmacología , Valeratos/farmacología , Valeratos/uso terapéutico , Coinfección/veterinaria , Diarrea/veterinaria , Dieta/veterinaria , Inmunidad , Enfermedades de los Porcinos/tratamiento farmacológico , Alimentación Animal/análisis
17.
Microbiol Spectr ; 11(6): e0152523, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37916813

RESUMEN

IMPORTANCE: Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhea in humans and animals, leading to death and huge economic loss worldwide. Thus, elucidation of ETEC's pathogenic mechanisms will provide powerful data for the discovery of drugs serving as prevention or therapeutics against ETEC-caused diarrheal diseases. Here, we report that ArcA plays an essential role in the pathogenicity and virulence regulation in ETEC by positively regulating the expression of several key virulence factors including F18 fimbriae, heat-labile and heat-stable toxins, Shiga toxin 2e, and hemolysin, under microaerobic conditions and in vivo. Moreover, we found that positive regulation of several virulence genes by ArcA requires a global repressor H-NS (histone-like nucleoid structuring), implying that ArcA may exert positive effects by antagonizing H-NS. Collectively, our data established a key role for ArcA in the pathogenicity of porcine ETEC and ETEC strains isolated from human infections. Moreover, our work reveals another layer of regulation in relation to oxygen control of virulence factors in ETEC.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Humanos , Animales , Porcinos , Escherichia coli Enterotoxigénica/genética , Virulencia/genética , Toxina Shiga , Infecciones por Escherichia coli/genética , Diarrea/veterinaria , Factores de Virulencia/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Enterotoxinas
18.
Microorganisms ; 11(11)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38004821

RESUMEN

The estimates of enterotoxigenic Escherichia coli (ETEC) and Shigella burden in developing countries are limited by the lack of rapid, accessible, and sensitive diagnostics and surveillance tools. We used a "Rapid LAMP based Diagnostic Test (RLDT)" to detect ETEC and Shigella in diarrheal and non-diarrheal stool samples from a 12-month longitudinal cohort of children under five years of age in a peri-urban area of Ouagadougou in Burkina Faso (West Africa). To allow comparison with the RLDT-Shigella results, conventional culture methods were used to identify Shigella strains in the stool samples. As conventional culture alone cannot detect ETEC cases, a subset of E. coli-like colonies was tested using conventional PCR to detect ETEC toxins genes. Of the 165 stool samples analyzed for ETEC, 24.9% were positive when using RLDT against 4.2% when using culture followed by PCR. ETEC toxin distribution when using RLDT was STp 17.6% (29/165), LT 11.5% (19/165), and STh 8.5% (14/165). Of the 263 specimens tested for Shigella, 44.8% were positive when using RLDT against 23.2% when using culture. The sensitivity and specificity of the RLDT compared to culture (followed by PCR for ETEC) were 93.44% and 69.8% for Shigella and 83.7% and 77.9% for ETEC, respectively. This study indicates that both Shigella and ETEC are substantially underdiagnosed when using conventional culture and highlights the potential contribution of the new RLDT method to improve enteric disease burden estimation and to guide future efforts to prevent and control bacterial enteric infection and disease.

19.
Front Cell Infect Microbiol ; 13: 1284166, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035331

RESUMEN

Background: Enterotoxigenic Escherichia coli (ETEC), an important intestinal pathogen, poses a significant threat to the intestinal health of piglets. Bacillus coagulans (BC), a potential feed additive, can improve the intestinal function of piglets. However, the effects of BC on growth performance and intestinal function in ETEC-infected piglets are still unclear. In this study, 24 7-day-old piglets were randomly assigned to three treatment groups: control group (fed a basal diet), ETEC group (fed a basal diet and challenged with ETEC K88) and BC+ETEC group (fed a basal diet, orally administered BC, challenged with ETEC K88). During Days 1-6 of the trial, piglets in the BC+ETEC group were orally administered BC (1×108CFU/kg). On Day 5 of the trial, piglets in the ETEC and BC+ETEC groups were orally administered ETEC K88 (5×109CFU/piglet). Blood, intestinal tissue, and content samples were collected from the piglets on Day 7 of the trial. Results: The average daily feed intake in the ETEC group was significantly reduced compared to that of the control group. Further research revealed that ETEC infection significantly damaged the structure of the small intestine. Compared to the control group, the villus height and surface area of the jejunum, the ratio of villus height to crypt depth in the duodenum and jejunum, and the activities of catalase and total superoxide dismutase in the jejunum were significantly reduced. Additionally, the levels of myeloperoxidase in the jejunum, malondialdehyde in the plasma and jejunum, and intestinal epithelial apoptosis were significantly increased in the ETEC group. However, BC supplementation had significantly mitigated these negative effects in the BC+ETEC group by Day 7 of the trial. Moreover, BC supplementation improved the gut microbiota imbalance by reversing the decreased numbers of Enterococcus, Clostridium and Lactobacillus in jejunum and Escherichia coli, Bifidobacterium and Lactobacillus in the colon, as well as the increased number of Escherichia coli in the jejunum induced by ETEC K88. Conclusions: Overall, BC supplementation reduced the decline in average daily feed intake in ETEC K88-infected piglets by attenuating intestinal epithelial apoptosis and oxidative stress and regulating the gut microbiota. This suggests that BC may be used to prevent intestinal infections caused by ETEC in piglets.


Asunto(s)
Bacillus coagulans , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Microbioma Gastrointestinal , Enfermedades de los Porcinos , Animales , Ingestión de Alimentos , Escherichia coli Enterotoxigénica/fisiología , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Intestinos/microbiología , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/microbiología
20.
Infect Immun ; 91(11): e0027223, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37874163

RESUMEN

There are no vaccines licensed against enterotoxigenic Escherichia coli (ETEC), a leading cause of children's diarrhea and the most common cause of travelers' diarrhea. Multivalent vaccine candidate MecVax unprecedentedly targets two ETEC enterotoxins (heat-stable toxin, STa; heat-labile toxin, LT) and the seven most prevalent ETEC adhesins (colonization factor antigen, CFA/I, coli surface antigens, CS1-CS6) and has been demonstrated preclinically to protect against STa- and LT-mediated ETEC clinical diarrhea and prevent intestinal colonization from ETEC strain H10407 (CFA/I, STa, LT). However, it is unattested whether MecVax broadly protects against intestinal colonization from ETEC strains producing the other six adhesins (CS1-CS6) also targeted by this product. In this study, we immunized rabbits with MecVax and challenged them with heterogeneous ETEC strains that express CS1-CS6 adhesins to evaluate MecVax's efficacy against bacterial intestinal colonization, thus providing broad vaccine protection against ETEC infection. Data revealed that rabbits intramuscularly immunized with MecVax developed robust responses to both ETEC enterotoxins (STa, LT) and seven adhesins (CFA/I, CS1-CS6), and when challenged with ETEC isolates expressing CS1/CS3, CS2/CS3, CS4/CS6, CS5/CS6, or CS6 adhesin, the immunized rabbits prevented over two logs (>99%) of bacteria from colonization in small intestines. Additionally, compared to a CFA-toxoid fusion protein, which is another potential ETEC vaccine antigen to target two ETEC enterotoxins and the seven adhesins, MecVax exhibited better protection against ETEC intestinal colonization. These results, in conjunction with the protection data from early studies, evidenced that MecVax is broadly protective, validating MecVax's candidacy as an effective vaccine against ETEC-associated diarrhea and accelerating ETEC vaccine development.


Asunto(s)
Toxinas Bacterianas , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Vacunas contra Escherichia coli , Niño , Animales , Conejos , Humanos , Toxinas Bacterianas/metabolismo , Diarrea/microbiología , Anticuerpos Antibacterianos , Proteínas de Escherichia coli/metabolismo , Viaje , Enterotoxinas , Infecciones por Escherichia coli/microbiología , Adhesinas Bacterianas/metabolismo , Antígenos Bacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...