Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 766
Filtrar
1.
Small ; : e2403623, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031541

RESUMEN

Organic radicals exhibit great potential in photothermal applications, however, their innate high reactivity with oxygen renders the preparation of stable organic radicals highly challenging. In this work, a series of co-doped radical polymers ares prepared by doping dihydrophenazine derivatives (DPPs) into the epoxy resin matrix. DPPs can form radical species through the electron transfer process, which are further stabilized by the complex 3D network structure of epoxy resin. Experimental results show that the photothermal conversion efficiency is as high as 79.9%, and the temperature can quickly rise to ≈130 °C within 60 s. Due to the excellent visible light transmittance and mechanical properties of co-doped systems, this study further demonstrates their practical applications in energy-saving solar windows and thermoelectric power generation.

2.
J Mol Model ; 30(8): 252, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38969920

RESUMEN

CONTEXT: Traditional conductive adhesives based on epoxy resin system often encounter problems such as high brittleness and low heat resistance. Therefore, it is particularly important to improve the thermal and mechanical properties of the conductive adhesive. In this study, the effects of SWCNT-Ag and SWCNT fillers on the thermal properties of DGEBA/DETA/Ag conductive adhesive system were studied by using molecular dynamics to construct different cross-linking models. The final results show that the addition of SWCNT and SWCNT-Ag can significantly improve the thermal properties of the conductive adhesive. However, the nanosilver particles on the surface of SWCNT-Ag act as a bridge for the connection between SWCNT and Ag in the conductive adhesive. Therefore, SWCNT-Ag has a more positive impact on the thermal properties of DGEBA/DETA/Ag conductive adhesive system. METHODS: In this paper, the influence of SWCNT-Ag on the thermal properties of traditional DGEBA/DETA/Ag conductive adhesive system was studied by using Materials Studio software. The volume shrinkage, glass transition temperature, thermal expansion coefficient, and thermal conductivity of the material were calculated based on COMPASS force field. The thermal conductivity is calculated by using reverse non-equilibrium molecular dynamics method. Finally, it is found that SWCNT-Ag has a positive effect on the thermal properties of the conductive adhesive system by comparing several groups of calculation data.

3.
Waste Manag ; 187: 179-187, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39038429

RESUMEN

The recycling of end-of-life wind turbine blades has become a global environmental challenge driven by the rapid growth of wind power. Pyrolysis is a promising method for recovering glass fibers from these discarded blades, but traditional pyrolysis is often operated at high temperatures, which degrades the mechanical properties of recovered fibers. To address this issue, a swelling-assisted pyrolysis method was proposed to recover high-quality glass fibers from end-of-life wind turbine blades at low temperatures. The results confirmed that the decomposition of the resin matrix within the blade was significantly promoted at low temperatures in the swelling-assisted pyrolysis process, achieving a resin decomposition ratio of 76.8 % at 350 °C. This improvement was attributed to enhanced heat transfer and co-pyrolysis with acetic acid. Swelling could physically disrupt the cross-linked structure of the blade, creating a more porous and layered structure, thereby enhancing heat transfer during the pyrolysis process. Simultaneously, the co-pyrolysis with acetic acid could generate hydrogen radicals, which promoted the cracking of macromolecular oligomers into lighter products or gaseous alkanes. Consequently, the formation of pyrolysis char within the solid pyrolysis product was reduced, shortening the oxidation duration to 30 min. In comparison to traditional pyrolysis, the swelling-assisted pyrolysis process effectively suppressed the diffusion of surface defects over the recovered fibers, leading to promising improvements in their flexibility, elasticity, and mechanical properties, with tensile strength notably increased by 27.5 %. These findings provided valuable insights into recovering high-quality glass fibers from end-of-life wind turbine blades.

4.
J Conserv Dent Endod ; 27(6): 591-597, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38989484

RESUMEN

Aim: The aim of this study was to compare the effect of two calcium silicate-based and an epoxy resin-based root canal sealers on postoperative pain and analgesic intake following single-visit root canal treatment. Materials and Method: Ninety patients with at least one first or second molar tooth diagnosed as symptomatic irreversible pulpitis and symptomatic apical periodontitis were selected and allocated into three groups (n=30) according to the sealer used. Root canals were prepared using Protaper Gold instruments (Dentsply Sirona) in a crown down technique and irrigated with 2.5% NaOCl (Calyx, India) and saline solution. Root canal filling was then accomplished with a single cone obturation technique and treated in a single visit by the same endodontist. Patients were told to use a Visual Analog Scale (VAS) to rate their postoperative pain severity as none, minimal, moderate, or severe after 6 h, 24 h, 48 h, 5 days and 7 days following obturation using the appropriate sealers. The need for analgesic intake was also recorded. The data were statistically analyzed. Results: Results showed a significant difference among the studied groups. Bio-C Sealer Ion+ reported the least pain score followed by Nishika Canal Sealer BG and AH plus sealer at all the time intervals recorded. The intergroup analysis, revealed was a significant difference in postoperative pain at 6 h (p=0.000) and 24 h (p = 0.028), but not at 48 h, 5 day or 7 days (P > 0.05). VAS ratings for all the three groups decreased over time. Also, there were significant differences between the means of analgesic intake among 3 groups (p=0.022). Analgesic intake in group BIO-C Sealer Ion+ is significantly lesser than AH Plus and Nishika Canal Sealer BG group. Conclusion: Calcium silicate-based sealer (Nishika Canal Sealer BG and Bio-C Sealer Ion+) resulted in significantly lower levels of pain as compared to epoxy resin-based sealer (AH Plus) at 6h and 24-h interval, there was no significant difference in postoperative pain occurrence at 48-h, 5 day and 7-day period. The analgesic intake in Bio-C Sealer Ion+ group is significantly lesser than Nishika Canal Sealer BG and AH Plus group.

5.
Polymers (Basel) ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000703

RESUMEN

In recent years, self-healing polymers have emerged as a topic of considerable interest owing to their capability to partially restore material properties and thereby extend the product's lifespan. The main purpose of this study is to investigate the nanoindentation response in terms of hardness, reduced modulus, contact depth, and coefficient of friction of a self-healing resin developed for use in aeronautical and aerospace contexts. To achieve this, the bifunctional epoxy precursor underwent tailored functionalization to improve its toughness, facilitating effective compatibilization with a rubber phase dispersed within the host epoxy resin. This approach aimed to highlight the significant impact of the quantity and distribution of rubber domains within the resin on enhancing its mechanical properties. The main results are that pure resin (EP sample) exhibits a higher hardness (about 36.7% more) and reduced modulus (about 7% more), consequently leading to a lower contact depth and coefficient of friction (11.4% less) compared to other formulations that, conversely, are well-suited for preserving damage from mechanical stresses due to their capabilities in absorbing mechanical energy. Furthermore, finite element method (FEM) simulations of the nanoindentation process were conducted. The numerical results were meticulously compared with experimental data, demonstrating good agreement. The simulation study confirms that the EP sample with higher hardness and reduced modulus shows less penetration depth under the same applied load with respect to the other analyzed samples. Values of 877 nm (close to the experimental result of 876.1 nm) and 1010 nm (close to the experimental result of 1008.8 nm) were calculated for EP and the toughened self-healing sample (EP-R-160-T), respectively. The numerical results of the hardness provide a value of 0.42 GPa and 0.32 GPa for EP and EP-R-160-T, respectively, which match the experimental data of 0.41 GPa and 0.30 GPa. This validation of the FEM model underscores its efficacy in predicting the mechanical behavior of nanocomposite materials under nanoindentation. The proposed investigation aims to contribute knowledge and optimization tips about self-healing resins.

6.
Polymers (Basel) ; 16(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000732

RESUMEN

Most toughening methods for epoxy resins are usually used at the expense of other properties. Some polyhedral oligomeric silsesquioxanes (POSSs) with both a rigid Si-O-Si structure and flexible organic chain segments could be expected to be effective toughening agents. In this study, three reactive polyhedral oligomeric silsesquioxanes with a thiol group (OMPPS), a carboxyl group (OCOPS), and an epoxy group (OGCPS) were synthesized and characterized. They were utilized as modifiers to toughen 3-(oxiran-2-ylmethoxy)-N,N-bis(oxiran-2-ylmethyl)aniline (AFG-90MH)/4,4'-methylenebis(2-ethylaniline) (MOEA) (epoxy resin) with different molar ratios to obtain hybrid resins named OMPPS-EP-i, OCOPS-EP-j, and OGCPS-EP-k. The effects of the amount of modifier added and the length of the organic chain on the cage structure on various properties of the hybrid resins were investigated. The results show that all three modifiers show good compatibility with the epoxy resin. The hybrid resins have a low viscosity at 45~85 °C and can be cured at a low temperature (110 °C). The cured hybrid resins display improved toughness. Typically, the critical stress intensity factor (KIC) and impact strength of OGCPS-EP-0.6-C are 2.54 MPa∙m-1/2 and 19.33 kJ∙m-2, respectively, which increased by 58.75% and 22.48% compared with the pristine epoxy resin, respectively. In addition, the glass transition temperature and flexural strength of the hybrid resins are basically unchanged.

7.
Polymers (Basel) ; 16(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000780

RESUMEN

This paper presents experimental results from three-point bending tests for a composite made of quadriaxial glass fiber fabrics and an epoxy resin. Two composites were tested, one with 8 layers and the other with 16 layers; both had the same matrix (the epoxy resin). Tests were carried out, using five different test rates from 10 mm/min to 1000 mm/min. The following parameters were recorded and calculated: Young's modulus, flexural stress, flexural strain, energy, force, and all four for the first peak. The experimental data reveal no sensitivity for these materials based on the test rates, at least for the analyzed range; but, the characteristics for the thicker composite, with 16 layers of fabric, are slightly lower than those for the thinner composite, with 8 layers. The results pointed out that, for the same thickness of composite, certain characteristics, such as stress at the first peak, the flexural modulus, strain at the first peak, and energy at the first peak, are not sensitive to the test rate in the range 10-1000 mm/min. The energy at the first peak is double for the 16-layer composite compared to the 8-layer composite, but the specific energy (as energy on cross-sectional area) has close values: 103.47 kJ/m2 for the 8-layer composite and 106.51 kJ/m2 for the 16-layer composite. The results recommend this composite for applications in components with resistance to bending or for low-velocity impact protection.

8.
Polymers (Basel) ; 16(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000791

RESUMEN

This research aims to highlight the importance of diverse forms of graphitic carbon nitride (g-C3N4) as strengthening elements in epoxy composites. It explores the influence of three different forms of g-C3N4 and their concentrations on the mechanical properties of the epoxy composites. Various characterization techniques, such as scanning electron microscopy (SEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR), were utilized to comprehend the effects of g-C3N4 morphology and particle size on the physical and chemical characteristics of epoxy resin. Mechanical properties, such as tensile strength, strain, modulus, and fracture toughness, were determined for the composite samples. SEM analysis was performed to examine crack morphology in samples with different reinforcements. Findings indicate that optimal mechanical properties were achieved with a 0.5 wt% bulk g-C3N4 filler, enhancing tensile strength by 14%. SEM micrographs of fracture surfaces revealed a transition from brittle to rough morphology, suggesting increased toughness in the composites. While the TGA results showed no significant impact on degradation temperature, dynamic mechanical analysis demonstrated a 17% increase in glass transition temperature. Furthermore, the improvement in thermal breakdown up to 600 °C was attributed to reinforced covalent bonds between carbon and nitrogen, supported by FTIR results.

9.
Materials (Basel) ; 17(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998194

RESUMEN

Epoxy resin, known for its excellent corrosion resistance, water resistance, and high-temperature resistance, is extensively utilized in construction and water-related projects. Within water conservancy projects, natural factors such as water impact and weathering often result in cracks within rock formations. Consequently, the application of epoxy resin materials for repair and reinforcement has emerged as a common solution. This research investigates the impact of five epoxy grouting materials, YDS (100:6.4), RH-1 (6.1:1), PSI (9:1), TK (100:8), and HK-G (5:1), on the repair and reinforcement of faulted rock at the Yebatan Hydropower Station. Penetration experiments were conducted on rock samples, and the strength of the epoxy grout samples was tested under ambient conditions of 20 °C, 15 °C, and 0 °C. The experimental results indicate that all five epoxy grout materials successfully penetrated the faulted rock samples. Among them, the PSI (9:1) epoxy grouting material exhibited the most exceptional reinforcing effect across different temperatures, with grouting samples demonstrating strengths in the range of 20 to 25 MPa. This paper confirms that epoxy resin effectively repairs and reinforces rock structures, thereby enhancing the safety and durability of water conservancy projects.

10.
Materials (Basel) ; 17(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998332

RESUMEN

The external bonding (EB) of fiber-reinforced polymer (FRP) is a usual flexural reinforcement method. When using the technique, premature debonding failure still remains a factor of concern. The effect of incorporating multi-wall carbon nanotubes (MWCNTs) in epoxy resin on the flexural behavior of reinforced concrete (RC) beams strengthened with basalt fiber-reinforced polymer (BFRP) sheets was investigated through four-point bending beam tests. Experimental results indicated that the flexural behavior was significantly improved by the MWCNT-modified epoxy. The BFRP sheets bonded by the MWCNT-modified epoxy more effectively mitigated the debonding failure of BFRP sheets and constrained crack development as well as enhanced the ductility and flexural stiffness of strengthened beams. When the beam was reinforced with two-layer BFRP sheets, the yielding load, ultimate load, ultimate deflection, post-yielded flexural stiffness, energy absorption capacity and deflection ductility of beams strengthened using MWCNT-modified epoxy increased by 7.4%, 8.3%, 18.2%, 22.6%, 29.1% and 14.3%, respectively, in comparison to the beam strengthened using pure epoxy. It could be seen in scanning electron microscopy (SEM) images that the MWCNTs could penetrate into concrete and their pull-out and crack bridging consumed more energy, which remarkably enhanced the flexural behavior of the strengthened beams. Finally, an analytical model was proposed for calculating characteristic loads and characteristic deflections of RC beams strengthened with FRP sheets, which indicated a reasonably good correlation with the experimental results.

11.
Waste Manag ; 187: 134-144, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032436

RESUMEN

Here we report a novel chemical recycling of carbon fiber-reinforced plastic (CFRP) using meta-chloroperoxybenzoic acid (mCPBA) as the representative oxidizing agent. The optimal decomposition conditions for the epoxy (EP) resin in CFRP were investigated by varying mCPBA concentration and reaction time. The CFRP decomposed completely within 6 h using a 1.5 M mCPBA solution at 40 °C. Tensile strength of recovered CF (r-CF) measured 4.4 GPa, 93.6% of virgin CF (v-CF), and electrical conductivity reached 590 S/cm, 95% of v-CF. Furthermore, the interfacial shear strength (IFSS) of the recovered carbon fibers (r-CF) using EP resin and polyamide 6 (PA6) was analyzed. For EP resin, the IFSS of r-CF was 88 MPa, a 26 % increase compared to v-CF. In the case of PA6 resin, IFSS values were 80 MPa for r-CF, a 17% improvement over v-CF. The study highlights superior mechanical properties and favorable IFSS of r-CF, positioning them as promising for composite regeneration. Remarkably, this method operated at relatively low temperatures compared to existing technologies, with energy consumption recorded at 35 MJ/kg, establishing it as the most energy-efficient recycling method available.

12.
BMC Oral Health ; 24(1): 753, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951790

RESUMEN

BACKGROUND: Gutta-percha (GP) combined with an endodontic sealer is still the core material most widely used for tridimensional obturation. The sealer acts as a bonding agent between the GP and the root dentinal walls. However, one of the main drawbacks of GP core material is the lack of adhesiveness to the sealer. ZnO thin films have many remarkable features due to their considerable bond strength, good optical quality, and excellent piezoelectric, antibacterial, and antifungal properties, offering many potential applications in various fields. This study aimed to explore the influence of GP surface's functionalization with a nanostructured ZnO thin film on its adhesiveness to endodontic sealers. METHODS: Conventional GP samples were divided randomly into three groups: (a) Untreated GP (control); (b) GP treated with argon plasma (PT); (c) Functionalized GP (PT followed by ZnO thin film deposition). GP's surface functionalization encompassed a multi-step process. First, a low-pressure argon PT was applied to modify the GP surface, followed by a ZnO thin film deposition via magnetron sputtering. The surface morphology was assessed using SEM and water contact angle analysis. Further comprehensive testing included tensile bond strength assessment evaluating Endoresin and AH Plus Bioceramic sealers' adhesion to GP. ANOVA procedures were used for data statistical analysis. RESULTS: The ZnO thin film reproduced the underlying surface topography produced by PT. ZnO thin film deposition decreased the water contact angle compared to the control (p < 0.001). Endoresin showed a statistically higher mean bond strength value than AH Plus Bioceramic (p < 0.001). There was a statistically significant difference between the control and the ZnO-functionalized GP (p = 0.006), with the latter presenting the highest mean bond strength value. CONCLUSIONS: The deposition of a nanostructured ZnO thin film on GP surface induced a shift towards hydrophilicity and an increased GP's adhesion to Endoresin and AH Bioceramic sealers.


Asunto(s)
Recubrimiento Dental Adhesivo , Gutapercha , Nanoestructuras , Materiales de Obturación del Conducto Radicular , Propiedades de Superficie , Óxido de Zinc , Óxido de Zinc/química , Materiales de Obturación del Conducto Radicular/química , Nanoestructuras/química , Gutapercha/química , Recubrimiento Dental Adhesivo/métodos , Humanos , Ensayo de Materiales , Adhesividad , Microscopía Electrónica de Rastreo , Resistencia a la Tracción
13.
Polymers (Basel) ; 16(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38931998

RESUMEN

With the swift progress of the electronics industry, discarded circuit boards have become an important source of non-degradable waste. In this work, discarded epoxy resin was collected as a precursor to prepare activated carbon (AC) through stepwise carbonization/activation methods. The rough carbon materials with a certain graphite and amorphous structure reveal the multiple oxygen-containing groups on their surface. In the process of studying the adsorption of methyl orange by activated carbon, it is found that the adsorption is in accordance with the quasi-secondary kinetic model, and equilibrium adsorption amounts can reach 41.051 mg/g. The adsorption isotherm of AC is more in line with the Langmuir model, and the saturation adsorption amount at three different temperatures is 23.137 mg/g, 30.358 mg/g, and 37.202 mg/g, respectively. The enthalpy (ΔH) is 17.30 KJ/mol in the adsorption process, which indicates that is a physical process with heat-absorbing capabilities. This work is of great significance with regard to the recycling of waste to reduce pollution and in terms of gaining economic benefits.

14.
Polymers (Basel) ; 16(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38931999

RESUMEN

Thermosetting polymers and composites are a class of high-performance materials with significant industrial applications. However, the widespread use of thermosets and their composites generates large quantities of waste and leads to serious economic and environmental problems, there is a critical need in the elaboration of sustainable composite materials. Here, we propose a method to prepare sustainable carbon fiber reinforced composites with different degrees of greenness by blending environmentally friendly EIA with DGEBA in different ratios, and the properties compared with a well-known commercial petroleum-based epoxy resin. The prepared carbon fiber reinforced polymer (CFRP) composites with different degrees of greenness had excellent dimensional stability under extreme hygrothermal aging. After aging, the green CFRP composite T700/EIA-30 has higher strength and performance retention than that of petroleum-based CFRP composites. The higher hygrothermal stability and durability of EIA-based epoxy resins as compared with BPA-based epoxy resins demonstrated significant evidence to design and develop a novel bio-based epoxy resin with high performance to substitute the petroleum-based epoxy resin.

15.
Polymers (Basel) ; 16(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891418

RESUMEN

Magnesium hydroxide, as a green inorganic flame-retardancy additive, has been widely used in polymer flame retardancy. However, magnesium hydroxide is difficult to disperse with epoxy resin (EP), and its flame-retardancy performance is poor, so it is difficult to use in flame-retardant epoxy resin. In this study, an efficient magnesium hydroxide-based flame retardant (MH@PPAC) was prepared by surface modification of 2-(diphenyl phosphine) benzoic acid (PPAC) using a simple method. The effect of MH@PPAC on the flame-retardancy properties for epoxy resins was investigated, and the flame-retardancy mechanism was studied. The results show that 5 wt% MH@PPAC can increase the limiting oxygen index for EP from 24.1% to 38.9%, achieving a V-0 rating. At the same time, compared to EP, the peak heat release rate, peak smoke production rate, total smoke production rate, and peak CO generation rate for EP/5 wt% MH@PPAC composite material decreased by 53%, 45%, 51.85%, and 53.13% respectively. The cooperative effect for PPAC and MH promotes the formation of a continuous and dense char layer during the combustion process for the EP-blend material, significantly reducing the exchange for heat and combustible gases, and effectively hindering the combustion process. Additionally, the surface modification of PPAC enhances the dispersion of MH in the EP matrix, endowing EP with superior mechanical properties that meet practical application requirements, thereby expanding the application scope for flame-retardant EP-blend materials.

16.
Polymers (Basel) ; 16(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38891475

RESUMEN

The green and environmentally friendly cardanol epoxy resin has a bright application prospect, but its insufficient thermal/mechanical properties seriously hinder its application. Adding nanoclay to polymer matrix is an effective method to enhance the thermal/mechanical properties of material, but the dispersion and compatibility of nanoclay in epoxy resin remain to be solved. In this work, active Girard's reagent clay (PG-clay) and non-active Girard's reagent clay (NG-clay) were prepared by using acethydrazide trimethylammonium chloride (Girard's reagent) as the modifier, and cardanol epoxy resin/G-clay nanocomposites were synthesized by the "clay slurry composite method". The results showed that both PG-clay and NG-clay were dispersed in the epoxy matrix in the form of random exfoliation/intercalation, which effectively improved the thermal/mechanical properties of the composites. Tg of the cardanol epoxy resin has raised from 19.8 °C to 38.1 °C (4 wt.% PG-clay). When the mass fraction of clay is 4%, the tensile strength of the non-reactive NG-clay increases by 128%, and the elongation at break also increases by 101%. Simultaneously, the active PG-clay can participate in the curing reaction of epoxy resin due to the amino group, forming a chemical bond between the clay layer and the resin matrix and establishing a strong interfacial force. The tensile strength of the composite is increased by 970%, and the elongation at break is also increased by 428%. This research demonstrates that the cardanol epoxy resin/G-clay nanocomposite stands as a highly promising candidate for bio-based epoxy resin materials.

17.
J Endod ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901643

RESUMEN

INTRODUCTION: The purpose of this study was to evaluate whether the mixing method of AH Plus Jet sealer affects its physicochemical and mechanical properties. METHODS: The properties of AH Plus Jet sealer were analyzed when mixed using either the Auto Mix Tip or manual mixing. The evaluated properties included radiopacity (n = 5), initial and final setting times (n = 5), flow (n = 5), and solubility (n = 3), following specifications outlined in ISO 6876/2012 and ADA Nº 57/2000. pH levels were measured at intervals of 3, 24, 72, and 168 hours (n = 10). The push-out bond strength test was conducted using a universal testing machine and using bovine teeth (n = 30). Failure modes were analyzed with stereomicroscopy. Porosity was evaluated under micro-CT (n = 5), and scanning electron microscopy was also performed (n = 5). One-way analysis of variance and Tukey, unpaired t-tests, or Mann-Whitney tests were used with a significance level of 5%. RESULTS: The Auto Mix exhibited a radiopacity value of 12.11 mmAl, whereas manual mixing resulted in 12.55 mmAl (P > .05). For initial and final setting times, Auto Mix showed 901 minutes and 1779 minutes, respectively, while manual mixing recorded values of 631 minutes and 1504 minutes (P < .05). In terms of flow, Auto Mix demonstrated higher values (25.26 mm) than manual mixing (21.71 mm) (P < .05). No statistical differences were observed between the two methods for solubility and pH (P > .05). Manual mixing presented a higher bond strength value (14.52 MPa) than Auto Mix (9.81 MPa) (P < .05). The mixed failure mode was the most frequent outcome for both methods. The highest porosity was observed for Auto Mix (P < .05). Scanning electron microscopy analysis revealed that manual mixing resulted in a smoother surface with fewer pores and smaller, more evenly distributed agglomerates compared to automatic mixing. CONCLUSION: The mixing method employed for AH Plus Jet sealer influences some physicochemical and mechanical properties of the material.

18.
Sensors (Basel) ; 24(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38894188

RESUMEN

The curing of epoxy resin is a complex thermo-chemical process that is difficult to monitor using existing sensing systems. We monitored the curing process of an epoxy resin by using long-period fiber gratings. The refractive index of the epoxy resin increases during the curing process and can be measured to determine the degree of curing. We employed long-period fiber gratings that are sensitive to the refractive index of an external medium for the measurement of refractive index changes in the resin. We observed that the resonances of long-period fiber gratings increased their depth with the increased refractive index of the resin, which was well described by our simulation taking the coupling to radiation modes into account. We demonstrated that the degree of cure can be estimated from the depth of the grating resonances using a phenomenological model. At the same time, long-period fiber gratings are sensitive to temperature variations and internal strains that are induced during curing. These factors may affect the measurements of curing degree and should also be addressed.

19.
Membranes (Basel) ; 14(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38921505

RESUMEN

Limitations in existing anion exchange membranes deter their use in the efficient treatment of industrial wastewater effluent. This work presents an approach to fabricating novel anion-conducting membranes using epoxy resin monomers like hydrophobic or hydrophilic diglycidyl ether and quaternized polyethyleneimine (PEI). Manipulating the diglycidyl ether nature, the quantitative composition of the copolymer and the conditions of quaternization allows control of the physicochemical properties of the membranes, including water uptake (20.0-330%), ion exchange capacity (1.5-3.7 mmol/g), ionic conductivity (0.2-17 mS/cm in the Cl form at 20 °C), potentiostatic transport numbers (75-97%), as well as mechanical properties. A relationship was established between copolymer structure and conductivity/selectivity trade-off. The higher the quaternized polyethyleneimine, diluent fraction, and hydrophilicity of diglycidyl ether, the higher the conductivity and the lower the permselectivity. Hydrophobic diglycidyl ether gives a much better conductivity/selectivity ratio since it provides a lower degree of hydration than hydrophilic diglycidyl ether. Different mesh and non-woven reinforcing materials were also examined. The developed membranes demonstrate good stability in both neutral and acidic environments, and their benchmark characteristics in laboratory electrodialysis cells and batch-mode dialysis experiments are similar to or superior to, commercial membranes such as Neosepta© AMX, FujiFilm© Type1, and Fumasep FAD-PET.

20.
Materials (Basel) ; 17(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38730899

RESUMEN

This research study focused on the effect of adding boric acid to epoxy resin in order to obtain a composite material with improved properties and performance. To this end, a fine powder of boric acid (H3BO3) was introduced into epoxy resin in different amounts, i.e., 0.5 g, 1.0 g, and 1.5 g. As the matrix of the epoxy composites, styrene-modified epoxy resin based on bisphenol A (BPA) (Epidian 53) was used. It was cross-linked with two types of curing agents, i.e., an amine (ET) and a polyamide (PAC). The mechanical properties of the obtained epoxy composites (in terms of compressive strength, compressive modulus, and compressive strain) were determined at room temperature in order to assess the effect of the addition of boron acid and of the type of curing agent employed to cure the epoxy on these characteristics. Calorimetric measurements were made to highlight any changes in the glass transition temperature (Tg) as a result of the addition of boric acid to epoxy resin. Finally, flammability tests were performed on both Epidian 53/PAC and Epidian 53/ET epoxy composites to analyze their fire behavior and consequently establish the effectiveness of the selected additive as a flame retardant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA