Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38499446

RESUMEN

Dermatomycosis is an infection with global impacts caused especially by dermatophytes and Candida species. Current antifungal therapies involve drugs that face fungal resistance barriers. This clinical context emphasizes the need to discover new antifungal agents. Herein, the antifungal potential of 10 curcumin analogs was evaluated against four Candida and four dermatophyte species. The most active compound, 3,3'-dimethoxycurcumin, exhibited minimum inhibitory concentration values ranging from 1.9‒62.5 to 15.6‒62.5 µg ml-1 against dermatophytes and Candida species, respectively. According to the checkerboard method, the association between DMC and terbinafine demonstrated a synergistic effect against Trichophyton mentagrophytes and Epidermophyton floccosum. Ergosterol binding test indicated DMC forms a complex with ergosterol of Candida albicans, C. krusei, and C. tropicalis. However, results from the sorbitol protection assay indicated that DMC had no effect on the cell walls of Candida species. The in vivo toxicity, using Galleria mellonella larvae, indicated no toxic effect of DMC. Altogether, curcumin analog DMC was a promising antifungal agent with a promising ability to act against Candida and dermatophyte species.


Asunto(s)
Arthrodermataceae , Curcumina , Curcumina/análogos & derivados , Antifúngicos/farmacología , Candida , Curcumina/farmacología , Pruebas de Sensibilidad Microbiana , Ergosterol , Trichophyton
2.
Mar Drugs ; 22(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535438

RESUMEN

An unreported prenylated indole derivative hydroxytakakiamide (4) was isolated, together with the previously described ergosterol (1), ergosterol acetate (2), and (3R)-3-(1H-indol-3-ylmethyl)-3, 4-dihydro-1H-1,4-benzodiazepine-2,5-dione (3), from the column fractions of the crude ethyl acetate extract of the culture of a marine sponge-associated fungus, Aspergillus fischeri MMERU 23. The structure of 4 was elucidated by the interpretation of 1D and 2D NMR spectral data and high-resolution mass spectrum. The absolute configuration of the stereogenic carbon in 3 was proposed to be the same as those of the co-occurring congeners on the basis of their biogenetic consideration and was supported by the comparison of its sign of optical rotation with those of its steroisomers. The crude ethyl acetate extract and 2 were evaluated, together with acetylaszonalenin (5) and helvolic acid (6), which were previously isolated from the same extract, for the in vivo antinociceptive activity in the mice model. The crude ethyl acetate extract exhibited antinociceptive activity in the acetic acid-induced writhing and formalin tests, while 2, 5, and 6 displayed the effects in the late phase of the formalin test. On the other hand, neither the crude ethyl acetate extract nor 2, 5, and 6 affected the motor performance of mice in both open-field and rotarod tests. Additionally, docking studies of 2, 5, and 6 were performed with 5-lipoxygenase (5-LOX) and phosphodiesterase (PDE) enzymes, PDE4 and PDE7, which are directly related to pain and inflammatory processes. Molecular docking showed that 6 has low affinity energy to PDE4 and PDE7 targets while retaining high affinity to 5-LOX. On the other hand, while 2 did not display any hydrogen bond interactions in any of its complexes, it achieved overall better energy values than 6 on the three antinociceptive targets. On the other hand, 5 has the best energy profile of all the docked compounds and was able to reproduce the crystallographic interactions of the 5-LOX complex.


Asunto(s)
Acetatos , Aspergillus , Hongos , Ácido Fusídico/análogos & derivados , Poríferos , Animales , Ratones , Simulación del Acoplamiento Molecular , Ácido Acético , Ergosterol , Analgésicos
3.
Extremophiles ; 28(1): 17, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38342818

RESUMEN

Yeasts from cold environments have a wide range of strategies to prevent the negative effects of extreme conditions, including the production of metabolites of biotechnological interest. We investigated the growth profile and production of metabolites in yeast species isolated from cold environments. Thirty-eight strains were tested for their ability to grow at different temperatures (5-30 °C) and solute concentrations (3-12.5% NaCl and 50% glucose). All strains tested were able to grow at 5 °C, and 77% were able to grow with 5% NaCl at 18 °C. We were able to group strains based on different physicochemical/lifestyle profiles such as polyextremotolerant, osmotolerant, psychrotolerant, or psychrophilic. Five strains were selected to study biomass and metabolite production (glycerol, trehalose, ergosterol, and mycosporines). These analyses revealed that the accumulation pattern of trehalose and ergosterol was related to each lifestyle profile. Also, our findings would suggest that mycosporines does not have a role as an osmolyte. Non-conventional fermentative yeasts such as Phaffia tasmanica and Saccharomyces eubayanus may be of interest for trehalose production. This work contributes to the knowledge of non-conventional yeasts with biotechnological application from cold environments, including their growth profile, metabolites, and biomass production under different conditions.


Asunto(s)
Basidiomycota , Trehalosa , Trehalosa/metabolismo , Cloruro de Sodio/metabolismo , Levaduras , Ergosterol/metabolismo , Frío
4.
Braz J Microbiol ; 55(1): 133-142, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37995041

RESUMEN

Infections of fungal origin are mainly caused by Candida spp. Some species, such as C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis, stand out as promoters of diseases in humans. This study evaluated the synthesis and antifungal effects of (E)-3-(furan-2-yl)acrylic acid. The synthesis of the compound showed a yield of 88%, considered high. The minimum inhibitory concentration of the synthetic compound, amphotericin B, and fluconazole isolated against four Candida species ranged from 64 to 512 µg/mL, 1 to 2 µg/mL, and 32 to 256 µg/mL, respectively. The synergistic effect of the test compound was observed when associated with amphotericin B against C. albicans and C. tropicalis, with no antagonism between the substances against any of the strains tested. The potential drug promoted morphological changes in C. albicans, decreasing the amount of resistance and virulence, and reproduction structures, such as the formation of pseudohyphae, blastoconidia, and chlamydospores. Furthermore, it was also possible to identify the fungistatic profile of the test substance by studying the growth kinetics of C. albicans. Finally, it was observed that the test compound stimulated ergosterol biosynthesis by the yeast, probably by activating microbial resistance responses.


Asunto(s)
Antifúngicos , Candida , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Anfotericina B/farmacología , Acrilatos/farmacología , Fluconazol/farmacología , Candida albicans , Candida parapsilosis , Pruebas de Sensibilidad Microbiana , Candida glabrata , Farmacorresistencia Fúngica
5.
Drug Chem Toxicol ; 47(2): 191-202, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36803623

RESUMEN

Aspergillus niger causes infections such as otitis and pulmonary aspergillosis in immunocompromised individuals. Treatment involves voriconazole or amphotericin B, and due to the increase in fungal resistance, the search for new compounds with antifungal activity has intensified. In the development of new drugs, cytotoxicity and genotoxicity assays are important, as they allow predicting possible damage that a molecule can cause, and in silico studies predict the pharmacokinetic properties. The aim of this study was to verify the antifungal activity and the mechanism of action of the synthetic amide 2-chloro-N-phenylacetamide against Aspergillus niger strains and toxicity. 2-Chloro-N-phenylacetamide showed antifungal activity against different strains of Aspergillus niger with minimum inhibitory concentrations between 32 and 256 µg/mL and minimum fungicides between 64 and 1024 µg/mL. The minimum inhibitory concentration of 2-chloro-N-phenylacetamide also inhibited conidia germination. When associated with amphotericin B or voriconazole, 2-chloro-N-phenylacetamide had antagonistic effects. Interaction with ergosterol in the plasma membrane is the probable mechanism of action.2-Chloro-N-phenylacetamide has favorable physicochemical parameters, good oral bioavailability and absorption in the gastrointestinal tract, crosses the blood-brain barrier and inhibits CYP1A2. At concentrations of 50 to 500 µg/mL, it has little hemolytic effect and a protective effect for type A and O red blood cells, and in the cells of the oral mucosa it promotes little genotoxic change. It is concluded that 2-chloro-N-phenylacetamide has promising antifungal potential, favorable pharmacokinetic profile for oral administration and low cytotoxic and genotoxic potential, being a promising candidate for in vivo toxicity studies.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus , Humanos , Antifúngicos/toxicidad , Anfotericina B/toxicidad , Voriconazol/toxicidad , Voriconazol/uso terapéutico , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Acetanilidas/uso terapéutico , Pruebas de Sensibilidad Microbiana
6.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069194

RESUMEN

Candida glabrata and Candida albicans, the most frequently isolated candidiasis species in the world, have developed mechanisms of resistance to treatment with azoles. Among the clinically used antifungal drugs are statins and other compounds that inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), resulting in decreased growth and ergosterol levels in yeasts. Ergosterol is a key element for the formation of the yeast cell membrane. However, statins often cause DNA damage to yeast cells, facilitating mutation and drug resistance. The aim of the current contribution was to synthesize seven series of compounds as inhibitors of the HMGR enzyme of Candida ssp., and to evaluate their effect on cellular growth, ergosterol synthesis and generation of petite mutants of C. glabrata and C. albicans. Compared to the reference drugs (fluconazole and simvastatin), some HMGR inhibitors caused lower growth and ergosterol synthesis in the yeast species and generated fewer petite mutants. Moreover, heterologous expression was achieved in Pichia pastoris, and compounds 1a, 1b, 6g and 7a inhibited the activity of recombinant CgHMGR and showed better binding energy values than for α-asarone and simvastatin. Thus, we believe these are good candidates for future antifungal drug development.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Candida albicans , Candida glabrata/genética , Antifúngicos/farmacología , Simvastatina/farmacología , Hidroximetilglutaril-CoA-Reductasas NADP-Dependientes , Oxidorreductasas , Ergosterol/metabolismo , Pruebas de Sensibilidad Microbiana
7.
Chembiochem ; 24(19): e202300406, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37382991

RESUMEN

Current treatment for Chagas' disease is based on two drugs, Nifurtimox and Benznidazol, which have limitations that reduce the effectiveness and continuity of treatment. Thus, there is an urgent need to develop new, safe and effective drugs. In previous work, two new metal-based compounds with trypanocidal activity, Pd-dppf-mpo and Pt-dppf-mpo, were fully characterized. To unravel the mechanism of action of these two analogous metal-based drugs, high-throughput omics studies were performed. A multimodal mechanism of action was postulated with several candidates as molecular targets. In this work, we validated the ergosterol biosynthesis pathway as a target for these compounds through the determination of sterol levels by HPLC in treated parasites. To understand the molecular level at which these compounds participate, two enzymes that met eligibility criteria at different levels were selected for further studies: phosphomevalonate kinase (PMK) and lanosterol 14-α demethylase (CYP51). Molecular docking processes were carried out to search for potential sites of interaction for both enzymes. To validate these candidates, a gain-of-function strategy was used through the generation of overexpressing PMK and CYP51 parasites. Results here presented confirm that the mechanism of action of Pd-dppf-mpo and Pt-dppf-mpo compounds involves the inhibition of both enzymes.

8.
Eur J Med Chem ; 256: 115436, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37146343

RESUMEN

This work describes the design, synthesis and antifungal activity of new imidazoles and 1,2,4-triazoles derived from eugenol and dihydroeugenol. These new compounds were fully characterized by spectroscopy/spectrometric analyses and the imidazoles 9, 10, 13 e 14 showed relevant antifungal activity against Candida sp. and Cryptococcus gattii in the range of 4.6-75.3 µM. Although no compound has shown a broad spectrum of antifungal activity against all evaluated strains, some azoles were more active than either reference drugs employed against specific strains. Eugenol-imidazole 13 was the most promising azole (MIC: 4.6 µM) against Candida albicans being 32 times more potent than miconazole (MIC: 150.2 µM) with no relevant cytotoxicity (selectivity index >28). Notably, dihydroeugenol-imidazole 14 was twice as potent (MIC: 36.4 µM) as miconazole (MIC: 74.9 µM) and more than 5 times more active than fluconazole (MIC: 209.0 µM) against alarming multi-resistant Candida auris. Furthermore, in vitro assays showed that most active compounds 10 and 13 altered the fungal ergosterol biosynthesis, reducing its content as fluconazole does, suggesting the enzyme lanosterol 14α-demethylase (CYP51) as a possible target for these new compounds. Docking studies with CYP51 revealed an interaction between the imidazole ring of the active substances with the heme group, as well as insertion of the chlorinated ring into a hydrophobic cavity at the binding site, consistent with the behavior observed with control drugs miconazole and fluconazole. The increase of azoles-resistant isolates of Candida species and the impact that C. auris has had on hospitals around the world reinforces the importance of discovery of azoles 9, 10, 13 e 14 as new bioactive compounds for further chemical optimization to afford new clinically antifungal agents.


Asunto(s)
Antifúngicos , Cryptococcus gattii , Antifúngicos/farmacología , Antifúngicos/química , Azoles/farmacología , Azoles/química , Miconazol/farmacología , Candida , Fluconazol , Eugenol/farmacología , Eugenol/química , Pruebas de Sensibilidad Microbiana , Candida albicans , Imidazoles/farmacología , Ergosterol
9.
J Fungi (Basel) ; 9(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36836389

RESUMEN

The dermatophyte Trichophyton rubrum is responsible for most human cutaneous infections. Its treatment is complex, mainly because there are only a few structural classes of fungal inhibitors. Therefore, new strategies addressing these problems are essential. The development of new drugs is time-consuming and expensive. The repositioning of drugs already used in medical practice has emerged as an alternative to discovering new drugs. The antidepressant sertraline (SRT) kills several important fungal pathogens. Accordingly, we investigated the inhibitory mechanism of SRT in T. rubrum to broaden the knowledge of its impact on eukaryotic microorganisms and to assess its potential for future use in dermatophytosis treatments. We performed next-generation sequencing (RNA-seq) to identify the genes responding to SRT at the transcript level. We identified that a major effect of SRT was to alter expression for genes involved in maintaining fungal cell wall and plasma membrane stability, including ergosterol biosynthetic genes. SRT also altered the expression of genes encoding enzymes related to fungal energy metabolism, cellular detoxification, and defense against oxidative stress. Our findings provide insights into a specific molecular network interaction that maintains metabolic stability and is perturbed by SRT, showing potential targets for its strategic use in dermatophytosis.

10.
Antibiotics (Basel) ; 12(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36671354

RESUMEN

Cryptococcus neoformans is the pathogen responsible for cryptococcal pneumonia and meningitis, mainly affecting patients with suppressed immune systems. We have previously revealed the mechanism of anticryptococcal action of synthetic antimicrobial peptides (SAMPs). In this study, computational and experimental analyses provide new insights into the mechanisms of action of SAMPs. Computational analysis revealed that peptides interacted with the PHO36 membrane receptor of C. neoformans. Additionally, ROS (reactive oxygen species) overproduction, the enzymes of ROS metabolism, interference in the ergosterol biosynthesis pathway, and decoupling of cytochrome c mitochondrial membrane were evaluated. Three of four peptides were able to interact with the PHO36 receptor, altering its function and leading to ROS overproduction. SAMPs-treated C. neoformans cells showed a decrease in scavenger enzyme activity, supporting ROS accumulation. In the presence of ascorbic acid, an antioxidant agent, SAMPs did not induce ROS accumulation in C. neoformans cells. Interestingly, two SAMPs maintained inhibitory activity and membrane pore formation in C. neoformans cells by a ROS-independent mechanism. Yet, the ergosterol biosynthesis and lactate dehydrogenase activity were affected by SAMPs. In addition, we noticed decoupling of Cyt c from the mitochondria, which led to apoptosis events in the cryptococcal cells. The results presented herein suggest multiple mechanisms imposed by SAMPs against C. neoformans interfering in the development of resistance, thus revealing the potential of SAMPs in treating infections caused by C. neoformans.

11.
Braz. J. Pharm. Sci. (Online) ; 59: e22045, 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1439519

RESUMEN

Abstract The genus Candida represents the main cause of infections of fungal origin. Some species stand out as disease promoters in humans, such as C. albicans, C. glabrata, C. parapsilosis, and C. tropicalis. This study evaluated the antifungal effects of propyl (E)-3-(furan-2-yl) acrylate. The minimum inhibitory concentration of the synthetic compound, amphotericin B and fluconazole alone against four species of Candida ranged from 64 to 512 µg/mL, 1 to 2 µg/mL, and 32 to 256 µg/mL, respectively. The synergistic effect of the test substance was observed when associated with fluconazole against C. glabrata, there was no antagonism between the substances against any of the tested strains. The potential drug promoted morphological changes in C. albicans, decreasing the amount of resistance, virulence, and reproduction structures, such as the formation of pseudohyphae, blastoconidia, and chlamydospores, ensuring the antifungal potential of this substance. It was also possible to identify the fungicidal profile of the test substance through the study of the growth kinetics of C. albicans. Finally, it was observed that the test compound inhibited the ergosterol biosynthesis by yeast


Asunto(s)
Candida albicans/efectos de los fármacos , Ergosterol/agonistas , Antifúngicos/análisis , Candida/clasificación , Preparaciones Farmacéuticas/análisis , Pruebas de Sensibilidad Microbiana/instrumentación
12.
São José dos Campos; s.n; 2023. 92 p. ilus, tab.
Tesis en Portugués | BBO - Odontología | ID: biblio-1425177

RESUMEN

Infecções fúngicas como as causadas por Cryptococcus spp. são de alta mortalidade e morbidade. O reposicionamento de fármaco, ou seja, a utilização de compostos para finalidade diferente da qual esse foi desenvolvido, pode ser uma alternativa para identificar fármacos mais eficazes. Assim, este estudo tem como propósito avaliar a atividade antifúngica, in vitro e in vivo, do fármaco cloridrato de duloxetina (CD), antidepressivo pertencente a classe dos Inibidores Seletivos da Recaptação da Serotonina e Norepinefrina frente a cepas padrões e clínicas de Cryptococcus neoformans e C. gattii. Foi utilizada a técnica de microdiluição de acordo com o European Committee on Antimicrobial Susceptibility Testing (EUCAST) para determinar a Concentração Inibitória Mínima (MIC), e a técnica do "tabuleiro de xadrez" para avaliar o efeito sinérgico de anfotericina B (AmB) em associação com CD. Além disso, foi avaliado o efeito de CD na quantidade do ergosterol. O efeito do CD também foi avaliado em biofilmes de C. neoformans e C. gattii, analisando a biomassa por cristal violeta, a viabilidade celular por XTT e morfologia através das imagens de Microscopia Eletrônica de Varredura (MEV). In vivo, a eficácia de CD foi avaliada por curvas de sobrevivência no modelo invertebrado Galleria mellonella. CD foi ativo frente a todas as cepas clínicas e padrões de C. neoformans e C. gattii, apresentando valores de CIM e CFM na faixa de 15,62 ­ 62,5 µg/mL. A combinação de CD com AmB apresentou uma combinação sinérgica, reduzindo o valor da CIM em 4 vezes tanto para CD quanto para AmB. CD não produziu redução na quantidade de ergosterol presente na membrana de C. gattii ATCC e C. neoformans ATCC. Em biofilmes, foi observada a redução da biomassa do biofilme em até 82,16% e redução de 99,6% na viabilidade celular de C. gattii. Em biofilmes de C. neoformans a redução foi de 81,13% e 99,5% respectivamente para a análise de biomassa e viabilidade. As imagens de MEV corroboraram com os achados dos ensaios realizados para análise do efeito de CD em biofilmes. Em G. mellonella aumentou a sobrevivência da larva quando utilizado na concentração de 3,125 mg/larva. Assim, os ensaios validaram a hipótese de que o cloridrato de duloxetina tem ação antifúngica e antibiofilme in vitro frente a cepas clínicas e cepas padrões de C. neoformans e C. gattii. (AU)


Fungal infections such as those caused by Cryptococcus spp. are of high mortality and morbidity. Drug repositioning, that is, the use of compounds for a purpose different from the one for which it was developed, can be an alternative to identify more effective drugs. Thus, this study aims to evaluate the antifungal activity, in vitro and in vivo, of the drug duloxetine hydrochloride (CD), an antidepressant belonging to the class of Selective Serotonin and Norepinephrine Reuptake Inhibitors against standard and clinical strains of Cryptococcus neoformans and C. gattii. The microdilution technique according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) was used to determine the Minimum Inhibitory Concentration (MIC), and the "chessboard" technique was used to evaluate the synergistic effect of amphotericin B (AmB) on association with CD. In addition, the effect of CD on the amount of ergosterol was evaluated. The effect of CD was also evaluated in C. neoformans and C. gattii biofilms, analyzing the biomass by crystal violet, cell viability by XTT and morphology through Scanning Electron Microscopy (SEM) images. In vivo, the effectiveness of CD was evaluated by survival curves in the Galleria mellonella invertebrate model. CD was active against all clinical strains and patterns of C. neoformans and C. gattii, with MIC and CFM values in the range of 15.62 ­ 62.5 µg/mL. The combination of CD with AmB showed a synergistic combination, reducing the MIC value by 4 times for both CD and AmB. CD did not produce a reduction in the amount of ergosterol present in the membrane of C. gattii ATCC and C. neoformans ATCC. In biofilms, a reduction in biofilm biomass of up to 82.16% and a 99.6% reduction in cell viability of C. gattii were observed. In C. neoformans biofilms the reduction was 81.13% and 99.5% respectively for biomass and viability analysis. The SEM images corroborated the findings of the tests carried out to analyze the effect of CD on biofilms. In G. mellonella, larval survival increased when used at a concentration of 3.125 mg/larvae. Thus, the tests validated the hypothesis that duloxetine hydrochloride has antifungal and antibiofilm action in vitro against clinical strains and standard strains of C. neoformans and C. gattii.(AU)


Asunto(s)
Cryptococcus , Placa Dental , Ergosterol , Reposicionamiento de Medicamentos , Antidepresivos , Antifúngicos
13.
Microbiol Spectr ; 10(2): e0164221, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35377226

RESUMEN

Due to the emergence of multidrug-resistant strains of yeasts belonging to the Candida genus, there is an urgent need to discover antifungal agents directed at alternative molecular targets. The aim of the current study was to evaluate the capacity of three different series of synthetic compounds to inhibit the Candida glabrata enzyme denominated 3-hydroxy-methyl-glutaryl-CoA reductase and thus affect ergosterol synthesis and yeast viability. Compounds 1c (α-asarone-related) and 5b (with a pyrrolic core) were selected as the best antifungal candidates among over 20 synthetic compounds studied. Both inhibited the growth of fluconazole-resistant and fluconazole-susceptible C. glabrata strains. A yeast growth rescue experiment based on the addition of exogenous ergosterol showed that the compounds act by inhibiting the mevalonate synthesis pathway. A greater recovery of yeast growth occurred for the C. glabrata 43 fluconazole-resistant (versus fluconazole-susceptible) strain and after treatment with 1c (versus 5b). Given that the compounds decreased the concentration of ergosterol in the yeast strains, they probably target ergosterol synthesis. According to the docking analysis, the inhibitory effect of 1c and 5b could possibly be mediated by their interaction with the amino acid residues of the catalytic site of the enzyme. Since 1c displayed higher binding energy than α-asarone and 5b, it is the best candidate for further research, which should include structural modifications to increase its specificity and potency. The derivatives could then be examined with in vivo animal models using a therapeutic dose. IMPORTANCE Within the context of the COVID-19 pandemic, there is currently an epidemiological alert in health care services due to outbreaks of Candida auris, Candida glabrata, and other fungal species multiresistant to conventional antifungals. Therefore, it is important to propose alternative molecular targets, as well as new antifungals. The three series of synthetic compounds herein designed and synthesized are inhibitors of ergosterol synthesis in yeasts. Of the more than 20 compounds studied, two were selected as the best antifungal candidates. These compounds were able to inhibit the growth and synthesis of ergosterol in C. glabrata strains, whether susceptible or resistant to fluconazole. The rational design of antifungal compounds derived from clinical drugs (statins, fibrates, etc.) has many advantages. Future studies are needed to modify the structure of the two present test compounds to obtain safer and less toxic antifungals. Moreover, it is important to carry out a more in-depth mechanistic approach.


Asunto(s)
COVID-19 , Candida glabrata , Acilcoenzima A , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida glabrata/metabolismo , Farmacorresistencia Fúngica , Ergosterol/metabolismo , Ácidos Fíbricos/metabolismo , Fluconazol/metabolismo , Fluconazol/farmacología , Humanos , Hidroximetilglutaril-CoA Reductasas/química , Hidroximetilglutaril-CoA Reductasas/metabolismo , Pruebas de Sensibilidad Microbiana , Pandemias , Pirroles/metabolismo , Pirroles/farmacología
14.
Mem. Inst. Oswaldo Cruz ; 117: e210157, 2022. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1375918

RESUMEN

BACKGROUND Leishmania parasites cause leishmaniasis that range from self-limiting cutaneous lesions to more serious forms of the disease. The search for potential drug targets focusing on biochemical and metabolic pathways revealed the sterol biosynthesis inhibitors (SBIs) as a promising approach. In this class of inhibitors is found ketoconazole, a classical inhibitor of 14α-methysterol 14-demethylase. OBJECTIVE The present study aimed to better understand the biological response of Leishmania (Leishmania) amazonensis promastigotes at the cellular level after ketoconazole treatment. METHODS Herein, techniques, such as fluorimetry, flow cytometry, fluorescence microscopy, electron and scanning microscopy were used to investigate the cellular structures and to identify organelles affected by ketoconazole treatment. FINDINGS The study demonstrated, for the first time, the effect of ketoconazole on mitochondrion functioning and its probable relationship to cell cycle and death on L. (L.) amazonensis promastigotes (IFLA/BR/67/PH8 strain). MAIN CONCLUSIONS Ketoconazole-induced mitochondrial damages led to hyperpolarisation of this single organelle and autophagic vacuoles formation, as a parasite survival strategy. These damages did not reflect directly on the parasite cell cycle, but drove the parasites to death, making them susceptible to ketoconazole treatment in in vitro models.

15.
FEMS Microbiol Lett ; 368(19)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34718530

RESUMEN

Essential oils can be a useful alternative to the use of synthetic fungicides because they have biological potential and are relatively safe for food and agricultural products. The objectives of the present study were to evaluate the antifungal and antimycotoxigenic activities of the essential oils from Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus S. against Aspergillus flavus and Aspergillus ochraceus, as well as their effects on ergosterol synthesis and membrane morphology. The antifungal potential was evaluated by mycelial growth analysis and scanning electron microscopy. Fungicidal effects against A. flavus, with MFC of 0.98, 15.62 and 0.98 µL/mL, respectively, were observed for the essential oils from S. montana, M. fragrans and C. flexuosus. Aspergillus ochraceus did not grow in the presence of concentrations of 3.91, 15.62 and 0.98 µL/mL of the essential oils from S. montana, M. fragrans and C. flexuosus, respectively. The essential oils significantly inhibited the production of ochratoxin A by the fungus A. ochraceus. The essential oils also inhibited the production of aflatoxin B1 and aflatoxin B2. The biosynthesis of ergosterol was inhibited by the applied treatments. Biological activity in the fungal cell membrane was observed in the presence of essential oils, given that deleterious effects on the morphologies of the fungi were detected. The essential oils under study are promising as food preservatives because they significantly inhibit toxigenic fungi that contaminate food. In addition, the essential oils hindered the biosynthesis of mycotoxins.


Asunto(s)
Aspergillus flavus , Aspergillus ochraceus , Cymbopogon , Myristica , Aceites Volátiles , Satureja , Antifúngicos/farmacología , Aspergillus flavus/efectos de los fármacos , Aspergillus ochraceus/efectos de los fármacos , Cymbopogon/química , Ergosterol/biosíntesis , Montana , Micotoxinas , Myristica/química , Aceites Volátiles/farmacología , Satureja/química
16.
Antimicrob Agents Chemother ; 65(12): e0104421, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34516249

RESUMEN

The azole antifungals inhibit sterol 14α-demethylase (S14DM), leading to depletion of cellular ergosterol and the synthesis of an aberrant sterol diol that disrupts membrane function. In Candida albicans, sterol diol production is catalyzed by the C-5 sterol desaturase enzyme encoded by ERG3. Accordingly, mutations that inactivate ERG3 enable the fungus to grow in the presence of the azoles. The purpose of this study was to compare the propensities of C-5 sterol desaturases from different fungal pathogens to produce the toxic diol upon S14DM inhibition and thus contribute to antifungal efficacy. The coding sequences of ERG3 homologs from C. albicans (CaERG3), Candida glabrata (CgERG3), Candida auris (CaurERG3), Cryptococcus neoformans (CnERG3), Aspergillus fumigatus (AfERG3A-C) and Rhizopus delemar (RdERG3A/B) were expressed in a C. albicans erg3Δ/Δ mutant to facilitate comparative analysis. All but one of the Erg3p-like proteins (AfErg3C) at least partially restored C-5 sterol desaturase activity and to corresponding degrees rescued the stress and hyphal growth defects of the C. albicans erg3Δ/Δ mutant, confirming functional equivalence. Each C-5 desaturase enzyme conferred markedly different responses to fluconazole exposure in terms of the MIC and residual growth observed at supra-MICs. Upon fluconazole-mediated inhibition of S14DM, the strains expressing each homolog also produced various levels of 14α-methylergosta-8,24(28)-dien-3ß,6α-diol. The RdErg3A and AfErg3A proteins are notable for low levels of sterol diol production and failing to confer appreciable azole sensitivity upon the C. albicans erg3Δ/Δ mutant. These findings suggest that species-specific properties of C-5 sterol desaturase may be an important determinant of intrinsic azole sensitivity.


Asunto(s)
Antifúngicos , Farmacorresistencia Fúngica , Antifúngicos/farmacología , Azoles/farmacología , Candida albicans/genética , Candida auris , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana , Oxidorreductasas , Esterol 14-Desmetilasa/genética
17.
Photodiagnosis Photodyn Ther ; 33: 102155, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33444787

RESUMEN

This investigation assessed the effect of five consecutive daily topical treatments of antimicrobial photodynamic therapy (aPDT), nystatin (NYS), and an association of treatments on a fluconazole-resistant strain of Candida albicans colonizing the tongues of mice. After the last treatments application, colonies of C. albicans were recovered from the tongues and used to determine their fluconazole susceptibility. After 24 hours of the last treatment, the mice tongues were processed to evaluate the expression of C. albicans genes related to the virulence and ergosterol production. The fluconazole susceptibility test yielded a resistance profile similar for all treatment groups and the control group (no treatment). The treatments aPDT, NYS, NYS+aPDT, and aPDT+NYS promoted a reduction in ALS1, EFG1, CAP1, SOD1, SAP1, and LIP3 expression. The expression of HWP1 was higher in the three groups containing nystatin. In contrast, the treatments produced a significative increase in CAT1 gene expression, mainly in the groups in which aPDT was performed. The expression of genes related to ergosterol production was significantly reduced by the treatments evaluated (aPDT, NYS, NYS+aPDT, and aPDT+NYS). Thus, the consecutive topical treatments performed on mice tongues promoted a reduction in the expression of virulence and ergosterol biosynthesis genes of a fluconazole-resistant C. albicans.


Asunto(s)
Fluconazol , Fotoquimioterapia , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida albicans/genética , Ergosterol , Fluconazol/farmacología , Ratones , Nistatina/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Virulencia
18.
Nat Prod Res ; 35(22): 4857-4860, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32146854

RESUMEN

Androgen-dependent LNCaP and androgen-independent DU-145 cells, were treated with different concentrations of ergosterol (15 µM and 25 µM) and its respective cell viability was measured by MTT bioassay. While ergosterol showed an antiproliferative effect on LNCaP, on DU-145 promoted cell proliferation. This differential effect suggests that the effect of ergosterol might be related to its ability to act as an Androgen Receptor ligand. In silico Molecular Dynamics simulations were performed to analyze the interaction mechanism between androgen receptor and ergosterol, in comparison with natural ligands, 5α-dihydrotestosterone and testosterone. Our model suggests that the binding of androgen receptor with ergosterol is thermodinamically feasible, which is concordant with our experimental results.


Asunto(s)
Ergosterol , Neoplasias de la Próstata , Andrógenos , Línea Celular Tumoral , Dihidrotestosterona , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico
19.
Talanta ; 219: 121238, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32887129

RESUMEN

This research reports on the development of a method to identify and quantify fungal biomass based on ergosterol autofluorescence using excitation-emission matrix (EEM) measurements. In the first stage of this work, several ergosterol extraction methods were evaluated by APCI-MS, where the ultrasound-assisted procedure showed the best results. Following an experimental design, various quantities of the dried mycelium of the fungus Schizophyllum commune were mixed with the starchy solid residue (BBR) from the babassu (Orbignya sp.) oil industry, and these samples were subjected to several ergosterol extraction methods. The EEM spectral data of the samples were subjected to Principal Component Analysis (PCA), which showed the possibility to qualitatively evaluate the presence of ergosterol in the samples by ergosterol autofluorescence without the addition of any reagent. In order to assess the feasibility of quantifying fungal biomass using ergosterol autofluorescence, the EEM spectral data and known amounts of fungal biomass were modeled using partial least squares (PLS) regression and a procedure of backward selection of predictors (AutoPLS) was applied to select the Excitation-Emission wavelength pairs that provide the lowest prediction error. The results revealed that the amount of fungal biomass in samples containing interfering substances (BBR) can be accurately predicted with R2CV = 0.939, R2P = 0.936, RPDcv = 4.07, RPDp = 4.06, RMSECV = 0.0731 and RMSEP = 0.0797. In order to obtain an easy-to-understand equation that expresses the relationship between fungal biomass and fluorescence intensity, multiple linear regression (MLR) was applied to the VIP variables selected by the AutoPLS method. The MLR model selected only 2 variables and showed a very good performance, with R2CV = 0.862, R2P = 0.809, RPDcv = 2.18, RPDp = 2.35, RMSECV = 0.137 and RMSEP = 0.138. This study demonstrated that ergosterol autofluorescence can be successfully used to quantify fungal biomass even when mixed with agroindustrial residues, in this case BBR.


Asunto(s)
Ergosterol , Hongos , Proyectos de Investigación , Biomasa , Análisis de los Mínimos Cuadrados , Imagen Óptica
20.
Braz J Microbiol ; 51(4): 1719-1727, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32856241

RESUMEN

Punicalagin is a phenolic compound extracted from Lafoensia pacari A. St.-Hil (Lythraceae) leaves. It has demonstrated interesting activity against pathogenic fungi, e.g., Cryptococcus gattii and Candida albicans, by inhibiting fungi growth in a minimum inhibitory concentration (MIC) at 4 µg/mL. However, the mechanisms behind its antifungal action are not well understood. In this study, certain parameters were investigated, by transmission electron microscopy, ergosterol synthesis inhibition, and flow cytometry analyses, to gain insight into the possible biological targets of punicalagin (4 or 16 µg/mL) against yeast cells. Data showed that, in contrast to untreated cells, punicalagin triggered severe ultrastructural changes in C. gattii and C. albicans, such as disorganization of cytoplasmic content and/or thickened cell walls. In addition, it caused a decrease in yeast plasma membrane ergosterol content in a concentration-dependent manner. However, it was unable to bring about significant fungal cell membrane rupture. On the other hand, punicalagin (16 µg/mL) significantly arrested C. albicans and C. gattii cells at the G0/G1 phase, with a consequent reduction in cells at the G2/M phase in both fungi isolates, and thereby prevented progression of the normal yeast cell cycle. However, these alterations showed no involvement of reactive oxygen species overproduction in C. albicans and C. gattii cells, although punicalagin triggered a significant loss of mitochondrial membrane potential in C. albicans. These findings suggest that punicalagin is a promising plant-derived compound for use in developing new antifungal therapies.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cryptococcus gattii/efectos de los fármacos , Ergosterol/metabolismo , Taninos Hidrolizables/farmacología , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Candida albicans/ultraestructura , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cryptococcus gattii/crecimiento & desarrollo , Cryptococcus gattii/metabolismo , Cryptococcus gattii/ultraestructura , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Electrónica de Transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA