Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.229
Filtrar
1.
Mol Med Rep ; 30(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39219287

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the TUNEL assay data shown in Fig. 1C on p. 2853 and Fig. 5H on p. 2857 were strikingly similar to data that had already been published in different form in different articles written by different authors at different research institutes, or were submitted for publication at around the same time (a number of of which have now been retracted). Owing to the fact that the contentious data in the above article had already been published, or were already under consideration for publication, prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 19: 2849­2860, 2019; DOI: 10.3892/mmr.2019.9946].

2.
Molecules ; 29(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274912

RESUMEN

Filaggrin (FLG) is an essential structural protein expressed in differentiated keratinocytes. Insufficient FLG expression contributes to the pathogenesis of chronic inflammatory skin diseases. Saikosaponin A (SSA), a bioactive oleanane-type triterpenoid, exerts anti-inflammatory activity. However, the effects of topically applied SSA on FLG expression in inflamed skin remain unclear. This study aimed to evaluate the biological activity of SSA in restoring reduced FLG expression. The effect of SSA on FLG expression in HaCaT cells was assessed through various biological methods, including reverse transcription PCR, quantitative real-time PCR, immunoblotting, and immunofluorescence staining. TNFα and IFNγ decreased FLG mRNA, cytoplasmic FLG protein levels, and FLG gene promoter-reporter activity compared to the control groups. However, the presence of SSA restored these effects. A series of FLG promoter-reporter constructs were generated to investigate the underlying mechanism of the effect of SSA on FLG expression. Mutation of the AP1-binding site (mtAP1) in the -343/+25 FLG promoter-reporter abrogated the decrease in reporter activities caused by TNFα + IFNγ, suggesting the importance of the AP1-binding site in reducing FLG expression. The SSA treatment restored FLG expression by inhibiting the expression and nuclear localization of FRA1 and c-Jun, components of AP1, triggered by TNFα + IFNγ stimulation. The ERK1/2 mitogen-activated protein kinase signaling pathway upregulates FRA1 and c-Jun expression, thereby reducing FLG levels. The SSA treatment inhibited ERK1/2 activation caused by TNFα + IFNγ stimulation and reduced the levels of FRA1 and c-Jun proteins in the nucleus, leading to a decrease in the binding of FRA1, c-Jun, p-STAT1, and HDAC1 to the AP1-binding site in the FLG promoter. The effect of SSA was evaluated in an animal study using a BALB/c mouse model, which induces human atopic-dermatitis-like skin lesions via the topical application of dinitrochlorobenzene. Topically applied SSA significantly reduced skin thickening, immune cell infiltration, and the expression of FRA1, c-Jun, and p-ERK1/2 compared to the vehicle-treated group. These results suggest that SSA can effectively recover impaired FLG levels in inflamed skin by preventing the formation of the repressor complex consisting of FRA1, c-Jun, HDAC1, and STAT1.


Asunto(s)
Proteínas Filagrina , Proteínas de Filamentos Intermediarios , Ácido Oleanólico , Proteínas Proto-Oncogénicas c-fos , Saponinas , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Humanos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Saponinas/farmacología , Ratones , Animales , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas de Filamentos Intermediarios/genética , Piel/metabolismo , Piel/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Interferón gamma/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Células HaCaT , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética
3.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39273113

RESUMEN

Sodium tungstate (Na2WO4) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na2WO4 in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na2WO4 promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na2WO4 increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na2WO4 increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na2WO4 on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na2WO4 were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na2WO4. These findings support the role of Na2WO4 in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound.


Asunto(s)
Proyección Neuronal , Fármacos Neuroprotectores , Compuestos de Tungsteno , Humanos , Proyección Neuronal/efectos de los fármacos , Animales , Línea Celular Tumoral , Compuestos de Tungsteno/farmacología , Ratones , Fármacos Neuroprotectores/farmacología , Neuroprotección/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Neuritas/metabolismo , Neuritas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos
4.
Adv Exp Med Biol ; 1460: 199-229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287853

RESUMEN

The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified as dual-specificity kinases and dual-specificity phosphatases. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases and play an important role in obesity. Impairment of insulin signaling in obesity is largely mediated by the activation of the inhibitor of kappa B-kinase beta and the c-Jun N-terminal kinase (JNK). Oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular levels. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. To alleviate lipotoxicity and insulin resistance, promising targets are pharmacologically inhibited. Nifedipine, calcium channel blocker, stimulates lipogenesis and adipogenesis by downregulating AMPK and upregulating mTOR, which thereby enhances lipid storage. Contrary to the nifedipine, metformin activates AMPK, increases fatty acid oxidation, suppresses fatty acid synthesis and deposition, and thus alleviates lipotoxicity. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2 alpha kinase (PERK), and activating transcription factor-6. The transcriptional regulation of adipogenesis in obesity is influenced by AGC (protein kinase A (PKA), PKG, PKC) family signaling kinases. Obesity may induce systemic oxidative stress and increase reactive oxygen species in adipocytes. An increase in intracellular oxidative stress can promote PKC-ß activation. Activated PKC-ß induces growth factor adapter Shc phosphorylation. Shc-generated peroxides reduce mitochondrial oxygen consumption and enhance triglyceride accumulation and lipotoxicity. Liraglutide attenuates mitochondrial dysfunction and reactive oxygen species generation. Co-treatment of antiobesity and antidiabetic herbal compound, berberine with antipsychotic drug olanzapine decreases the accumulation of triglyceride. While low-dose rapamycin, metformin, amlexanox, thiazolidinediones, and saroglitazar protect against insulin resistance, glucagon-like peptide-1 analog liraglutide inhibits palmitate-induced inflammation by suppressing mTOR complex 1 (mTORC1) activity and protects against lipotoxicity.


Asunto(s)
Obesidad , Humanos , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Animales , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Terapia Molecular Dirigida , Resistencia a la Insulina , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
5.
Genetics ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39288021

RESUMEN

Raf protein kinases act as Ras-GTP sensing components of the ERK signal transduction pathway in animal cells, influencing cell proliferation, differentiation, and survival. In humans, somatic and germline mutations in the genes BRAF and RAF1 are associated with malignancies and developmental disorders. Recent studies shed light on the structure of activated Raf, a heterotetramer consisting of Raf and 14-3-3 dimers, and raised the possibility that a Raf C-terminal distal tail segment (DTS) regulates activation. We investigated the role of the DTS using the Caenorhabditis elegans Raf ortholog lin-45. Truncations removing the DTS strongly enhanced lin-45(S312A), a weak gain-of-function allele equivalent to RAF1 mutations found in patients with Noonan Syndrome. We genetically defined three elements of the LIN-45 DTS, which we termed the active site binding sequence (ASBS), the KTP motif, and the aromatic cluster. In the context of lin-45(S312A), mutation of each of these elements enhanced activity. We used AlphaFold to predict DTS protein interactions for LIN-45, fly Raf, and human BRAF, within the activated heterotetramer complex. We propose distinct functions for the LIN-45 DTS elements: i) the ASBS binds the kinase active site as an inhibitor, ii) phosphorylation of the KTP motif modulates DTS-kinase domain interaction, and iii) the aromatic cluster anchors the DTS in an inhibitory conformation. Human RASopathy-associated variants in BRAF affect residues of the DTS, consistent with these predictions. This work establishes that the Raf/LIN-45 DTS negatively regulates signaling in C. elegans and provides a model for its function in other Raf proteins.

6.
Curr Res Microb Sci ; 7: 100265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211836

RESUMEN

Anginosus group streptococci (AGS) are opportunistic pathogens that reside in the human oral cavity. The ß-hemolytic strains of Streptococcus anginosus subsp. anginosus (SAA) produce streptolysin S (SLS), a streptococcal peptide hemolysin. In recent clinical scenarios, AGS, including this species, have frequently been isolated from infections and disorders beyond those in the oral cavity. Consequently, investigating this situation will reveal the potential pathogenicity of AGS to ectopic infections in humans. However, the precise mechanism underlying the cellular response induced by secreted SLS and its relevance to the pathogenicity of AGS strains remain largely unknown. This study aims to elucidate the mechanism underlying the host cellular response of the human acute monocytic leukemia cell line THP-1 to secreted SLS. In THP-1 cells incubated with the culture supernatant of ß-hemolytic SAA containing SLS as the sole cytotoxic factor, increased Ca2+ influx and elevated expression of proinflammatory cytokines were observed. Significantly reduced expression of SLS-dependent upregulated cytokine genes under Ca2+-chelating conditions suggests that Ca2+ influx triggers SLS-dependent cellular responses. Furthermore, SLS-dependent enhanced expression of IL-8 was also implicated in the activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. The findings presented in this study are crucial for a comprehensive understanding of the real pathogenicity of SLS-producing ß-hemolytic AGS in the latest clinical situations.

7.
Drug Discov Ther ; 18(4): 255-259, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39183043

RESUMEN

Actin rearrangement and phosphorylation-dephosphorylation in the nervous system contribute to plastic alteration of neuronal structure and function. Phosphatase and actin regulator (PHACTR) family members are actin- and protein phosphatase 1 (PP1)-binding proteins. Because some family members act as regulators of neuronal morphology, studying the regulatory mechanisms of PHACTR is valuable for understanding the basis of neuronal circuit formation. Although expression patterns of PHACTR family molecules (PHACTR1-4) vary across distinct brain areas, little is known about the extracellular ligands that influence their mRNA levels. In this study, we focused on an important neurotrophin, brain-derived neurotrophic factor (BDNF), and examined its effect on mRNA expression of PHACTR family member in cortical neurons. PHACTR1-3, but not PHACTR4, were affected by stimulation of primary cultured cortical neurons with BDNF; namely, sustained downregulation of their mRNA levels was observed. The observed downregulation was blocked by an inhibitor of the extracellular signal-regulated protein kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, U0126, suggesting that ERK/MAPK plays an inhibitory role for gene induction of PHACTR1-3. These findings aid the elucidation of how BDNF regulates actin- and PP1-related neuronal functions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Corteza Cerebral , Sistema de Señalización de MAP Quinasas , Neuronas , ARN Mensajero , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Animales , Neuronas/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Células Cultivadas , Ratas , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Butadienos/farmacología , Regulación hacia Abajo , Nitrilos/farmacología
8.
Oncol Rep ; 52(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39129320

RESUMEN

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that, with the cell migration assay data shown in Fig. 7 on p. 901, the "TPA" and "TPA + U0126" panels were strikingly similar, such that data which were intended to show the results from differently performed experiments had apparently been derived from the same original source. In addition, it was noted that the "TPA + hispolon" and "TPA + NAC" data panels in Fig. 4B on p. 899 contained overlapping sections. Thirdly, a data panel was shared between Figs. 1 and 4, although this was intentional on the part of the authors as the same experiment was being portrayed in these figures.  The authors were able to re­examine their original data files, and realized that errors were made in asssembling Figs. 4B and 7. The revised versions of Figs. 4 and 7, now containing the correct data for the "TPA + NAC" experiment in Fig. 4B and the Control ("Ctrl") experiment in Fig. 7, are shown on the next two pages. The authors wish to emphasize that the corrections made to these figures do not affect the overall conclusions reported in the paper, and they are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this corrigendum. All the authors agree to the publication of this corrigendum, and also apologize to the readership for any inconvenience caused. [Oncology Reports 35: 896­904, 2016; DOI: 10.3892/or.2015.4445].

9.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39125805

RESUMEN

A previous study showed that high-glucose (HG) conditions induce mitochondria fragmentation through the calcium-mediated activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) in H9C2 cells. This study tested whether empagliflozin could prevent HG-induced mitochondria fragmentation through this pathway. We found that exposing H9C2 cells to an HG concentration decreased cell viability and increased cell apoptosis and caspase-3. Empagliflozin could reverse the apoptosis effect of HG stimulation on H9C2 cells. In addition, the HG condition caused mitochondria fragmentation, which was reduced by empagliflozin. The expression of mitochondria fission protein was upregulated, and fusion proteins were downregulated under HG stimulation. The expression of fission proteins was decreased under empagliflozin treatment. Increased calcium accumulation was observed under the HG condition, which was decreased by empagliflozin. The increased expression of ERK 1/2 under HG stimulation was also reversed by empagliflozin. Our study shows that empagliflozin could reverse the HG condition, causing a calcium-dependent activation of the ERK 1/2 pathway, which caused mitochondria fragmentation in H9C2 cells.


Asunto(s)
Apoptosis , Compuestos de Bencidrilo , Calcio , Glucosa , Glucósidos , Sistema de Señalización de MAP Quinasas , Mitocondrias , Apoptosis/efectos de los fármacos , Compuestos de Bencidrilo/farmacología , Glucósidos/farmacología , Glucosa/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Calcio/metabolismo , Animales , Ratas , Línea Celular , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Caspasa 3/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo
10.
Dev Biol ; 516: 183-195, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39173814

RESUMEN

Fibroblast Growth Factors and their receptors (FGFRs) comprise a cell signaling module that can stimulate signaling by Ras and the kinases Raf, MEK, and ERK to regulate animal development and homeostatic functions. In Caenorhabditis elegans, the sole FGFR ortholog EGL-15 acts with the GRB2 ortholog SEM-5 to promote chemoattraction and migration by the sex myoblasts (SMs) and fluid homeostasis by the hypodermis (Hyp7). Cell-specific differences in EGL-15 signaling were suggested by the phenotypes caused by egl-15(n1457), an allele that removes a region of its C-terminal domain (CTD) known to bind SEM-5. To determine how mutations altered EGL-15 activity in the SMs and Hyp7, we used the kinase reporter ERK-KTR to measure activation of the ERK ortholog MPK-1. Consequences of egl-15(n1457) were cell-specific, resulting in loss of MPK-1 activity in the SMs and elevated activity in Hyp7. Previous studies of Hyp7 showed that loss of the CLR-1 phosphatase causes a fluid homeostasis defect termed "Clear" that is suppressed by reduction of EGL-15 signaling, a phenotype termed "Suppressor of Clear" (Soc). To identify mechanisms that permit EGL-15 signaling in Hyp7, we conducted a genetic screen for Soc mutants in the clr-1; egl-15(n1457) genotype. We report the identification of SOC-3, a protein with putative SEM-5-binding motifs and PH and PTB domains similar to DOK and IRS proteins. In combination with the egl-15(n1457) mutation, loss of either soc-3, the GAB1 ortholog soc-1, or the SHP2 ortholog ptp-2, reduced MPK-1 activation. We generated alleles of soc-3 to test the requirement for the SEM-5-binding motifs, finding that residue Tyr356 is required for function. We propose that EGL-15-mediated SM chemoattraction relies solely on the direct interaction between SEM-5 and the EGL-15 CTD. In Hyp7, EGL-15 signaling uses two mechanisms: the direct SEM-5 binding mechanism; and an alternative, CTD-independent mechanism involving SOC-3, SOC-1, and PTP-2. This work demonstrates that FGF signaling uses distinct, tissue-specific mechanisms in development, and identifies SOC-3 as a potential adaptor that facilitates Ras pathway activation by FGFR.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Receptores de Factores de Crecimiento de Fibroblastos , Transducción de Señal , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Transducción de Señal/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Mutación/genética , Proteína Quinasa 1 Activada por Mitógenos
11.
Zool Res ; 45(5): 1048-1060, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39147719

RESUMEN

Extracellular membrane proteins are crucial for mediating cell attachment, recognition, and signal transduction in the testicular microenvironment, particularly germline stem cells. Cadherin 18 (CDH18), a type II classical cadherin, is primarily expressed in the nervous and reproductive systems. Here, we investigated the expression of CDH18 in neonatal porcine prospermatogonia (ProSGs) and murine spermatogonial stem cells (SSCs). Disruption of CDH18 expression did not adversely affect cell morphology, proliferation, self-renewal, or differentiation in cultured porcine ProSGs, but enhanced cell adhesion and prolonged cell maintenance. Transcriptomic analysis indicated that the down-regulation of CDH18 in ProSGs significantly up-regulated genes and signaling pathways associated with cell adhesion. To further elucidate the function of CDH18 in germ cells, Cdh18 knockout mice were generated, which exhibited normal testicular morphology, histology, and spermatogenesis. Transcriptomic analysis showed increased expression of genes associated with adhesion, consistent with the observations in porcine ProSGs. The interaction of CDH18 with ß-catenin and JAK2 in both porcine ProSGs and murine SSCs suggested an inhibitory effect on the canonical Wnt and JAK-STAT signaling pathways during CDH18 deficiency. Collectively, these findings highlight the crucial role of CDH18 in regulating cell adhesion in porcine ProSGs and mouse SSCs. Understanding this regulatory mechanism provides significant insights into the testicular niche.


Asunto(s)
Cadherinas , Adhesión Celular , Animales , Masculino , Porcinos , Adhesión Celular/fisiología , Ratones , Cadherinas/metabolismo , Cadherinas/genética , Ratones Noqueados , Espermatogonias/metabolismo , Espermatogonias/fisiología , Testículo/metabolismo , Testículo/fisiología , Células Madre Germinales Adultas/metabolismo , Células Madre Germinales Adultas/fisiología , Regulación de la Expresión Génica , Células Madre/fisiología , Células Madre/metabolismo
12.
Pediatr Dermatol ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148304

RESUMEN

Mitogen-activated extracellular signal-regulated kinase inhibitors (MEKi) represent a promising new therapy for pediatric patients with low-grade gliomas, which frequently have abnormal signaling within the mitogen-activated protein kinase (MAP kinase) pathway. However, understanding of long-term efficacy and toxicity is limited in pediatric glioma patients. This article describes a rare presentation of a widespread cutaneous infection with Mycobacterium chelonae in a pediatric patient with a low-grade glioma treated with trametinib.

13.
FASEB J ; 38(17): e70018, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39212304

RESUMEN

Albuminuria is characterized by a disruption of the glomerular filtration barrier, which is composed of the fenestrated endothelium, the glomerular basement membrane, and the slit diaphragm. Nephrin is a major component of the slit diaphragm. Apart from hemodynamic effects, Ang II enhances albuminuria by ß-Arrestin2-mediated nephrin endocytosis. Blocking the AT1 receptor with candesartan and irbesartan reduces the Ang II-mediated nephrin-ß-Arrestin2 interaction. The inhibition of MAPK ERK 1/2 blocks Ang II-enhanced nephrin-ß-Arrestin2 binding. ERK 1/2 signaling, which follows AT1 receptor activation, is mediated by G-protein signaling, EGFR transactivation, and ß-Arrestin2 recruitment. A mutant AT1 receptor defective in EGFR transactivation and ß-Arrestin2 recruitment reduces the Ang II-mediated increase in nephrin ß-Arrestin2 binding. The mutation of ß-Arrestin2K11,K12, critical for AT1 receptor binding, completely abrogates the interaction with nephrin, independent of Ang II stimulation. ß-Arrestin2K11R,K12R does not influence nephrin cell surface expression. The data presented here deepen our molecular understanding of a blood-pressure-independent molecular mechanism of AT-1 receptor blockers (ARBs) in reducing albuminuria.


Asunto(s)
Angiotensina II , Endocitosis , Proteínas de la Membrana , Receptor de Angiotensina Tipo 1 , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Angiotensina II/farmacología , Angiotensina II/metabolismo , Humanos , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 1/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Ratones , Albuminuria/metabolismo , Podocitos/metabolismo , Podocitos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Compuestos de Bifenilo/farmacología , Irbesartán/farmacología , Células HEK293 , Arrestina beta 2/metabolismo , Arrestina beta 2/genética , Bencimidazoles , Tetrazoles
14.
Chem Biodivers ; : e202401238, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075025

RESUMEN

The evolutionarily conserved extracellular signal-regulated kinase 2 (ERK2) is involved in regulating cellular signaling in both normal and pathological conditions. ERK2 expression is critical for human development, while hyperactivation is a major factor in tumor progression. Up to now, there have been no approved inhibitors that target ERK2, and as such, here we report on screening of a naturally occurring plant-based anticancerous compound-activity-target (NPACT) database for prospective ERK2 inhibitors. More than 1,500 phytochemicals were screened using in-silico molecular docking and molecular dynamics (MD) approaches. NPACT compounds with a docking score lower than a co-crystallized LHZ inhibitor (calc.-10.5 kcal/mol) were subjected to MD simulations. Binding energies (ΔGbinding) of inhibitor-ERK2 complexes over the MD course were estimated using an MM-GBSA approach. Based on MM-GBSA//100 ns MD simulations, the steroid zhankuic acid C (NPACT01034) demonstrated greater binding affinity against ERK2 protein than LHZ, with ΔGbinding values of -50.0 and -47.7 kcal/mol, respectively. Structural and energetical analyses throughout the MD course demonstrated stabilization of zhankuic acid C complexed with ERK2 protein. The anticipated ADMET properties of zhankuic acid C indicated minimal toxicity. Moreover, in-silico evaluation of fourteen ERK2 inhibitors in clinical trials demonstrated the higher binding affinity of zhankuic acid C towards ERK2 protein.

15.
Am J Physiol Renal Physiol ; 327(4): F591-F598, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024358

RESUMEN

Vasopressin controls water permeability in the renal collecting duct by regulating the water channel protein, aquaporin-2 (AQP2). Phosphoproteomic studies have identified multiple proteins that undergo phosphorylation changes in response to vasopressin. The kinases responsible for the phosphorylation of most of these sites have not been identified. Here, we use large-scale Bayesian data integration to predict the responsible kinases for 51 phosphoproteomically identified vasopressin-regulated phosphorylation sites in the renal collecting duct. To do this, we applied Bayes' rule to rank the 515 known mammalian protein kinases for each site. Bayes' rule was applied recursively to integrate each of the seven independent datasets, each time using the posterior probability vector of a given step as the prior probability vector of the next step. In total, 30 of the 33 phosphorylation sites that increase with vasopressin were predicted to be phosphorylated by protein kinase A (PKA) catalytic subunit-α, consistent with prior studies implicating PKA in vasopressin signaling. Eighteen of the vasopressin-regulated phosphorylation sites were decreased in response to vasopressin and all but three of these sites were predicted to be targets of extracellular signal-regulated kinases, ERK1 and ERK2. This result implies that ERK1 and ERK2 are inhibited in response to vasopressin V2 receptor occupation, secondary to PKA activation. The six phosphorylation sites not predicted to be phosphorylated by PKA or ERK1/2 are potential targets of other protein kinases previously implicated in aquaporin-2 regulation, including cyclin-dependent kinase 18 (CDK18), calmodulin-dependent kinase 2δ (CAMK2D), AMP-activated kinase catalytic subunit-α-1 (PRKAA1) and CDC42 binding protein kinase ß (CDC42BPB).NEW & NOTEWORTHY Vasopressin regulates water transport in the renal collecting duct in part through phosphorylation or dephosphorylation of proteins that regulate aquaporin-2. Prior studies have identified 51 vasopressin-regulated phosphorylation sites in 45 proteins. This study uses Bayesian data integration techniques to combine information from multiple prior proteomics and transcriptomics studies to predict the protein kinases that phosphorylate the 51 sites. Most of the regulated sites were predicted to be phosphorylated by protein kinase A or ERK1/ERK2.


Asunto(s)
Acuaporina 2 , Teorema de Bayes , Túbulos Renales Colectores , Vasopresinas , Fosforilación , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Animales , Vasopresinas/farmacología , Vasopresinas/metabolismo , Acuaporina 2/metabolismo , Acuaporina 2/genética , Transducción de Señal , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Receptores de Vasopresinas/metabolismo , Receptores de Vasopresinas/genética , Proteómica/métodos , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética
16.
Biochem Biophys Res Commun ; 734: 150447, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39083976

RESUMEN

Adipose-derived stem cell (ASC)-released exosomes (ASCexos) have multiple biological activities. We examined the effect of ASCexos derived from the inguinal adipose tissue of exercise-trained rats (EX-ASCexos) on adipogenic conversion of 3T3-L1 cells and analyzed their microRNA (miRNA) expression profiles. Differentiation of 3T3-L1 cells into adipocytes was performed for 9 d with EX-ASCexos or ASCexos from sedentary control rats (SED-ASCexos), and the expression of proteins and miRNA involved in adipogenic differentiation were determined. EX-ASCexos but not SED-ASCexos attenuated 3T3-L1 adipocyte differentiation with increased phosph-Ser112PPARγ expression, the inactive form of PPARγ. These differentiated adipocytes were also accompanied by increased phosph-Thr202/Tyr204ERK and decreased dual-specificity phosphatase 3 (DUSP3) levels. The exosomal miRNAs miR-323-5p, miR-433-3p, and miR-874-3p were identified specifically in EX-ASCexos. Of these, miR-323-5p mimic replicated the EX-ASCexo-induced suppression of 3T3-L1 adipocyte differentiation and altered adipogenesis-related factor expression. In conclusion, exercise training-driven exosomal miR-323-5p suppressed 3T3-L1 adipogenesis by increasing phosph-Ser112PPARγ expression, while phosph-Thr202/Tyr204ERK accumulation inhibited DUSP3 expression.

17.
Adv Pharmacol ; 100: 181-207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39034052

RESUMEN

The extracellular signal-regulated kinases-1 and 2 (ERK1/2) are ubiquitous regulators of many cellular functions, including proliferation, differentiation, migration, and cell death. ERK1/2 regulate cell functions by phosphorylating a diverse collection of protein substrates consisting of other kinases, transcription factors, structural proteins, and other regulatory proteins. ERK1/2 regulation of cell functions is tightly regulated through the balance between activating phosphorylation by upstream kinases and inactivating dephosphorylation by phosphatases. Disruption of homeostatic ERK1/2 regulation caused by elevated extracellular signals or mutations in upstream regulatory proteins leads to the constitutive activation of ERK1/2 signaling and uncontrolled cell proliferation observed in many types of cancer. Many inhibitors of upstream kinase regulators of ERK1/2 have been developed and are part of targeted therapeutic options to treat a variety of cancers. However, the efficacy of these drugs in providing sustained patient responses is limited by the development of acquired resistance often involving re-activation of ERK1/2. As such, recent drug discovery efforts have focused on the direct targeting of ERK1/2. Several ATP competitive ERK1/2 inhibitors have been identified and are being tested in cancer clinical trials. One drug, Ulixertinib (BVD-523), has received FDA approval for use in the Expanded Access Program for patients with no other therapeutic options. This review provides an update on ERK1/2 inhibitors in clinical trials, their successes and limitations, and new academic drug discovery efforts to modulate ERK1/2 signaling for treating cancer and other diseases.


Asunto(s)
Neoplasias , Inhibidores de Proteínas Quinasas , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Desarrollo de Medicamentos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
18.
Hum Cell ; 37(5): 1553-1558, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39052150

RESUMEN

In the past few decades, the global prevalence of diabetes has provided us with a warning about future chronic complications. Diabetic nephropathy (DN) is the main cause of end-stage kidney disease. Podocytes in the glomerulus play a critical role in regulating glomerular permeability, and podocyte injury is one of the main causes of DN. Extracellular signal-regulated kinase (ERK) is a member of the mitogen-activated protein kinase family that plays critical roles in intracellular signal transduction. In human patients with DN, phosphorylated ERK (pERK), the active form of ERK, is increased in the glomeruli. However, information on the expression of pERK, specifically in podocytes in DN, is limited. Meanwhile, high glucose induces ERK activation in immortalized podocyte cell lines, suggesting the involvement of podocytic ERK in DN. We performed an immunohistochemical study using Wilms' tumor-1 (WT-1) as a podocyte-specific marker to investigate whether podocytic pERK levels are increased in patients with DN. In the glomeruli of the DN group, we observed remarkable co-staining for WT-1 and pERK. In contrast, the glomeruli of the control group contained only a few pERK-positive podocytes. Statistical analyses revealed that, relative to healthy controls, patients with DN showed significantly increased pERK expression levels in cells that were positive for WT-1 (DN: 51.3 ± 13.1% vs. control: 7.3 ± 1.6%, p = 0.0158, t-test, n = 4 for each group). This suggests that ERK activation in podocytes is involved in the pathogenesis of DN.


Asunto(s)
Nefropatías Diabéticas , Quinasas MAP Reguladas por Señal Extracelular , Podocitos , Humanos , Podocitos/metabolismo , Podocitos/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/etiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Proteínas WT1/metabolismo , Proteínas WT1/genética , Fosforilación , Activación Enzimática , Anciano , Adulto , Glomérulos Renales/patología , Glomérulos Renales/metabolismo
19.
BMC Chem ; 18(1): 108, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831341

RESUMEN

Determination of protein-ligand binding affinity (PLA) is a key technological tool in hit discovery and lead optimization, which is critical to the drug development process. PLA can be determined directly by experimental methods, but it is time-consuming and costly. In recent years, deep learning has been widely applied to PLA prediction, the key of which lies in the comprehensive and accurate representation of proteins and ligands. In this study, we proposed a multi-modal deep learning model based on the early fusion strategy, called DeepLIP, to improve PLA prediction by integrating multi-level information, and further used it for virtual screening of extracellular signal-regulated protein kinase 2 (ERK2), an ideal target for cancer treatment. Experimental results from model evaluation showed that DeepLIP achieved superior performance compared to state-of-the-art methods on the widely used benchmark dataset. In addition, by combining previously developed machine learning models and molecular dynamics simulation, we screened three novel hits from a drug-like natural product library. These compounds not only had favorable physicochemical properties, but also bound stably to the target protein. We believe they have the potential to serve as starting molecules for the development of ERK2 inhibitors.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38859788

RESUMEN

BACKGROUND: Neurotrophins are essential factors for neural growth and function; they play a crucial role in neurodegenerative diseases where their expression levels are altered. Our previous research has demonstrated changes in synaptic plasticity and neurotrophin expression levels in a pharmacological model of Huntington's disease induced by 3-nitropropionic acid (3-NP). In the 3- NP-induced HD model, corticostriatal Long Term Depression (LTD) was impaired, but neurotrophin-3 (NT-3) restored striatal LTD. This study delves into the NT-3-induced signaling pathways involved in modulating and restoring striatal synaptic plasticity in cerebral slices from 3-NPinduced striatal degeneration in mice in vivo. METHODS: Phospholipase C (PLC), phosphatidylinositol-3-kinase (PI3K), and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways activated by NT-3 were analyzed by means of field electrophysiological recordings in brain slices from control and 3-NP treated in the presence of specific inhibitors of the signaling pathways. RESULTS: Using specific inhibitors, PLC, PI3K, and MEK/ERK signaling pathways contribute to NT3-mediated plasticity modulation in striatal tissue slices recorded from control animals. However, in the neurodegeneration model induced by 3-NP, the recovery of striatal LTD induced by NT-3 was prevented only by the PLC inhibitor. Moreover, the PLC signaling pathway appeared to trigger downstream activation of the endocannabinoid system, evidenced by AM 251, an inhibitor of the CB1 receptor, also hindered NT-3 plasticity recovery. CONCLUSION: Our finding highlights the specific involvement of the PLC pathway in the neuroprotective effects of NT-3 in mitigating synaptic dysfunction under neurodegenerative conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA