Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Anim Ecol ; 91(2): 308-319, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34704260

RESUMEN

Compensatory recruitment is a key demographic mechanism that has allowed the coexistence of populations of susceptible amphibians with Batrachochytrium dendrobatidis (Bd), a fungus causing one of the most devastating emerging infectious disease ever recorded among vertebrates. However, the underlying processes (e.g. density-dependent increase in survival at early life stages, change in reproductive traits) as well as the level of interpopulation variation in this response are poorly known. We explore potential mechanisms of compensatory recruitment in response to Bd infection by taking advantage of an amphibian system where male reproductive traits are easy to quantify in free-living populations. The Southern Darwin's frog Rhinoderma darwinii is a vocal sac-brooding species that exhibits a high susceptibility to lethal Bd infection. Using a 7-year capture-recapture study at four populations with contrasting Bd infection status (one high prevalence, one low prevalence and two Bd-free populations), we evaluated whether Bd-positive populations exhibited a higher adult recruitment and a higher male reproductive effort than Bd-negative populations. We also estimated population growth rates to explore whether recruitment compensated for the negative impacts of Bd on the survival of adults. In addition, we evaluated a potential demographic signal of compensatory recruitment (i.e. positive relationship between the proportion of juveniles and Bd prevalence) in response to Bd infection using raw count data from 13 R. darwinii populations. The high Bd prevalence population exhibited the highest male reproductive effort and the highest recruitment among the four monitored populations. This led to a growing population during the study period despite high mortality of adult hosts. In contrast, males from the population with low Bd prevalence had a low reproductive effort and this population, which had the lowest adult recruitment, was declining during the study period despite adults having a higher survival in comparison to the high Bd prevalence population. We also found a demographic signal of compensatory recruitment in response to Bd infection in our broader analysis of 13 R. darwinii populations. Our study underlines the importance of interpopulation variation in life-history strategies on the fate of host populations after infectious disease emergence. Our results also suggest that an increase in reproductive effort can be one of the processes underlying compensatory recruitment in populations of Bd-susceptible amphibians.


Asunto(s)
Quitridiomicetos , Micosis , Anfibios/microbiología , Animales , Anuros/microbiología , Quitridiomicetos/fisiología , Masculino , Micosis/epidemiología , Micosis/microbiología , Micosis/veterinaria , Dinámica Poblacional , Reproducción
2.
J Helminthol ; 94: e204, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33092670

RESUMEN

Parasites may affect host demographic characteristics because they can directly or indirectly cause the death of their hosts and/or influence their reproduction. Parasitism is therefore recognized as a factor that influences the composition and structure of populations and communities. One of these behaviours is the compensatory response: the host can compensate for the parasite losses effect, modifying the reproductive effort to enhance fitness. Ovigerus female Palaemonetes argentinus was collected and sorted into two groups according to the degree of development of their embryos: newly spawned embryos and embryos ready to hatch. The number of embryos and their dry weight for each female were determined. All parts of the female body were checked for parasites. The females of P. argentinus were parasitized by Microphalus szidati. We found that parasitized females produce more embryos but had more egg loss during development and the percentage of embryonic loss was higher in the parasitized females than in non-parasitized. Parasitized females produced lighter eggs than those from uninfected females. This supports the compensatory reproduction hypothesis suggested for this species. Parasitism can change life history traits in a way that fecundity can be compensated; this co-evolution between host and parasites will be population or context dependent. Parasites are a functional part of any ecosystem and as our results show, deleting parasites in life history traits and reproduction studies in free living organisms could lead to an incomplete picture of the true processes that happen in nature.


Asunto(s)
Interacciones Huésped-Parásitos , Óvulo/patología , Palaemonidae/parasitología , Reproducción , Trematodos/crecimiento & desarrollo , Animales , Femenino , Fertilidad , Óvulo/crecimiento & desarrollo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA