Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 512
Filtrar
1.
Small ; : e2403007, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126239

RESUMEN

Microrobots have the potential for diverse applications, including targeted drug delivery and minimally invasive surgery. Despite advancements in microrobot design and actuation strategies, achieving precise control over their motion remains challenging due to the dominance of viscous drag, system disturbances, physicochemical heterogeneities, and stochastic Brownian forces. Here, a precise control over the interfacial motion of model microellipsoids is demonstrated using time-varying rotating magnetic fields. The impacts of microellipsoid aspect ratio, field characteristics, and magnetic properties of the medium and the particle on the motion are investigated. The role of mobile micro-vortices generated is highlighted by rotating microellipsoids in capturing, transporting, and releasing cargo objects. Furthermore, an approach is presented for controlled navigation through mazes based on real-time particle and obstacle sensing, path planning, and magnetic field actuation without human intervention. The study introduces a mechanism of directing motion of microparticles using rotating magnetic fields, and a control scheme for precise navigation and delivery of micron-sized cargo using simple microellipsoids as microbots.

2.
J Neuroeng Rehabil ; 21(1): 141, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135048

RESUMEN

BACKGROUND: Patients with neurological disorders including stroke use rehabilitation to improve cognitive abilities, to regain motor function and to reduce the risk of further complications. Robotics-assisted tilt table technology has been developed to provide early mobilisation and to automate therapy involving the lower limbs. The aim of this study was to evaluate the feasibility of employing a feedback control system for heart rate (HR) during robotics-assisted tilt table exercise in patients after a stroke. METHODS: This feasibility study was designed as a case series with 12 patients ( n = 12 ) with no restriction on the time post-stroke or on the degree of post-stroke impairment severity. A robotics-assisted tilt table was augmented with force sensors, a work rate estimation algorithm, and a biofeedback screen that facilitated volitional control of a target work rate. Dynamic models of HR response to changes in target work rate were estimated in system identification tests; nominal models were used to calculate the parameters of feedback controllers designed to give a specified closed-loop bandwidth; and the accuracy of HR control was assessed quantitatively in feedback control tests. RESULTS: Feedback control tests were successfully conducted in all 12 patients. Dynamic models of heart rate response to imposed work rate were estimated with a mean root-mean-square (RMS) model error of 2.16 beats per minute (bpm), while highly accurate feedback control of heart rate was achieved with a mean RMS tracking error (RMSE) of 2.00 bpm. Control accuracy, i.e. RMSE, was found to be strongly correlated with the magnitude of heart rate variability (HRV): patients with a low magnitude of HRV had low RMSE, i.e. more accurate HR control performance, and vice versa. CONCLUSIONS: Feedback control of heart rate during robotics-assisted tilt table exercise was found to be feasible. Future work should investigate robustness aspects of the feedback control system. Modifications to the exercise modality, or alternative modalities, should be explored that allow higher levels of work rate and heart rate intensity to be achieved.


Asunto(s)
Terapia por Ejercicio , Estudios de Factibilidad , Frecuencia Cardíaca , Robótica , Rehabilitación de Accidente Cerebrovascular , Humanos , Frecuencia Cardíaca/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Rehabilitación de Accidente Cerebrovascular/instrumentación , Masculino , Robótica/métodos , Robótica/instrumentación , Femenino , Persona de Mediana Edad , Anciano , Terapia por Ejercicio/métodos , Terapia por Ejercicio/instrumentación , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Biorretroalimentación Psicológica/métodos , Biorretroalimentación Psicológica/instrumentación , Adulto
3.
Proc Inst Mech Eng H ; : 9544119241272766, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136262

RESUMEN

A biologically-inspired actuation system, including muscles, spinal reflexes, and vestibular feedback, may be capable of achieving more natural gait mechanics in powered prostheses or exoskeletons. In this study, we developed a Virtual Muscle Reflex (VMR) system to control ankle torque and tuned it using data from human responses to anteroposterior mechanical perturbations at three walking speeds. The system consists of three Hill-Type muscles, simulated in real time, and uses feedback from ground reaction force and from stretch sensors on the virtual muscle fibers. Controller gains, muscle properties, and reflex/vestibular time delays were optimized using Covariance Matrix Adaptation (CMA) to minimize the difference between the VMR torque output and the torque measured from the experiment. We repeated the procedure using a conventional finite-state impedance controller. For both controllers, the coefficient of determination (R2) and root-mean-square error (RMSE) was calculated as a function of time within the gait cycle. The VMR had lower RMSE than the impedance controller in 70%, and in 60% of the trials, the R2 of the VMR controller was higher than for the impedance controller. We concluded that the VMR system can better reproduce the human responses to perturbations than the impedance controller.

4.
Magn Reson Med ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39188123

RESUMEN

PURPOSE: To provide a navigator-based run-time motion and first-order field correction for three-dimensional human brain imaging with high precision, minimal calibration and acquisition, and fast processing. METHODS: A complex-valued linear perturbation model with feedback control is extended to estimate and correct for gradient shim fields using orbital navigators (2.3 ms). Two approaches for sensitizing the model to gradient fields are presented, one based on finite differences with three additional navigators, and another projection-based approximation requiring no additional navigators. A mechanism for noise decorrelation of the matrix and the data is proposed and evaluated to reduce unwanted parameter biases. RESULTS: The rigid motion and first-order field control achieves robust motion and gradient shim corrections improving image quality in a series of phantom and in vivo experiments with varying field conditions. In phantom scans, magnet drifts, forced gradient field perturbations and field distortions from shifts of a second bottle phantom are successfully corrected. Field estimates of the magnet drifts are in good agreement with concurrent field probe measurements. For in vivo scans, the proposed method mitigates field variations from torso motions while being robust to head motion. In vivo gradient field precisions were 30 nT / m $$ 30\;\mathrm{nT}/\mathrm{m} $$ along with single-digit micrometer and millidegree rigid precisions. CONCLUSION: The navigator-based method achieves accurate, high-precision run-time motion and field corrections with low sequence impact and calibration requirements.

5.
Math Biosci Eng ; 21(6): 6263-6288, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-39176426

RESUMEN

This paper focuses on the feedback global stabilization and observer construction for a sterile insect technique model. The sterile insect technique (SIT) is one of the most ecological methods for controlling insect pests responsible for worldwide crop destruction and disease transmission. In this work, we construct a feedback law that globally asymptotically stabilizes an SIT model at extinction equilibrium. Since the application of this type of control requires the measurement of different states of the target insect population, and, in practice, some states are more difficult or more expensive to measure than others, it is important to know how to construct a state estimator, which from a few well-chosen measured states, estimates the other ones, as the one we build in the second part of our work. In the last part of our work, we show that we can apply the feedback control with estimated states to stabilize the full system.


Asunto(s)
Retroalimentación , Insectos , Animales , Control Biológico de Vectores/métodos , Control Biológico de Vectores/estadística & datos numéricos , Simulación por Computador , Modelos Biológicos , Algoritmos
6.
Front Optoelectron ; 17(1): 26, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098865

RESUMEN

On-chip optical power monitors are indispensable for functional implementation and stabilization of large-scale and complex photonic integrated circuits (PICs). Traditional on-chip optical monitoring is implemented by tapping a small portion of optical power from the waveguide, which leads to significant loss. Due to its advantages like non-invasive nature, miniaturization, and complementary metal-oxide-semiconductor (CMOS) process compatibility, a transparent monitor named the contactless integrated photonic probe (CLIPP), has been attracting great attention in recent years. The CLIPP indirectly monitors the optical power in the waveguide by detecting the conductance variation of the local optical waveguide caused by the surface state absorption (SSA) effect. In this review, we first introduce the fundamentals of the CLIPP including the concept, the equivalent electric model and the impedance read-out method, and then summarize some characteristics of the CLIPP. Finally, the functional applications of the CLIPP on the identification and feedback control of optical signal are discussed, followed by a brief outlook on the prospects of the CLIPP.

7.
ACS Synth Biol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120961

RESUMEN

Microorganisms are shown to actively partition their intracellular resources, such as proteins, for growth optimization. Recent experiments have begun to reveal molecular components unpinning the partition; however, quantitatively, it remains unclear how individual parts orchestrate to yield precise resource allocation that is both robust and dynamic. Here, we developed a coarse-grained mathematical framework that centers on guanosine pentaphosphate (ppGpp)-mediated regulation and used it to systematically uncover the design principles of proteome allocation in Escherichia coli. Our results showed that the cellular ability of resource partition lies in an ultrasensitive, negative feedback-controlling topology with the ultrasensitivity arising from zero-order amino acid kinetics and the negative feedback from ppGpp-controlled ribosome synthesis. In addition, together with the time-scale separation between slow ribosome kinetics and fast turnovers of ppGpp and amino acids, the network topology confers the organism an optimization mechanism that mimics sliding mode control, a nonlinear optimization strategy that is widely used in man-made systems. We further showed that such a controlling mechanism is robust against parameter variations and molecular fluctuations and is also efficient for biomass production over time. This work elucidates the fundamental controlling mechanism of E. coli proteome allocation, thereby providing insights into quantitative microbial physiology as well as the design of synthetic gene networks.

8.
Micromachines (Basel) ; 15(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39064422

RESUMEN

A single nitrogen-vacancy (NV) center in a diamond can be used as a nanoscale sensor for magnetic field, electric field or nuclear spins. Due to its low photon detection efficiency, such sensing processes often take a long time, suffering from an electron spin resonance (ESR) frequency fluctuation induced by the time-varying thermal perturbations noise. Thus, suppressing the thermal noise is the fundamental way to enhance single-sensor performance, which is typically achieved by utilizing a thermal control protocol with a complicated and highly costly apparatus if a millikelvin-level stabilization is required. Here, we analyze the real-time thermal drift and utilize an active way to alternately track the single-spin ESR frequency drift in the experiment. Using this method, we achieve a temperature stabilization effect equivalent to sub-millikelvin (0.8 mK) level with no extra environmental thermal control, and the spin-state readout contrast is significantly improved in long-lasting experiments. This method holds broad applicability for NV-based single-spin experiments and harbors the potential for prospective expansion into diverse nanoscale quantum sensing domains.

9.
Hum Mov Sci ; 96: 103250, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964027

RESUMEN

Movement sonification can improve motor control in both healthy subjects (e.g., learning or refining a sport skill) and those with sensorimotor deficits (e.g., stroke patients and deafferented individuals). It is not known whether improved motor control and learning from movement sonification are driven by feedback-based real-time ("online") trajectory adjustments, adjustments to internal models over multiple trials, or both. We searched for evidence of online trajectory adjustments (muscle twitches) in response to movement sonification feedback by comparing the kinematics and error of reaches made with online (i.e., real-time) and terminal sonification feedback. We found that reaches made with online feedback were significantly more jerky than reaches made with terminal feedback, indicating increased muscle twitching (i.e., online trajectory adjustment). Using a between-subject design, we found that online feedback was associated with improved motor learning of a reach path and target over terminal feedback; however, using a within-subjects design, we found that switching participants who had learned with online sonification feedback to terminal feedback was associated with a decrease in error. Thus, our results suggest that, with our task and sonification, movement sonification leads to online trajectory adjustments which improve internal models over multiple trials, but which themselves are not helpful online corrections.


Asunto(s)
Desempeño Psicomotor , Humanos , Desempeño Psicomotor/fisiología , Masculino , Fenómenos Biomecánicos , Femenino , Adulto Joven , Adulto , Retroalimentación Sensorial , Destreza Motora/fisiología , Orientación , Músculo Esquelético/fisiología , Movimiento/fisiología , Aprendizaje
10.
bioRxiv ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39026879

RESUMEN

Previous studies have revealed that auditory processing is modulated during the planning phase immediately prior to speech onset. To date, the functional relevance of this pre-speech auditory modulation (PSAM) remains unknown. Here, we investigated whether PSAM reflects neuronal processes that are associated with preparing auditory cortex for optimized feedback monitoring as reflected in online speech corrections. Combining electroencephalographic PSAM data from a previous data set with new acoustic measures of the same participants' speech, we asked whether individual speakers' extent of PSAM is correlated with the implementation of within-vowel articulatory adjustments during /b/-vowel-/d/ word productions. Online articulatory adjustments were quantified as the extent of change in inter-trial formant variability from vowel onset to vowel midpoint (a phenomenon known as centering). This approach allowed us to also consider inter-trial variability in formant production and its possible relation to PSAM at vowel onset and midpoint separately. Results showed that inter-trial formant variability was significantly smaller at vowel midpoint than at vowel onset. PSAM was not significantly correlated with this amount of change in variability as an index of within-vowel adjustments. Surprisingly, PSAM was negatively correlated with inter-trial formant variability not only in the middle but also at the very onset of the vowels. Thus, speakers with more PSAM produced formants that were already less variable at vowel onset. Findings suggest that PSAM may reflect processes that influence speech acoustics as early as vowel onset and, thus, that are directly involved in motor command preparation (feedforward control) rather than output monitoring (feedback control).

11.
Eur J Neurol ; 31(9): e16368, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38923784

RESUMEN

BACKGROUND AND PURPOSE: Human motor planning and control depend highly on optimal feedback control systems, such as the neocortex-cerebellum circuit. Here, diffusion tensor imaging was used to verify the disruption of the neocortex-cerebellum circuit in spinocerebellar ataxia type 3 (SCA3), and the circuit's disruption correlation with SCA3 motor dysfunction was investigated. METHODS: This study included 45 patients with familial SCA3, aged 17-67 years, and 49 age- and sex-matched healthy controls, aged 21-64 years. Tract-based spatial statistics and probabilistic tractography was conducted using magnetic resonance images of the patients and controls. The correlation between the local probability of probabilistic tractography traced from the cerebellum and clinical symptoms measured using specified symptom scales was also calculated. RESULTS: The cerebellum-originated probabilistic tractography analysis showed that structural connectivity, mainly in the subcortical cerebellar-thalamo-cortical tract, was significantly reduced and the cortico-ponto-cerebellar tract was significantly stronger in the SCA3 group than in the control group. The enhanced tract was extended to the right lateral parietal region and the right primary motor cortex. The enhanced neocortex-cerebellum connections were highly associated with disease progression, including duration and symptomatic deterioration. Tractography probabilities from the cerebellar to parietal and sensorimotor areas were significantly negatively correlated with motor abilities in patients with SCA3. CONCLUSION: To our knowledge, this study is the first to reveal that disrupting the neocortex-cerebellum loop can cause SCA3-induced motor dysfunctions. The specific interaction between the cerebellar-thalamo-cortical and cortico-ponto-cerebellar pathways in patients with SCA3 and its relationship with ataxia symptoms provides a new direction for future research.


Asunto(s)
Cerebelo , Retroalimentación Sensorial , Enfermedad de Machado-Joseph , Neocórtex , Enfermedad de Machado-Joseph/diagnóstico por imagen , Enfermedad de Machado-Joseph/fisiopatología , Humanos , Masculino , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Imagen de Difusión Tensora , Neocórtex/diagnóstico por imagen , Neocórtex/fisiopatología , Cerebelo/diagnóstico por imagen , Cerebelo/fisiopatología
12.
Water Sci Technol ; 89(11): 3147-3162, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877636

RESUMEN

Real-time and model-predictive control promises to make urban drainage systems (UDS) adaptive, coordinated, and dynamically optimal. Though early implementations are promising, existing control algorithms have drawbacks in computational expense, trust, system-level coordination, and labor cost. Linear feedback control has distinct advantages in computational expense, interpretation, and coordination. However, current methods for building linear feedback controllers require calibrated software models. Here we present an automated method for generating tunable linear feedback controllers that require only system response data. The controller design consists of three main steps: (1) estimating the network connectivity using tools for causal inference, (2) identifying a linear, time-invariant (LTI) dynamical system which approximates the network, and (3) designing and tuning a feedback controller based on the LTI urban drainage system approximation. The flooding safety, erosion prevention, and water treatment performance of the method are evaluated across 190 design storms on a separated sewer model. Strong results suggest that the system knowledge required for generating effective, safe, and tunable controllers for UDS is surprisingly basic. This method allows near-turnkey synthesis of controllers solely from sensor data or reduction of process-based models.


Asunto(s)
Drenaje de Agua , Modelos Teóricos , Ciudades , Retroalimentación
13.
J Electromyogr Kinesiol ; 78: 102915, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38936234

RESUMEN

Walking without falling requires stabilization of the trajectory of the body center of mass relative to the base of support. Model studies suggest that this requires active, feedback control, i.e., the nervous system must process sensory information on the state of the body to generate descending motor commands to the muscles to stabilize walking, especially in the mediolateral direction. Stabilization of bipedal gait is challenging and can be impaired in older and diseased individuals. In this tutorial, we illustrate how gait analysis can be used to assess the stabilizing feedback control of gait. We present methods ranging from those that require limited input data (e.g. position data of markers placed on the feet and pelvis only) to those that require full-body kinematics and electromyography. Analyses range from simple kinematics analyses to inverse dynamics. These methods assess stabilizing feedback control of human walking at three levels: 1) the level of center of mass movement and horizontal ground reaction forces, 2) the level of center of mass movement and foot placement and 3) the level of center of mass movement and the joint moments or muscle activity. We show how these can be calculated and provide a GitHub repository (https://github.com/VU-HMS/Tutorial-stabilizing-walking) which contains open access Matlab and Python code to calculate these. Finally, we discuss what information on feedback control can be learned from each of these.

14.
Front Robot AI ; 11: 1396082, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835929

RESUMEN

We demonstrate proprioceptive feedback control of a one degree of freedom soft, pneumatically actuated origami robot and an assembly of two robots into a two degree of freedom system. The base unit of the robot is a 41 mm long, 3-D printed Kresling-inspired structure with six sets of sidewall folds and one degree of freedom. Pneumatic actuation, provided by negative fluidic pressure, causes the robot to contract. Capacitive sensors patterned onto the robot provide position estimation and serve as input to a feedback controller. Using a finite element approach, the electrode shapes are optimized for sensitivity at larger (more obtuse) fold angles to improve control across the actuation range. We demonstrate stable position control through discrete-time proportional-integral-derivative (PID) control on a single unit Kresling robot via a series of static set points to 17 mm, dynamic set point stepping, and sinusoidal signal following, with error under 3 mm up to 10 mm contraction. We also demonstrate a two-unit Kresling robot with two degree of freedom extension and rotation control, which has error of 1.7 mm and 6.1°. This work contributes optimized capacitive electrode design and the demonstration of closed-loop feedback position control without visual tracking as an input. This approach to capacitance sensing and modeling constitutes a major step towards proprioceptive state estimation and feedback control in soft origami robotics.

15.
Sensors (Basel) ; 24(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38894123

RESUMEN

The self-sensing technology of microactuators utilizes a smart material to concurrently actuate and sense in a closed-loop control system. This work aimed to develop a position feedback-control system of nickel electrothermal microactuators using a resistivity self-sensing technique. The system utilizes the change in heating/sensing elements' resistance, due to the Joule heat, as the control parameter. Using this technique, the heating/sensing elements would concurrently sense and actuate in a closed loop control making the structures of microactuators simple. From a series of experiments, the proposed self-sensing feedback control system was successfully demonstrated. The tip's displacement error was smaller than 3 µm out of the displacement span of 60 µm. In addition, the system was less sensitive to the abrupt temperature change in surroundings as it was able to displace the microactuator's tip back to the desired position within 5 s, which was much faster than a feed-forward control system.

16.
ISA Trans ; 150: 232-242, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777692

RESUMEN

Using the linear approach to design a controller is still prevalent. The state feedback control (SFC) is applied in this paper to improve the dynamic response of permanent magnet synchronous machine (PMSM) speed regulation systems. First, a third-order augmented system is constructed for the reason that a higher-order system has better disturbance rejection. It can be found through analysis and comparison that the order of the proposed speed controller is increased. The parameters of SFC are selected by utilizing the linear quadratic regulator (LQR), and the influence of matrix Q on dynamic performance is detailed through the Bode diagram. Additionally, considering parametric uncertainties and unmodeled dynamics, a disturbance observer (DOB) using the Luenberger observer is designed to further boost anti-disturbance performance. Finally, plenty of experimental results verify the effectiveness of the proposed methods.

17.
Laryngoscope ; 134(8): 3754-3760, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38727193

RESUMEN

OBJECTIVES: The aim was to describe the acoustic, auditory-perceptive, and subjective voice changes under the Lombard effect (LE) in adductor laryngeal dystonia (AdLD) patients. METHODS: Subjective perception of vocal effort (OMNI Vocal Effort Scale OMNI-VES), Maximum Phonation Time (MPT), and the perceptual severity of dysphonia (GRBAS scale) were assessed in condition of stillness and under LE in 10 AdLD patients and in 10 patients with typical voice. Speakers were asked to produce the sustained vowel /a/ and to read a phonetically balanced text aloud. Using the PRAAT software, the following acoustic parameters were analyzed: Mean Pitch (Hz), Minimum and Maximum Intensity (dB), the Fraction of Locally Unvoiced Frames, the Number of Voice Breaks, the Degree of Voice Breaks (%), the Cepstral Peak Prominence-Smoothed (CPPS) (dB). RESULTS: Under LE, the AdLD group showed a decrease of both G and S parameters of GRBAS and subjective effort, mean MPT increased significantly; in the controls there were no significant changes. In both groups under LE, pitch and intensity of the sustained vowel /a/ significantly increased consistently with LE. In the AdLD group the mean gain of OMNI-VES score and the mean gain of each parameter of the speech analysis were significantly greater than the controls' ones. CONCLUSION: Auditory feedback deprivation obtained under LE improves subjective, perceptual-auditory, and acoustics parameters of AdLD patients. These findings encourage further research to provide new knowledge into the role of the auditory system in the pathogenesis of AdLD and to develop new therapeutic strategies. LEVEL OF EVIDENCE: 4 Laryngoscope, 134:3754-3760, 2024.


Asunto(s)
Calidad de la Voz , Humanos , Proyectos Piloto , Masculino , Femenino , Persona de Mediana Edad , Calidad de la Voz/fisiología , Adulto , Anciano , Enfermedades de la Laringe/fisiopatología , Enfermedades de la Laringe/complicaciones , Acústica del Lenguaje , Distonía/fisiopatología , Fonación/fisiología , Disfonía/fisiopatología
18.
Stud Hist Philos Sci ; 105: 50-58, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754358

RESUMEN

In this essay I suggest that we view design principles in systems biology as minimal models, for a design principle usually exhibits universal behaviors that are common to a whole range of heterogeneous (living and nonliving) systems with different underlying mechanisms. A well-known design principle in systems biology, integral feedback control, is discussed, showing that it satisfies all the conditions for a model to be a minimal model. This approach has significant philosophical implications: it not only accounts for how design principles explain, but also helps clarify one dispute over design principles, e.g., whether design principles provide mechanistic explanations or a distinct kind of explanations called design explanations.


Asunto(s)
Biología de Sistemas , Biología de Sistemas/métodos , Modelos Biológicos
19.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38729760

RESUMEN

Essential tremor (ET), a movement disorder characterized by involuntary oscillations of the limbs during movement, remains to date not well understood. It has been recently suggested that the tremor originates from impaired delay compensation, affecting movement representation and online control. Here we tested this hypothesis directly with 24 ET patients (14 female; 10 male) and 28 neurologically intact (NI) human volunteers (17 female; 11 male) in an upper limb postural perturbation task. After maintaining their hand in a visual target, participants experienced perturbations of unpredictable direction and magnitude and were instructed to counter the perturbation and steer their hand back to the starting position. In comparison with NI volunteers, ET patients' early muscular responses (short and long-latency responses, 20-50 and 50-100 ms, respectively) were preserved or even slightly increased. However, they exhibited perturbation-dependent deficits when stopping and stabilizing their hand in the final target supporting the hypothesis that the tremor was generated by the feedback controller. We show in a computational model that errors in delay compensation accumulating over time produced the same small increase in initial feedback response followed by oscillations that scaled with the perturbation magnitude as observed in ET population. Our experimental results therefore validate the computational hypothesis that inaccurate delay compensation in long-latency pathways could be the origin of the tremor.


Asunto(s)
Temblor Esencial , Tiempo de Reacción , Humanos , Temblor Esencial/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Tiempo de Reacción/fisiología , Adulto , Desempeño Psicomotor/fisiología , Electromiografía , Movimiento/fisiología
20.
Elife ; 122024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738986

RESUMEN

Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal's control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject's control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.


Asunto(s)
Conducta Animal , Animales , Humanos , Masculino , Conducta Animal/fisiología , Femenino , Desempeño Psicomotor/fisiología , Adulto , Equilibrio Postural/fisiología , Adulto Joven , Macaca mulatta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA