Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
2.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-39028536

RESUMEN

With global warming, there are growing challenges for raising taurine and composite beef cattle populations in tropical regions, including elevated temperatures, limited forage availability, parasite infestation, and infectious diseases. These environmental factors can trigger specific physiological responses in the developing fetus, which may have long-term implications on its performance. Therefore, the main objective of this study was to assess the influence of naturally induced thermal stress during the gestation period on the subsequent performance of tropical composite beef cattle progeny. Furthermore, we aimed to investigate the impact of genotype-by-gestational thermal environment interaction (G×Eg) on traits under selection pressure in the breeding population. A total of 157,414 animals from 58 farms located in various Brazilian states were recorded for birth weight (BW), preweaning weight gain (PWG), yearling weight (YW), hip height (HH), scrotal circumference (SC), and days to first calving (DFC). We first applied a linear regression model to the BW data, which revealed that the last 40 d of gestation were suitable for calculating the mean temperature humidity index (THIg). Subsequent regression analyses revealed that for every 10-unit increase in THIg, detrimental effects of approximately 1.13% to 16.34% are expected for all traits evaluated. Genetic parameters were estimated through a reaction norm model using THIg as the environmental descriptor. The posterior means of heritability estimates (SD) were 0.35 (0.07), 0.25 (0.03), 0.31 (0.03), 0.37 (0.01), 0.29 (0.07), and 0.20 (0.09) for the direct effect of BW, PWG, YW, HH, SC, and DFC, respectively. These estimates varied along the range of THIg values, suggesting a variable response to selection depending on the thermal environment during gestation. Genetic correlation estimates between more divergent THIg values were low or negative for YW, PWG, and DFC, indicating that the best-performing individuals at low THIg values may not perform as well at high THIg values and vice versa. Overall, thermal stress during gestation impacts the future performance of beef cattle offspring. Our results indicate the need for developing effective breeding strategies that take into account G×Eg effects and the re-ranking of breeding animals along the THIg scale, particularly for traits such as DFC that are highly sensitive to thermal stress.


With global warming posing increasing challenges in tropical regions, this study aimed to assess the impact of thermal stress during gestation on the performance of composite beef cattle offspring. Environmental factors such as high temperatures, humidity, limited forage availability, and parasite infestation can elicit physiological responses in the developing fetus, affecting its long-term performance and welfare. Using the temperature humidity index (THIg) of the late gestation as a measure of thermal environment, a reaction norm model was applied to analyze the birth weight, preweaning weight gain, yearling weight, hip height, scrotal circumference, and days to first calving (DFC). Results revealed that increasing THIg values were associated with a detrimental effect in these traits. Genotype-by-environment interaction was found to significantly influence trait variability, with DFC showing the strongest effect. Negative genetic correlations were observed between divergent THIg values, suggesting that individuals performing well in mild thermal environments may not excel in high thermal stress conditions. The heritability estimates varied along the THIg scale, indicating that selection response may vary depending on the thermal environment during gestation. These findings emphasize the need for breeding strategies that account for genotype-by-environment effects and consider the impact of thermal stress on cattle performance.


Asunto(s)
Genotipo , Animales , Bovinos/genética , Bovinos/fisiología , Femenino , Embarazo , Brasil , Masculino , Clima Tropical , Peso al Nacer , Cruzamiento , Aumento de Peso , Temperatura
3.
Animals (Basel) ; 14(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38997979

RESUMEN

Oxidative stress may affect new born calves due to high stress suffered around birth. We hypothesized that maternal supplementation with micronutrients and vitamins in late gestation enhance the neonatal calf's antioxidant system, decreasing the occurrence and duration of diarrhea, and improving growth from birth through weaning. To test this hypothesis, 80 multiparous cows were cluster-assigned to treatment groups. Treated group (TG) cows received mineral and vitamin supplementation while control group (CG) cows received saline solution. Feed intake and fecal score were measured daily until the ninth week. Weight and body measurements were registered weekly, and blood samples were collected from postpartum cows and calves after birth and at 7, 14, and 63 days of life. Although CG calves had greater fecal scores (p = 0.01), diarrhea characteristics did not differ. Calves in the TG showed greater starter intake (p = 0.04). Feed efficiency showed a trend with treatment-age interaction (p = 0.06). Calves in the CG had wider hips in the first week (p = 0.03), but not by the ninth week. Total antioxidant status, thiobarbituric acid reactive substances, and haptoglobin did not differ between treatment groups. Serum metabolites showed no differences. Supplementation did not impact calf antioxidant system or growth in the first two months.

4.
Front Nutr ; 11: 1364722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050138

RESUMEN

Introduction: Chrononutrition studies the relation between diet, circadian rhythms and metabolism, which may alter the metabolic intrauterine environment, influencing infant fat-mass (FM) development and possibly increasing obesity risk. Aim: To evaluate the association of chrononutrition in pregnancy and infant FM at 6 months. Methods: Healthy pregnant women and term-babies (n = 100pairs) from the OBESO cohort (2017-2023) were studied. Maternal registries included pregestational body-mass-index (BMI), gestational complications/medications, weight gain. Diet (three 24 h-recalls, 1 each trimester) and sleep-schedule (first and third trimesters) were evaluated computing fasting (hours from last-first meal), breakfast and dinner latencies (minutes between wake up-breakfast and dinner-sleep, respectively), number of main meals/day, meal skipping (≥1 main meal/d on three recalls) and nighttime eating (from 9:00 pm-5:59 am on three recalls). Neonatal weight, length, BMI/age were assessed. At 6 months, infant FM (kg, %; air-displacement plethysmography) was measured, and FM index (FMI-kgFM/length2) computed. Exclusive breastfeeding (EBF) was recorded. Multiple linear regression models evaluated the association between chrononutrition and 6 month infant FM. Results: Mean fasting was 11.7 ± 1.3 h; breakfast, dinner latency were 87.3 ± 75.2, 99.6 ± 65.6 min, respectively. Average meals/day were 3.0 ± 0.5. Meal skipping was reported in 3% (n = 3) of women and nighttime eating in 35% (n = 35). Most neonates had normal BMI/age (88%, n = 88). Compared to those who did not, mothers engaged in nighttime-eating had infants with higher %FM (p = 0.019). Regression models (R 2 ≥ 0.308, p ≤ 0.001) showed that nighttime eating was positively associated with %FM (B: 2.7, 95%CI: 0.32-5.16). When analyzing women without complications/medications (n = 80), nighttime eating was associated with higher FM [%FM, B: 3.24 (95%CI: 0.59-5.88); kgFM, B: 0.20 (95%CI: 0.003-0.40); FMI, B: 0.54 (95%CI: 0.03-1.05)]. Infant sex and weight (6 months) were significant, while maternal obesity, pregnancy complications/medications, parity, energy intake, birth-BMI/age, and EBF were not. Conclusion: Maternal nighttime eating is associated with higher adiposity in 6 month infants.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38922982

RESUMEN

This study aimed to assess the impact of protein supplementation and its interaction with calf sex (CS) on the performance, metabolism and physiology of pregnant beef cows. Fifty-two multiparous Zebu beef cows carrying female (n = 22) and male (n = 30) fetuses were used. Cows were individually housed from day 100 to 200 of gestation and randomly assigned to restricted (RES, n = 26) or supplemented (SUP, n = 26) groups. The RES cows were ad libitum fed a basal diet (corn silage + sugarcane bagasse + mineral mixture), achieving 5.5% crude protein (CP), while SUP cows received the same basal diet plus a protein supplement (40% CP, at 3.5 g/kg of body weight). All cows were fed the same diet during late gestation. Differences were declared at p < 0.05. No significant interaction between maternal nutrition and calf sex was found for maternal outcomes (p ≥ 0.34). The SUP treatment increased the total dry matter (DM) intake (p ≤ 0.01) by 32% and 19% at mid- and late-gestation respectively. The total tract digestibility of all diet components was improved by SUP treatment at day 200 of gestation (p ≤ 0.02), as well as the ruminal microbial CP production (p ≤ 0.01). The SUP treatment increased (p ≤ 0.03) the cows' body score condition, ribeye area, the average daily gain (ADG) of pregnant components (PREG; i.e., weight accretion of cows caused by pregnancy) and the ADG of maternal tissues (i.e., weight accretion discounting the gain related to gestation) in the mid-gestation. The SUP cows exhibited a lower maternal ADG (p < 0.01) compared to RES cows in late pregnancy. There was a 24% additional gain (p < 0.01) in the PREG components for SUP cows during late gestation, which in turn improved the calf birthweight (p = 0.05). The uterine arterial resistance and pulsatility indexes (p ≤ 0.01) at mid-gestation were greater for RES cows. In conclusion, protein supplementation during mid-gestation is an effective practice for improving maternal performance, growth of the gravid uterus and the offspring's birth weight.

6.
J Pediatr ; 272: 114100, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38759779

RESUMEN

OBJECTIVE: To examine the associations of abnormal maternal glucose regulation in pregnancy with offspring adiposity, insulin resistance, adipokine, and inflammatory markers during childhood and adolescence. STUDY DESIGN: Project Viva is a prospective prebirth cohort (n = 2128 live births) initiated from 1999 through 2002 in Eastern Massachusetts, US. During the second trimester of pregnancy, clinicians used 2-step oral glucose challenge testing to screen for gestational diabetes mellitus. In the offspring, we measured anthropometry, insulin resistance, adipokines, lipids, and inflammatory markers in mid-childhood (n = 1107), early adolescence (n = 1027), and mid-adolescence (n = 693). We used multivariable linear regression models and generalized estimating equations adjusted for child age and sex, and for maternal age, race/ethnicity, education, parity, and smoking during pregnancy; we further adjusted for prepregnancy body mass index (BMI). RESULTS: In mid-adolescence (17.1 [0.8] years of age), offspring of mothers with gestational diabetes mellitus (n = 27) had a higher BMI z-score (ß; 95% Cl; 0.41 SD; 0.00, 0.82), sum of skinfolds (8.15 mm; 2.48, 13.82), homeostatic model assessment for insulin resistance (0.81 units; 0.13, 1.50), leptin z-score (0.40 SD; 0.01, 0.78), and leptin/adiponectin ratio z-score (0.51 SD; CI 0.09, 0.93) compared with offspring of mothers with normoglycemia (multivariable-adjusted models). The associations with BMI, homeostatic model assessment for insulin resistance, and adiponectin seemed stronger in mid-adolescence compared with earlier time points. The associations were attenuated toward the null after adjustment for maternal prepregnancy BMI. CONCLUSION: Exposure to gestational diabetes mellitus is associated with higher adiposity, insulin resistance, and altered adipokines in mid-adolescence. Our findings suggest that the peripubertal period could be a key time for the emergence of prenatally programmed metabolic abnormalities.


Asunto(s)
Adipoquinas , Adiposidad , Diabetes Gestacional , Resistencia a la Insulina , Humanos , Femenino , Embarazo , Diabetes Gestacional/sangre , Adipoquinas/sangre , Estudios Prospectivos , Adolescente , Masculino , Niño , Biomarcadores/sangre , Efectos Tardíos de la Exposición Prenatal , Adulto , Índice de Masa Corporal , Glucemia/análisis , Glucemia/metabolismo
7.
J Pediatr ; 272: 114085, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38703992

RESUMEN

OBJECTIVE: To identify whether histologically confirmed chorioamnionitis (hCAM) is associated with development of retinopathy of prematurity (ROP). STUDY DESIGN: We retrospectively analyzed 2 different cohorts. Cohort 1 was the national database of newborns in Japan born at ≤1500g or <32 weeks' gestation (January 2003 through April 2021, n = 38 013). Cohort 2 was babies born at <1500g from a single institution in Tsuchiura, Japan, (April 2015 through March 2018, n = 118). RESULTS: For Cohort1, after adjusting for potential confounders, stage III CAM (n = 5554) was associated with lower odds of severe ROP (stage ≥3 or required peripheral retinal ablation) by 14% (OR: 0.86; 95% CI: 0.78-0.94]. CAM of stage I (n = 3277) and II (n = 4319) was not associated with the risk of ROP. For Cohort 2, the odds of severe ROP were significantly reduced in moderate to severe hCAM groups (stage II, OR: 0.06, 95% CI: 0.05-0.82; stage III, OR: 0.10, 95% CI: 0.01-0.84). Neonates with funisitis, comorbidity of hCAM, and a finding of fetal inflammatory response had lower odds of severe ROP (OR: 0.11; 95% CI: 0.01-0.93). CONCLUSIONS: After adjusting for confounders, severe hCAM with fetal inflammatory response was associated with reduced risk of ROP.


Asunto(s)
Corioamnionitis , Retinopatía de la Prematuridad , Humanos , Retinopatía de la Prematuridad/epidemiología , Corioamnionitis/epidemiología , Femenino , Recién Nacido , Estudios Retrospectivos , Embarazo , Masculino , Japón/epidemiología , Factores de Riesgo , Índice de Severidad de la Enfermedad , Recien Nacido Prematuro , Edad Gestacional
8.
J Anim Breed Genet ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808373

RESUMEN

In tropical beef cattle production systems, animals are commonly raised on pastures, exposing them to potential stressors. The end of gestation typically overlaps with a dry period characterized by limited food availability. Late gestation is pivotal for fetal development, making it an ideal scenario for inter- and transgenerational effects of the maternal gestational environment. Intergenerational effects occur due to exposure during gestation, impacting the development of the embryo and its future germline. Transgenerational effects, however, extend beyond direct exposure to the subsequent generations. The objective of the present study was to verify these effects on the post-natal performance of zebu beef cattle. We extended the use of a reaction norm model to identify genetic variation in the animals' responses to transgenerational effects. The inter- and transgenerational effects were predominantly positive (-0.09% to 19.74%) for growth and reproductive traits, indicating improved animal performance on the phenotypic scale in more favourable maternal gestational environments. Additionally, these effects were more pronounced in the reproductive performance of females. On average, the ratio of direct additive genetic variances of the slope and intercept of the reaction norm ranged from 1.23% to 3.60% for direct and from 10.17% to 11.42% for maternal effects. Despite its relatively modest magnitude, this variation proved sufficient to prompt modifications in parameter estimates. The average percentage variation of direct heritability estimates ranged from 19.3% for scrotal circumference to 33.2% for yearling weight across the environmental descriptors evaluated. Genetic correlations between distant environments for the studied traits were generally high for direct effects and far from unity for maternal effects. Changes in EBV rankings of sires across different gestational environments were also observed. Due to the multifaceted nature of inter- and transgenerational effects of the maternal gestational environment on various traits of beef cattle raised under tropical pasture conditions, they should not be overlooked by producers and breeders. There were differences in the specific response of beef cattle to variations in the quality of the maternal gestational environment, which can be partially explained by transgenerational epigenetic inheritance. Adopting a reaction norm model to capture a portion of the additive variance induced by inter- or transgenerational effects could be an alternative for future research and animal genetic evaluations.

9.
Pediatr Obes ; 19(6): e13120, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38590200

RESUMEN

Maternal obesity is a well-known risk factor for developing premature obesity, metabolic syndrome, cardiovascular disease and type 2 diabetes in the progeny. The development of white adipose tissue is a dynamic process that starts during prenatal life: fat depots laid down in utero are associated with the proportion of fat in children later on. How early this programming takes place is still unknown. However, recent evidence shows that mesenchymal stem cells (MSC), the embryonic adipocyte precursor cells, show signatures of the early setting of an adipogenic committed phenotype when exposed to maternal obesity. This review aims to present current findings on the cellular adaptations of MSCs from the offspring of women with obesity and how the metabolic environment of MSCs could affect the early commitment towards adipocytes. In conclusion, maternal obesity can induce early programming of fetal adipose tissue by conditioning MSCs. These cells have higher expression of adipogenic markers, altered insulin signalling and mitochondrial performance, compared to MSCs of neonates from lean pregnancies. Fetal MSCs imprinting by maternal obesity could help explain the increased risk of childhood obesity and development of further noncommunicable diseases.


Asunto(s)
Células Madre Mesenquimatosas , Obesidad Materna , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Embarazo , Obesidad Materna/metabolismo , Tejido Adiposo , Obesidad Infantil , Adipogénesis/fisiología , Recién Nacido , Adipocitos
10.
Nutr Neurosci ; : 1-19, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38576309

RESUMEN

BACKGROUND: The bed nucleus of the stria terminalis (BNST) is a structure with a peculiar neurochemical composition involved in modulating anxietylike behavior and fear. AIM: The present study investigated the effects on the BNST neurochemical composition and neuronal structure in critical moments of the postnatal period in gestational protein-restricted male rats' offspring. METHODS: Dams were maintained during the pregnancy on isocaloric rodent laboratory chow with standard protein content [NP, 17%] or low protein content [LP, 6%]. BNST from male NP and age-matched LP offspring was studied using the isotropic fractionator method, Neuronal 3D reconstruction, dendritic-tree analysis, blotting analysis, and high-performance liquid chromatography. RESULTS: Serum corticosterone levels were higher in male LP offspring than NP rats in 14-day-old offspring, without any difference in 7-day-old progeny. The BNST total cell number and anterodorsal BNST division volume in LP progeny were significantly reduced on the 14th postnatal day compared with NP offspring. The BNST HPLC analysis from 7 days-old LP revealed increased norepinephrine levels compared to NP progeny. The BNST blot analysis from 7-day-old LP revealed reduced levels of GR and BDNF associated with enhanced CRF1 expression compared to NP offspring. 14-day-old LP offspring showed reduced expression of MR and 5HT1A associated with decreased DOPAC and DOPA turnover levels relative to NP rats. In Conclusion, the BNST cellular and neurochemical changes may represent adaptation during development in response to elevated fetal exposure to maternal corticosteroid levels. In this way, gestational malnutrition alters the BNST content and structure and contributes to already-known behavioral changes.

11.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673723

RESUMEN

Recent studies have shown that maternal vitamin D deficiency (VDD) causes long-term metabolic changes in offspring. However, little is known about the impact of maternal VDD on offspring endocrine pancreas development and insulin secretion in the adult life of male and female animals. Female rats (Wistar Hannover) were fed either control (1000 IU Vitamin D3/kg), VDD (0 IU Vitamin D3/kg), or a Ca2+-enriched VDD diet (0 IU Vitamin D3/kg + Ca2+ and P/kg) for 6 weeks and during gestation and lactation. At weaning, VDD status was confirmed based on low serum calcidiol levels in dams and pups. Next, male and female offspring were randomly separated and fed a standard diet for up to 90 days. At this age, serum calcidiol levels were restored to normal levels in all groups, but serum insulin levels were decreased in VDD males without affecting glucagon levels, glycemia, or glucose tolerance. Islets isolated from VDD males showed lower insulin secretion in response to different glucose concentrations, but this effect was not observed in VDD females. Furthermore, VDD males, but not females, showed a smaller total pancreatic islet area and lower ß cell mass, an effect that was accompanied by reduced gene expression of Ins1, Ins2, Pdx1, and SLC2A2. The decrease in Pdx1 expression was not related to the methylation profile of the promoter region of this gene. Most of these effects were observed in the male VDD+Ca2+ group, indicating that the effects were not due to alterations in Ca2+ metabolism. These data show that maternal VDD selectively impairs the morphology and function of ß cells in adult male offspring rats and that female offspring are fully protected from these deleterious effects.


Asunto(s)
Células Secretoras de Insulina , Insulina , Ratas Wistar , Deficiencia de Vitamina D , Animales , Femenino , Células Secretoras de Insulina/metabolismo , Masculino , Deficiencia de Vitamina D/metabolismo , Ratas , Embarazo , Insulina/sangre , Insulina/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/etiología , Factores Sexuales , Secreción de Insulina
12.
Front Med (Lausanne) ; 11: 1339428, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681052

RESUMEN

Pregnancy complicated by obesity represents an increased risk of unfavorable perinatal outcomes such as gestational diabetes mellitus (GDM), hypertensive disorders in pregnancy, preterm birth, and impaired fetal growth, among others. Obesity is associated with deficiencies of micronutrients, and pregnant women with obesity may have higher needs. The intrauterine environment in pregnancies complicated with obesity is characterized by inflammation and oxidative stress, where maternal nutrition and metabolic status have significant influence and are critical in maternal health and in fetal programming of health in the offspring later in life. Comprehensive lifestyle interventions, including intensive nutrition care, are associated with a lower risk of adverse perinatal outcomes. Routine supplementation during pregnancy includes folic acid and iron; other nutrient supplementation is recommended for high-risk women or women in low-middle income countries. This study is an open label randomized clinical trial of parallel groups (UMIN Clinical Trials Registry: UMIN000052753, https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000060194) to evaluate the effect of an intensive nutrition therapy and nutrient supplementation intervention (folic acid, iron, vitamin D, omega 3 fatty acids, myo-inositol and micronutrients) in pregnant women with obesity on the prevention of GDM, other perinatal outcomes, maternal and newborn nutritional status, and infant growth, adiposity, and neurodevelopment compared to usual care. Given the absence of established nutritional guidelines for managing obesity during pregnancy, there is a pressing need to develop and implement new nutritional programs to enhance perinatal outcomes.

13.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38437631

RESUMEN

This study examined the impact of maternal protein supplementation during mid-gestation on offspring, considering potential sex-related effects. Forty-three pregnant purebred Tabapuã beef cows (20 female and 23 male fetuses) were collectively managed in a pasture until 100 d of gestation. From 100 to 200 d of gestation, they were randomly assigned to the restricted group [(RES) - basal diet (75% corn silage + 25% sugar cane bagasse + mineral mixture); n = 24] or control group [(CON) - same basal diet + based-plant supplement [40% of crude protein, 3.5 g/kg of body weight (BW); n = 19]. From 200 d of gestation until parturition, all cows were equally fed corn silage and mineral mixture. During the cow-calf phase, cows and their calves were maintained in a pasture area. After weaning, calves were individually housed and evaluated during the backgrounding (255 to 320 d), growing 1 (321 to 381 d), and growing 2 (382 to 445 d) phases. Offspring's blood samples were collected at 210 and 445 d of age. Samples of skeletal muscle tissue were collected through biopsies at 7, 30, and 445 d of age. Muscle tissue samples were subjected to reverse-transcription quantitative polymerase chain reaction analysis. Prenatal treatment and offspring's sex (when pertinent) were considered fixed effects. The significance level was set at 5%. At mid-gestation, cows supplemented with protein reached 98% and 92% of their protein and energy requirements, while nonsupplemented cows attained only 30% and 50% of these requirements, respectively. The RES offspring were lighter at birth (27 vs. 31 kg), weaning (197 vs. 214 kg), and 445 d of age (398 vs. 429 kg) (P ≤ 0.05). The CON calves had greater (P < 0.05) morphometric measurements overall. The CON offspring had ~26% greater muscle fiber area (P ≤ 0.01). There was a trend (P = 0.06) for a greater Mechanistic target of rapamycin kinase mRNA expression in the Longissimus thoracis in the CON group at 7 d of age. The Myogenic differentiation 1 expression was greater (P = 0.02) in RES-females. Upregulation of Carnitine palmitoyltransferase 2 was observed in RES offspring at 445 d (P = 0.04). Expression of Fatty acid binding protein 4 (P < 0.001), Peroxisome proliferator-activated receptor gamma (P < 0.001), and Stearoyl-Coenzyme A desaturase (P < 0.001) was upregulated in CON-females. Therefore, protein supplementation during gestation enhances offspring growth and promotes favorable responses to lipogenesis, particularly in females.


In tropical conditions, beef cows on pasture often experience protein restriction during mid-to-late gestation, potentially impacting offspring development negatively. To address this, we investigated the effects of strategic protein supplementation for pregnant beef cows fed low-quality forage during mid-gestation on the postnatal growth trajectory of their offspring. The supplementation program, implemented during mid-gestation, increased dry matter intake by addressing nitrogen deficiency in the rumen, resulting in meeting 98% and 92% of protein and energy requirements in supplemented cows. In contrast, nonsupplemented cows met only 30% and 50% of these requirements, respectively. Consequently, protein supplementation positively influenced the postnatal growth trajectory of the offspring, attributed to beneficial changes in secondary myogenesis and hypertrophy processes. Supplementing cows with crude protein also stimulated lipogenesis, potentially contributing to intramuscular fat deposition, particularly in females. Therefore, this study emphasizes the importance of nutritional interventions for pregnant beef cows fed low-quality forage.


Asunto(s)
Alimentación Animal , Suplementos Dietéticos , Animales , Bovinos , Femenino , Embarazo , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos/análisis , Minerales , Músculo Esquelético , Masculino
14.
Toxicol Appl Pharmacol ; 484: 116873, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417591

RESUMEN

This study analyzed how glyphosate exposure in the gestational period affects vascular function in their female offspring and whether oxidative stress is involved in this effect. To this, pregnant Wistar rats were exposed through drinking water to 0.2% of a glyphosate commercial formulation, and we analyzed the response to acetylcholine and phenylephrine in the aorta from offspring of Glyphosate-based herbicide (O-GBH) and controls (O-CON) rats at six months of age. Relaxation to acetylcholine was reduced in O-GBH than in O-CON. Acute Indomethacin and Apocynin increased relaxation to acetylcholine in O-GBH. The aorta from O-GBH was hyperactive to phenylephrine; the preincubation with N-nitro-L-arginine methyl ester (L-NAME) increased contraction to phenylephrine more in O-CON than O-GBH. TEMPOL similarly reduced phenylephrine response, and L-NAME prevented this effect. The TBARS and GSH levels were increased in O-GBH than in O-CON. Results reinforce the concept that oxidative stress during the perinatal period contributes to the development of vascular changes in adulthood. Results also reveal that oxidative stress parameters altered, and the current levels considered safe for exposure to Glyphosate deserve further investigation, especially in the female gender.


Asunto(s)
Glifosato , Herbicidas , Embarazo , Humanos , Ratas , Animales , Femenino , Herbicidas/toxicidad , Ratas Wistar , NG-Nitroarginina Metil Éster , Exposición Materna/efectos adversos , Acetilcolina , Glicina/toxicidad , Fenilefrina/toxicidad
15.
Biomedicines ; 12(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38397953

RESUMEN

Worldwide, diabetes mellitus represents a growing health problem. If it occurs during pregnancy, it can increase the risk of various abnormalities in early and advanced life stages of exposed individuals due to fetal programming occurring in utero. Studies have determined that maternal conditions interfere with the genotypes and phenotypes of offspring. Researchers are now uncovering the mechanisms by which epigenetic alterations caused by diabetes affect the expression of genes and, therefore, the development of various diseases. Among the numerous possible epigenetic changes in this regard, the most studied to date are DNA methylation and hydroxymethylation, as well as histone acetylation and methylation. This review article addresses critical findings in epigenetic studies involving diabetes mellitus, including variations reported in the expression of specific genes and their transgenerational effects.

16.
Animals (Basel) ; 14(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38396620

RESUMEN

Maternal nutrition has the ability of influence critical processes in fetal life, including muscle development. Also, in this period, epigenetic sensitivity to external stimuli is higher and produces long-lasting effects. Thus, the aim of this study was to investigate epigenetic mechanisms, including the identification and characterization of long non-coding RNA (lncRNA) from animals that had undergone different strategies of prenatal supplementation. A group of Nellore cows (n = 126) were separated into three nutritional plans: NP (control)-Not Programmed, without protein-energy supplementation; PP-Partially Programmed, protein-energy supplementation in the final third of pregnancy; and CP-Complete Programming, protein-energy supplementation during the full period of gestation. A total of 63 male offspring were used in this study, of which 15 (5 per treatment) had Longissimus thoracis muscle at 15 (biopsy) and 22 months (slaughter). Biopsy samples were subjected to RNA extraction and sequencing. Differential expression (DE) of remodeling factors and chromatin-modifying enzyme genes were performed. For the identification and characterization of lncRNA, a series of size filters and protein coding potential tests were performed. The lncRNAs identified had their differential expression and regulatory potential tested. Regarding DE of epigenetic mechanisms, no differentially expressed gene was found (p > 0.1). Identification of potential lncRNA was successful, identifying 1823 transcripts at 15 months and 1533 at 22 months. Among these, four were considered differentially expressed between treatments at 15 months and 6 were differentially expressed at 22 months. Yet, when testing regulatory potential, 13 lncRNAs were considered key regulators in the PP group, and 17 in the CP group. PP group lncRNAs possibly regulate fat-cell differentiation, in utero embryonic development, and transforming growth factor beta receptor, whereas lncRNA in the CP group regulates in utero embryonic development, fat-cell differentiation and vasculogenesis. Maternal nutrition had no effect on differential expression of epigenetic mechanisms; however, it seems to impair lncRNA regulation of epigenetics.

17.
Animals (Basel) ; 14(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38200894

RESUMEN

This study evaluated different herbage allowances from mid to late pregnancy on pre- and postpartum physiological responses, milk production, and the performance of Nellore cows and the preweaning growth of their female offspring. Sixty multiparous Nellore cows were blocked by their body weight (BW; 425 ± 36 kg) and body condition score (BCS; 3.67 ± 0.23, scale 1-5) and randomly allocated to twelve pastures. Treatments consisted of two different herbage allowances (HA) during pregnancy: low HA (LHA; 2.80 kg DM/kg of BW) and high HA (HHA; 7.60 kg DM/kg of BW). Both treatment groups were fed 1 g/kg BW of a protein supplement. After calving, all cow-calf pairs were combined in a single group. The effects of maternal treatment × day of the study were detected for herbage mass and allowance, the stocking rate and forage crude protein, and for cow BW, BCS, and carcass measures (p < 0.01). Milk yield corrected to 4% fat, while the levels of fat total solids and cow plasma IGF-1 and urea were different (p ≤ 0.04) between treatments. HHA offspring was heavier (p ≤ 0.05) at 120 days and at weaning. A high herbage allowance can be implemented from mid-gestation until calving to increase cow prepartum performance, post-partum milk yield and composition, and positively modulate female offspring preweaning growth.

19.
Animals (Basel) ; 13(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37889627

RESUMEN

Pregnant sows from commercial pig farms may experience painful states, such as lameness, an essential indicator in assessing sow welfare. We investigated the effect of lameness during the last third of pregnancy on reproductive performance and placental glucocorticoid concentrations in sows. Periodic locomotion assessments were carried out on two commercial pig farms using a validated 0-5 scoring system (from 0: normal locomotion; to 5: a downer animal). Sows from both farms (N = 511) were grouped based on their average locomotion scores. On Farm 1, 30 sows were selected and grouped as either Not Lame (NL = 16; X¯ = 0-1) or Lame (L = 14; X¯ > 1). On Farm 2, 39 sows were selected and grouped as either Not Lame (G1 = 12; X¯ = 0-1), Moderately Lame (G2 = 13; X¯ = 1.1-2), or Severely Lame (G3 = 14; X¯ ≥ 2.1). Reproductive data (gestation length, litter weight, average piglet weight, litter size, and the number of piglets born alive/mummified/stillborn) were recorded on both farms. Moreover, on Farm 2, piglet intrauterine growth restriction score and the number of piglets dead during the first week were also recorded, and placenta samples were collected to determine their cortisol/cortisone concentrations. A linear mixed model was used to analyze the data. The proportion of lameness in pregnant sows (N = 511) was >40%, and the gestation length tended to decrease with the presence of lameness (p < 0.1) in both farms. G2 sows had a higher placental cortisol/cortisone ratio than G1 and G3 sows (p < 0.01). In conclusion, lameness was high in the sows assessed, which may decrease sow gestation length and reduce placental efficiency in protecting the offspring from the sows' stress response.

20.
Anim Reprod ; 20(3): e20220124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795199

RESUMEN

Fetal programming suggests that maternal stimulation and nutrition during the period of fetal development can program the progeny. Conjugated linoleic acid (CLA), an isomer of linoleic acid, has been characterized in several aspects, but few studies have been performed on its involvement in reproduction and fetal programming. The aim of this study was to evaluate the F1, F2 and F3 progeny of female mice supplemented with CLA during the pregestational and gestational periods with respect to biometric and reproductive parameters, as well as ovarian morphophysiology. The F1 progeny of mothers supplemented with CLA exhibited stable weight gain, while the F2 progeny showed no effects (P=0.0187 and P=0.0245, respectively). A reduction in Lee's Index was observed in both generations at the second post-weaning evaluation week in the animals treated with CLA (P=0.0100 and P=0.0078, respectively). The F2 generation showed an increase in the anogenital index in both sexes of the animals treated with CLA (P= 0.0114 and P<0.0001, female and male respectively). CLA administration to mothers did not affect any of the following in their progeny: ovarian follicle mobilization (P>0.05), follicle number (P>0.05) and the integrated density of the lipid content of oocytes included in antral follicles (P>0.05). This study evaluated the use of CLA in mothers and found that it did not affect the progeny regarding murine reproductive performance, suggesting that this supplement can be used safely.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA