Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 665
Filtrar
1.
Int J Immunopathol Pharmacol ; 38: 3946320241272642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39096175

RESUMEN

Prolonged exposure to different occupational or environmental toxicants triggered oxidative stress and inflammatory reactions mediated lung damage. This study was designed to explore the influence and protective impact of flavone on lung injury in rats intoxicated with nicotine (NIC) and exposed to radiation (IR). Forty rats were divided into four groups; group I control, group II flavone; rats were administered with flavone (25 mg/kg/day), group III NIC + IR; rats were injected intraperitoneally with NIC (1 mg/kg/day) and exposed to γ-IR (3.5 Gy once/week for 2 weeks) while group IV NIC + IR + flavone; rats were injected with NIC, exposed to IR and administered with flavone. Redox status parameters and histopathological changes in lung tissue were evaluated. Nuclear factor-kappa B (NF-κB), forkhead box O-class1 (FoxO1) and nucleotide-binding domain- (NOD-) like receptor pyrin domain-containing-3 (NLRP3) gene expression were measured in lung tissues. Moreover, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and phosphatidylinositol three kinase (PI3K) were measured using ELISA kits. Our data demonstrates, for the first time, that flavone protects the lung from NIC/IR-associated cytotoxicity, by attenuating the disrupted redox status and aggravating the antioxidant defence mechanism via activation of the PI3K/Nrf2. Moreover, flavone alleviates pulmonary inflammation by inhibiting the inflammatory signaling pathway FOXO1/NF-κB/NLRP3- Inflammasome. Collectively, the obtained results exhibited a notable efficiency of flavone in alleviating lung injury induced by NIC and IR via modulating PI3K/Nrf2 and FoxO1/NLRP3 Inflammasome.


Asunto(s)
Flavonas , Inflamasomas , Lesión Pulmonar , Factor 2 Relacionado con NF-E2 , Proteína con Dominio Pirina 3 de la Familia NLR , Nicotina , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Flavonas/farmacología , Masculino , Ratas , Nicotina/farmacología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/prevención & control , Rayos gamma , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , FN-kappa B/metabolismo , Ratas Wistar , Proteína Forkhead Box O1
2.
BMC Genomics ; 25(1): 759, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097683

RESUMEN

BACKGROUND: Chrysanthemum morifolium 'HangBaiJu', a popular medicinal and edible plant, exerts its biological activities primarily through the presence of flavones and caffeoylquinic acids (CQAs). However, the regulatory mechanism of flavone and CQA biosynthesis in the chrysanthemum capitulum remains unclear. RESULTS: In this study, the content of flavones and CQAs during the development of chrysanthemum capitulum was determined by HPLC, revealing an accumulation pattern with higher levels at S1 and S2 and a gradual decrease at S3 to S5. Transcriptomic analysis revealed that CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT were key structural genes in flavones and CQAs biosynthesis. Furthermore, weighted gene co-expression correlation network analysis (WGCNA), k-means clustering, correlation analysis and protein interaction prediction were carried out in this study to identify transcription factors (TFs) associated with flavone and CQA biosynthesis, including MYB, bHLH, AP2/ERF, and MADS-box families. The TFs CmERF/PTI6 and CmCMD77 were proposed to act as upstream regulators of CmMYB3 and CmbHLH143, while CmMYB3 and CmbHLH143 might form a complex to directly regulate the structural genes CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT, thereby controlling flavone and CQA biosynthesis. CONCLUSIONS: Overall, these findings provide initial insights into the TF regulatory network underlying flavones and CQAs accumulation in the chrysanthemum capitulum, which laid a theoretical foundation for the quality improvement of C. morifolium 'HangBaiJu' and the high-quality development of the industry.


Asunto(s)
Chrysanthemum , Flavonas , Ácido Quínico , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flavonas/metabolismo , Ácido Quínico/metabolismo , Ácido Quínico/análogos & derivados , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolómica , Transcriptoma
3.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 717-720, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38974150

RESUMEN

The title compound, systematic name tris-(µ2-perfluoro-o-phenyl-ene)(µ2-3-phenyl-4H-chromen-4-one)-triangulo-trimercury, [Hg3(C6F4)3(C15H10O2)], crystallizes in the monoclinic P21/n space group with one flavone (FLA) and one cyclic trimeric perfluoro-o-phenyl-enemercury (TPPM) mol-ecule per asymmetric unit. The FLA mol-ecule is located on one face of the TPPM acceptor and is linked in an asymmetric coordination of its carbonyl oxygen atom with two Hg centers of the TPPM macrocycle. The angular-shaped complexes pack in zigzag chains where they stack via two alternating TPPM-TPPM and FLA-FLA stacking patterns. The distance between the mean planes of the neighboring TPPM macrocycles in the stack is 3.445 (2) Å, and that between the benzo-γ-pyrone moieties of FLA is 3.328 (2) Å. The neighboring stacks are inter-digitated through the shortened F⋯F, CH⋯F and CH⋯π contacts, forming a dense crystal structure.

4.
Animals (Basel) ; 14(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39061535

RESUMEN

The experiment investigated the effects of sea-buckthorn flavonoids (SF) on lipopolysaccharide (LPS)-challenged broilers. A total of 288 one-day-old male broilers were randomly assigned to 4 groups, with 6 replicates of 12 broilers each. The experiment lasted for 20 days. The diet included two levels of SF (0 or 1000 mg/kg) and broilers intraperitoneally injected with 500 µg/kg LPS on 16, 18, and 20 days, or an equal amount of saline. LPS challenge decreased final body weight, average daily gain, and average daily feed intake, increased feed-to-gain ratio, and elevated serum IL-1ß, IL-2, TNF-α, D-LA, and endotoxin levels. Moreover, it resulted in a reduction in the IL-10 level. LPS impaired the intestinal morphology of the duodenum, jejunum, and ileum, down-regulated the mRNA relative expression of Occludin, ZO-1, and MUC-2 in the jejunum mucosa, up-regulated the mRNA relative expression of TLR4, MyD88, NF-κB, and IL-1ß, and increased the relative abundance of Erysipelatoclostridium in broilers (p < 0.05). However, SF supplementation mitigated the decrease in growth performance, reduced serum IL-1ß, IL-2, and D-LA levels, increased IL-10 levels, alleviated intestinal morphological damage, up-regulated mRNA expression of Occludin and ZO-1, down-regulated the mRNA expression of TLR4, NF-κB, and IL-lß in jejunum mucosal (p < 0.05), and SF supplementation presented a tendency to decrease the relative abundance of proteobacteria (0.05 < p < 0.1). Collectively, incorporating SF can enhance the growth performance, alleviate serum inflammation, and improve the intestinal health of broilers, effectively mitigating the damage triggered by LPS-challenges.

5.
Iran J Basic Med Sci ; 27(9): 1077-1084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055875

RESUMEN

Interest in naturally occurring phytochemicals has been on the increase, they are believed to reduce the risk of brain disorders. Hispidulin (HN) is a phenolic flavonoid compound with various pharmacological and biological effects on the central nervous system. It belongs to the flavone class of flavonoids. It can be found in different plant materials, especially fruits and vegetables. The literature used in this review was collected from credible scientific databases including ScienceDirect, Scopus, PubMed, Google Scholar, and Hindawi without time restriction, using relevant keywords, such as HN, brain, central nervous system, flavonoids, and flavones. HN was discovered to possess pro-apoptotic properties, act as an antioxidant, inhibit cytokine production and toll-like receptor 4 expression, as well as impede nuclear factor kappa beta and mitogen-activated protein kinase B. HN was also found to inhibit lipid peroxidation in vitro and reduce brain edema in mice. These pharmacological potentials suggest that HN is a promising candidate for neuroprotection in CNS disorders like depression and epilepsy. This review provides an update on the scientific literature concerning how these activities could help provide various forms of neuroprotection in the CNS. Additional experimental data on the effects of HN in models of neurological disorders and neuroprotection should be explored further. Based on the current study, HN is a promising candidate for neuroprotection of the CNS.

6.
Molecules ; 29(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998909

RESUMEN

Inspired by the outstanding nature of flavonoid derivatives in the fields of chemistry and medicine, in this work we mainly focus on exploring the photo-induced properties of the novel Et2N-substituted flavonoid (ENF) fluorophore theoretically. Considering the potential photo-induced properties in different solvents and the chalcogen atomic electronegativity-associated photoexcitation, by time-dependent density functional theory (TDDFT) methods we primarily explore the intramolecular hydrogen bonding interactions and photo-induced charge redistribution behaviors. Via comparing geometrical data and the infrared (IR) spectral shifts-associated hydroxy moiety of ENF, we confirm that the intramolecular hydrogen bond O-H···O should be enhanced with facilitating an excited-state intramolecular proton-transfer (ESIPT) reaction. Particularly, the charge reorganization around hydrogen bonding moieties further reveals the tendency of ESIPT behavior. Combined with the construction of the potential energy surface and the search for reaction transition states, we finally confirmed the solvent-polarity-regulated behaviors as well as the chalcogen elements' electronegativity-dependent ESIPT mechanisms for the ENF fluorophore. We sincerely wish our work could accelerate the further development and applications of flavonoid derivatives.

7.
Curr Top Med Chem ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38847246

RESUMEN

Flavonoids belong to the polyphenol group that naturally exists in fruits, vegetables, tea, and grains. Flavonoids, as secondary metabolites, show indispensable contributions to biolog-ical processes and the responses of plants to numerous environmental factors. The bioactivity of flavonoids depends on C6-C3-C6 ring substitution patterns that exhibit bioactive antioxidant, an-timicrobial, antifungal, antitumor, and anti-inflammatory properties. The synthesis of flavonoids has been reported by various methodologies. Therefore, the present review systematically sum-marizes the synthesis of recent heterocyclic flavonoid derivatives via facile synthetic approaches since the research in flavonoids is useful for therapeutic and biotechnology fields.

8.
Discov Oncol ; 15(1): 215, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850433

RESUMEN

BACKGROUND: Multiple myeloma (MM) is a prevalent hematologic malignancy characterized by the uncontrolled proliferation of monoclonal plasma cells in the bone marrow and excessive monoclonal immunoglobulin production, leading to organ damage. Despite therapeutic advancements, recurrence and drug resistance remain significant challenges. OBJECTIVE: This study investigates the effects of dandelion flavone (DF) on MM cell proliferation, migration, and invasion, aiming to elucidate the mechanisms involved in MM metastasis and to explore the potential of traditional Chinese medicine in MM therapy. METHODS: DF's impact on myeloma cell viability was evaluated using the CCK-8 and colony formation assays. Cell mobility and invasiveness were assessed through wound healing and transwell assays, respectively. RT-PCR was employed to quantify mRNA levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Apoptotic rates and molecular markers were analyzed via flow cytometry and RT-PCR. The PI3K/AKT signaling pathway was studied using Western blot and ELISA, with IGF-1 and the PI3K inhibitor LY294002 used to validate the findings. RESULTS: DF demonstrated dose-dependent inhibitory effects on MM cell proliferation, migration, and invasion. It reduced mRNA levels of MMP-2 and MMP-9 while increasing those of TIMP-1 and TIMP-2. Furthermore, DF enhanced the expression of pro-apoptotic proteins and inhibited M2 macrophage polarization by targeting key molecules and enzymes. The anti-myeloma activity of DF was mediated through the inhibition of the PI3K/AKT pathway, as evidenced by diminished phosphorylation and differential effects in the presence of IGF-1 and LY294002. CONCLUSION: By modulating the PI3K/AKT pathway, DF effectively inhibits MM cell proliferation, migration, and invasion, and induces apoptosis, establishing a novel therapeutic strategy for MM based on traditional Chinese medicine.

9.
Plant Physiol Biochem ; 212: 108773, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820912

RESUMEN

The mulberry fruit is prized for its superior nutrition value and abundant color due to its high flavone content. To enhance comprehension of flavone biogenesis induced by external hormones, we sprayed exogenous ethylene (ETH), indoleacetic acid (IAA) and spermine (SPM) on mulberry fruit (Hongguo 2) during its color-changed period. The levels of anthocyanin, titratable acid, soluble sugar and endogenous hormones were determined after hormone treatment, integrated transcriptome and metabolome analysis were performed for mechanism exploration. Our results indicated that exogenous ETH, SPM, and IAA play important roles in mulberry ripening, including acid reduction, sugar increase and flavonoid synthesis.


Asunto(s)
Flavonoides , Frutas , Ácidos Indolacéticos , Morus , Reguladores del Crecimiento de las Plantas , Morus/metabolismo , Morus/genética , Morus/efectos de los fármacos , Frutas/metabolismo , Frutas/genética , Frutas/efectos de los fármacos , Flavonoides/metabolismo , Flavonoides/biosíntesis , Reguladores del Crecimiento de las Plantas/farmacología , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Transcriptoma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Etilenos/metabolismo , Etilenos/farmacología , Espermina/metabolismo , Espermina/farmacología , Perfilación de la Expresión Génica , Metaboloma/efectos de los fármacos , Metabolómica
10.
Eur J Pharmacol ; 976: 176680, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38810716

RESUMEN

The escalating focus on ageing-associated disease has generated substantial interest in the phenomenon of cognitive impairment linked to diabetes. Hyperglycemia exacerbates oxidative stress, contributes to ß-amyloid accumulation, disrupts mitochondrial function, and impairs cognitive function. Existing therapies have certain limitations, and apigenin (AG), a natural plant flavonoid, has piqued interest due to its antioxidant, anti-inflammatory, and anti-hyperglycemic properties. So, we anticipate that AG might be a preventive medicine for hyperglycemia-associated amnesia. To test our hypothesis, naïve zebrafish were trained to acquire memory and pretreated with AG. Streptozotocin (STZ) was administered to mimic hyperglycemia-induced memory dysfunction. Spatial memory was assessed by T-maze and object recognition through visual stimuli. Acetylcholinesterase (AChE) activity, antioxidant enzyme status, and neuroinflammatory genes were measured, and histopathology was performed in the brain to elucidate the neuroprotective mechanism. AG exhibits a prophylactic effect and improves spatial learning and discriminative memory of STZ-induced amnesia in zebrafish under hyperglycemic conditions. AG also reduces blood glucose levels, brain oxidative stress, and AChE activity, enhancing cholinergic neurotransmission. AG prevented neuronal damage by regulating brain antioxidant response elements (ARE), collectively contributing to neuroprotective properties. AG demonstrates a promising effect in alleviating memory dysfunction and mitigating pathological changes via activation of the Nrf2/ARE mechanism. These findings underscore the therapeutic potential of AG in addressing memory dysfunction and neurodegenerative changes associated with hyperglycemia.


Asunto(s)
Amnesia , Apigenina , Hiperglucemia , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Estrés Oxidativo , Pez Cebra , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Amnesia/tratamiento farmacológico , Amnesia/metabolismo , Estrés Oxidativo/efectos de los fármacos , Apigenina/farmacología , Apigenina/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Acetilcolinesterasa/metabolismo , Transducción de Señal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Proteínas de Pez Cebra/metabolismo , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Masculino , Estreptozocina , Aprendizaje por Laberinto/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Modelos Animales de Enfermedad
11.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2262-2272, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812240

RESUMEN

To investigate the effect of epimedium total flavone capsules on post-stroke cognitive impairment(PSCI) in rats. The transient middle cerebral artery occlusion(tMCAO) model was constructed on selected rats, and rats with impaired neurological function were randomly divided into the model group, low, middle, and high dose groups of epimedium total flavone capsules, and nimodipine tablet group. The cognitive function of rats was measured after administration. Pathological changes in brain tissue were observed after hematoxylin-eosin staining(HE). Neuronal nuclei(NeuN) and glial fibrillary acidic protein(GFAP) distribution in brain tissue were tested by immunofluorescent staining. The level of amyloid beta 1-42(Aß_(1-42)), neuron specific enolase(NSE), acetylcholine(ACH), dopamine(DA), 5-hydroxytryptamine(5-HT), norepinephrine(NE), interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α), and hypersensitive C-reactive protein(hs-CRP) in rat serum was tested. Moreover, Western blot was utilized to test the expression of nuclear factor-kappaB(NF-κB), p-NF-κB, alpha inhibitor of NF-κB(IκBα) protein, and p-IκBα protein in the hippocampus. The experimental results showed that epimedium total flavone capsules can improve the cognitive function of model rats, and the mechanism may be related to the regulation of the expression of p-IκBα and p-NF-κB proteins, so as to inhibit inflammatory response induced by ischemia-reperfusion.


Asunto(s)
Cápsulas , Disfunción Cognitiva , Medicamentos Herbarios Chinos , Epimedium , Flavonas , Ratas Sprague-Dawley , Accidente Cerebrovascular , Animales , Ratas , Epimedium/química , Masculino , Flavonas/administración & dosificación , Flavonas/farmacología , Flavonas/química , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/complicaciones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Humanos , Péptidos beta-Amiloides/metabolismo , FN-kappa B/metabolismo , FN-kappa B/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Cognición/efectos de los fármacos
12.
Eur J Pharm Biopharm ; 200: 114316, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754525

RESUMEN

We previously reported that α-glycosylated naringin (naringin-G), synthesized by enzyme-catalyzed transglycosylation, can enhance the solubility of poorly water-soluble compounds without surface-active property. However, the solubilization mechanism has not been fully elucidated. In this study, the solubilization mechanism of naringin-G was investigated using nuclear magnetic resonance (NMR) spectroscopy, and its application in skin formulations was further investigated. 1H NMR and dynamic light scattering measurements at various concentrations confirmed the self-assembled nanostructures of naringin-G above a critical aggregation concentration of approximately 2.2 mg/mL. Two-dimensional 1H-1H nuclear Overhauser effect spectroscopy and solubility tests revealed that flavone with poor water solubility, could be solubilized in its self-assembled structure with a stoichiometric relationship with naringin-G. When naringin-G was included in the skin formulation, the permeated amount and permeability coefficient (Papp) of flavones improved up to four times with increasing amounts of naringin-G. However, flavone solubilization by adding an excessive amount of naringin-G resulted in a decreased permeated amount and Papp of flavones, indicating the interplay between the apparent solubility and skin permeability of flavones. Naringin-G, which forms a nanoaggregate structure without exhibiting surface-active properties, has the potential to enhance the solubility and skin permeation of poorly water-soluble compounds.


Asunto(s)
Flavanonas , Nanoestructuras , Piel , Solubilidad , Flavanonas/química , Glicosilación , Nanoestructuras/química , Animales , Piel/metabolismo , Absorción Cutánea/efectos de los fármacos , Administración Cutánea , Flavonas/química , Permeabilidad , Espectroscopía de Resonancia Magnética/métodos
13.
Food Chem Toxicol ; 189: 114747, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768937

RESUMEN

Chronic exposure to lead (Pb) induces neurodegenerative changes in animals and humans. Drugs with strong antioxidant properties are effective against Pb-mediated neurotoxicity. In a prior study, we identified 5,7-dihydroxy-3',4',5'-trimethoxyflavone (TMF) from Ocimum basilicum L. leaves as a potent antioxidant and neuroprotective compound. This research explores TMF's neuroprotective effects against Pb-induced brain toxicity in rats to establish it as a therapeutic agent. Rats received lead acetate (100 mg/kg, orally, once daily) for 30 days to induce brain injury, followed by TMF treatment (5 and 10 mg/kg, oral, once daily) 30 min later. Cognitive and motor functions were assessed using Morris Water Maze and horizontal bar tests. Lead, monoamine oxidase (MAO) A and B enzymes, reduced glutathione (GSH), thiobarbituric acid reactive species (TBARS), Tumor necrosis factor-alpha (TNF-α), and IL-6 levels were measured in the hippocampus and cerebellum. Pb exposure impaired cognitive and motor functions, increased Pb, TBARS, TNF-α, and IL-6 levels, and compromised MAO A & B and GSH levels. TMF reversed Pb-induced memory and motor deficits and normalized biochemical anomalies. TMF's neuroprotective effects against lead involve chelating, antioxidant, anti-inflammatory, and monoaminergic properties, suggesting its potential as a treatment for metal-induced brain injury.


Asunto(s)
Antiinflamatorios , Antioxidantes , Animales , Antioxidantes/farmacología , Masculino , Ratas , Antiinflamatorios/farmacología , Fármacos Neuroprotectores/farmacología , Flavonas/farmacología , Plomo/toxicidad , Quelantes/farmacología , Ratas Wistar , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/prevención & control , Glutatión/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos
14.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731504

RESUMEN

Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant-environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.


Asunto(s)
Polifenoles , Polifenoles/química , Polifenoles/farmacología , Humanos , Plantas Medicinales/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Asteraceae/química
15.
Chem Biol Interact ; 396: 111027, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38735452

RESUMEN

Antibiotic resistance poses a significant challenge in modern medicine, urging the exploration of innovative approaches to combat bacterial infections. Biofilms, complex bacterial communities encased in a protective matrix, contribute to resistance by impeding antibiotic efficacy and promoting genetic exchange. Understanding biofilm dynamics is crucial for developing effective antimicrobial therapies against antibiotic resistance. This study explores the potential of flavone to combat biofilm-induced antibiotic resistance by employing in-vitro biochemical, cell biology, and Insilico (MD simulation), approaches. Flavone exhibited potent antibacterial effects with a low minimum inhibitory concentration by inducing intracellular reactive oxygen species. Flavones further inhibited the formation of biofilms by 50-60 % and disrupted the pre-formed biofilms by reducing the extracellular polysaccharide substance protective layer formed on the biofilm by 80 %. Quorum sensing (QS) plays a crucial role in bacterial pathogenicity and flavone significantly attenuated the production of QS-induced virulence factors like urease, protease, lipase, hemolysin and prodigiosin pigment in a dose-dependent manner. Further Insilico molecular docking studies along with molecular dynamic simulations run for 100 ns proved the stable binding affinity of flavone with QS-specific proteins which are crucial for biofilm formation. This study demonstrates the therapeutic potential of flavone to target QS-signaling pathway to combat S.marcescens biofilms.


Asunto(s)
Antibacterianos , Biopelículas , Flavonas , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Percepción de Quorum , Biopelículas/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Flavonas/farmacología , Flavonas/química , Antibacterianos/farmacología , Antibacterianos/química , Simulación de Dinámica Molecular , Especies Reactivas de Oxígeno/metabolismo , Farmacorresistencia Microbiana/efectos de los fármacos , Factores de Virulencia/metabolismo , Proteínas Bacterianas/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 49(4): 951-960, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621902

RESUMEN

The chemical constituents of ethyl acetate from Hypericum himalaicum were isolated by silica gel column chromatography, gel column chromatography, and high-performance liquid chromatography. The structure of the isolated compounds was identified by modern spectral techniques(NMR, MS, IR, and UV), and the potential anti-inflammatory targets and action pathways were analyzed and predicted by network pharmacology and molecular docking methods.Ten compounds were isolated from H. himalaicum and identified as 5,9,11-trihydroxy-3,3-dimethyl-3H,8H-benzo[6,7][1,4]dioxepino[2,3-f]chromen-8-one(1), betulinic acid(2), demethyltorosaflavone C(3), kaempferol(4), quercetin(5), hyperwightin B(6), toxyloxanthone B(7), 1,7-dihydroxy-xanthone(8), emodin(9), and 1,7-dihydroxy-4-methoxy-xanthone(10). Among them, compound 1 was a new compound, and compounds 2-10 were isolated from H. himalaicum for the first time. Network pharmacology screened 60 key anti-inflammatory targets. By acting on TNF, AKT1, CASP3, and other key targets, involving PI3K-AKT signaling pathway, IL-17 signaling pathway, VEGF signaling pathway, MAPK signaling pathway, and other signaling pathways, and phosphorylation, cell migration and movement, protein tyrosine kinase, and other biological processes were regulated to achieve anti-inflammatory effects. The results of molecular docking show that the above components have good binding properties with the core targets.


Asunto(s)
Medicamentos Herbarios Chinos , Hypericum , Xantonas , Farmacología en Red , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Antiinflamatorios/farmacología , Proteínas Proto-Oncogénicas c-akt
17.
J Agric Food Chem ; 72(18): 10304-10313, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657164

RESUMEN

Neuropeptides are involved in many biological processes in insects. However, it is unclear what role neuropeptides play in Spodoptera litura adaptation to phytochemical flavone. In this study, 63 neuropeptide precursors from 48 gene families were identified in S. litura, including two neuropeptide F genes (NPFs). NPFs played a positive role in feeding regulation in S. litura because knockdown of NPFs decreased larval diet intake. S. litura larvae reduced flavone intake by downregulating NPFs. Conversely, the flavone intake was increased if the larvae were treated with NPF mature peptides. The NPF receptor (NPFR) was susceptible to the fluctuation of NPFs. NPFR mediated NPF signaling by interacting with NPFs to regulate the larval diet intake. In conclusion, this study suggested that NPF signaling regulated diet intake to promote S. litura adaptation to flavone, which contributed to understanding insect adaptation mechanisms to host plants and provide more potential pesticidal targets for pest control.


Asunto(s)
Proteínas de Insectos , Larva , Neuropéptidos , Spodoptera , Animales , Spodoptera/fisiología , Spodoptera/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Neuropéptidos/química , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Flavonas/metabolismo , Flavonas/química , Conducta Alimentaria , Secuencia de Aminoácidos
18.
J Mass Spectrom ; 59(5): e5024, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605459

RESUMEN

Yupingfeng granules (YPFG) is commonly used in the treatment of immunological diseases, inflammations, and pulmonary diseases. Several studies have found that chromones, flavones, and saponins were the major bioactive compounds of YPFG. However, few studies have reported accurate quantification methods of these compounds. This study aimed to establish a simple and rapid method by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to determine 15 bioactive compounds in YPFG. The experimental parameters including extraction methods, extraction solvents, extraction time, solid-liquid ratio, and LC-MS/MS condition were optimized. The linearity, precision, repeatability, stability, and recovery of the established method were evaluated. The contents of 15 bioactive compounds in seven batches of YPFG samples were analyzed by the established method and the results were compared with the values determined by HPLC. The optimal extraction condition was to extract 0.1 g of YPFG by ultrasound with 50 mL 50% ethanol for 30 min. A Waters ACQUITY UPLCBEH C18 column using the 0.1% formic acid water solution and acetonitrile as mobile phase with a gradient elution was applied to the chromatographic separation. The linearity, precision, repeatability, stability, and recovery of the method were within acceptable ranges. Compared with HPLC analysis methods in Chinese Pharmacopoeia and literature, the established method was faster, simpler, more accurate, and more reliable. The method of simultaneous determination of 15 components in YPFG by LC-MS might provide a basis for the study of the bioactive compounds and the improvement of the quality standard of YPFG.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos
19.
Food Chem ; 449: 139237, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581780

RESUMEN

Whole grains (WG) are beneficial to health but have reduced sensory quality, partly attributable to inhibition of Maillard reaction products (MRP) by WG phenolics. The study investigated how major flavonoid classes in cereals affect Maillard reaction pathways. Flavonoids were reacted with xylose-lysine aqueous system at 160 °C/12 min. Additionally, breads were made with catechin, and wheat and sorghum bran fortification. Low Mw MRP were profiled using UPLC-MS/MS, while melanoidins were characterized using fluorescence spectroscopy and HPSEC-MALS. The flavonoids significantly (p < 0.05) reduced both melanoidin content (by 33-86%) and Mw (3.5-15 kDa vs 20 kDa control), leading to lighter bread crust. Flavonoids inhibited MRP via direct condensation with early-stage amines and carbonyls into stable adducts, and reduction of late-stage polymerization reactions, increasing accumulation of cyclic N-containing intermediates. Inhibitory trend was flavones>flavanones>flavanols. C-Ring π-bond dramatically enhance flavonoid MRP inhibition; thus flavone-rich cereal grains are likely to strongly impact MRP-dependent sensory attributes of WG products.


Asunto(s)
Pan , Grano Comestible , Flavonoides , Reacción de Maillard , Flavonoides/química , Flavonoides/farmacología , Grano Comestible/química , Pan/análisis , Manipulación de Alimentos , Triticum/química , Espectrometría de Masas en Tándem
20.
BMC Biotechnol ; 24(1): 19, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609923

RESUMEN

BACKGROUND: Flavonoids are one of the bioactive ingredients of Lonicera macranthoides (L. macranthoides), however, their biosynthesis in the flower is still unclear. In this study, combined transcriptomic and targeted metabolomic analyses were performed to clarify the flavonoids biosynthesis during flowering of L. macranthoides. RESULTS: In the three sample groups, GB_vs_WB, GB_vs_WF and GB_vs_GF, there were 25, 22 and 18 differentially expressed genes (DEGs) in flavonoids biosynthetic pathway respectively. A total of 339 flavonoids were detected and quantified at four developmental stages of flower in L. macranthoides. In the three sample groups, 113, 155 and 163 differentially accumulated flavonoids (DAFs) were detected respectively. Among the DAFs, most apigenin derivatives in flavones and most kaempferol derivatives in flavonols were up-regulated. Correlation analysis between DEGs and DAFs showed that the down-regulated expressions of the CHS, DFR, C4H, F3'H, CCoAOMT_32 and the up-regulated expressions of the two HCTs resulted in down-regulated levels of dihydroquercetin, epigallocatechin and up-regulated level of kaempferol-3-O-(6''-O-acetyl)-glucoside, cosmosiin and apigenin-4'-O-glucoside. The down-regulated expressions of F3H and FLS decreased the contents of 7 metabolites, including naringenin chalcone, proanthocyanidin B2, B3, B4, C1, limocitrin-3,7-di-O-glucoside and limocitrin-3-O-sophoroside. CONCLUSION: The findings are helpful for genetic improvement of varieties in L.macranthoides.


Asunto(s)
Lonicera , Lonicera/genética , Apigenina , Quempferoles , Perfilación de la Expresión Génica , Flavonoides , Flores/genética , Glucósidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA