Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Chemphyschem ; : e202400503, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080510

RESUMEN

Thio-caged fluorophores can be effectively desulfurized into their oxygenated derivatives through visible light, thereby restoring the strong emission, and are applied in live cell super-resolution imaging. Herein, we theoretically investigated the reasons for the low fluorescence quantum yields of a series of thio-caged fluorophores and the underlying reasons for the differences in fluorescence quantum yields of their oxygenated derivatives. The calculation results show that the S atom on the thiocarbonyl group is more likely to excite n electrons to form the nπ* state, which reduces the energy of the nπ* state and leads to fluorescence quenching. In contrast, oxygenated derivatives is more likely to excite π electrons to form ππ* state, which is the main reason for restoring the strong emission of fluorophore. Meanwhile, the calculation results show that the difference of fluorescence intensity caused by oxygenated derivatives is determined by the number of the carbonyl group, which affects the vibronic coupling between ππ* and nπ* states and thereby leads to fluorescence quenching. These results can effectively reveal the fluorescence quenching mechanism of thio-caged fluorophores and the luminescence mechanism of their oxygenated derivatives, and provide correct and guiding design strategies for the development of new thio-caged fluorophores.

2.
Adv Tech Stand Neurosurg ; 52: 21-28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017784

RESUMEN

The complexity of intracranial anatomy and pathologies warrants the optimization of multimodal techniques to ensure safe and effective surgical treatment. Endoscopy is being more widely implemented in intracranial procedures as an important visualization tool, as it can offer panoramic views of deep structures while reducing the invasiveness of approaches. Fluorophores are frequently utilized to augment the identification of intracranial anatomic landmarks and pathologies. This chapter discusses the integration of these two surgical adjuncts, highlighting the key fluorophores used in endoscopic neurosurgery and their clinical applications.


Asunto(s)
Colorantes Fluorescentes , Neuroendoscopía , Procedimientos Neuroquirúrgicos , Humanos , Neuroendoscopía/métodos , Procedimientos Neuroquirúrgicos/métodos
3.
J Fluoresc ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018001

RESUMEN

Fluorescent chemosensors have become vital tools for detecting toxic ions due to their exceptional sensitivity, selectivity, and rapid response times. These sensors function through various mechanisms, each providing unique advantages for specific applications. This review offers a comprehensive overview of the mechanistic innovations in fluorescent chemosensors, emphasizing five key approaches: Photoinduced Electron Transfer (PET), Fluorescence Resonance Energy Transfer (FRET), Intramolecular Charge Transfer (ICT), Aggregation-Induced Emission (AIE), and Excited-State Intramolecular Proton Transfer (ESIPT). We highlight the substantial progress made in developing these chemosensors, discussing their design principles, sensing mechanisms, and practical applications, with a particular focus on their use in detecting toxic ions relevant to environmental and biological contexts.

4.
Chem Rec ; 24(7): e202300369, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38953343

RESUMEN

pH has been considered one of the paramount factors in bodily functions because most cellular tasks exclusively rely on precise pH values. In this context, the current techniques for pH sensing provide us with the futuristic insight to further design therapeutic and diagnostic tools. Thus, pH-sensing (electrochemically and optically) is rapidly evolving toward exciting new applications and expanding researchers' interests in many chemical contexts, especially in biomedical applications. The adaptation of cutting-edge technology is subsequently producing the modest form of these biosensors as wearable devices, which are providing us the opportunity to target the real-time collection of vital parameters, including pH for improved healthcare systems. The motif of this review is to provide insight into trending tech-based systems employed in real-time or in-vivo pH-responsive monitoring. Herein, we briefly go through the pH regulation in the human body to help the beginners and scientific community with quick background knowledge, recent advances in the field, and pH detection in real-time biological applications. In the end, we summarize our review by providing an outlook; challenges that need to be addressed, and prospective integration of various pH in vivo platforms with modern electronics that can open new avenues of cutting-edge techniques for disease diagnostics and prevention.


Asunto(s)
Técnicas Biosensibles , Concentración de Iones de Hidrógeno , Humanos , Dispositivos Electrónicos Vestibles , Técnicas Electroquímicas
5.
Environ Res ; : 119544, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969312

RESUMEN

The main aim of this review is to provide an extensive summary of the latest advances within the emerging research area focused on detecting heavy metal ion pollution, particularly sensing strategies. The review explores various heavy metal ion detection approaches, encompassing spectrometry, electrochemical methods, and optical techniques. Numerous initiatives have been undertaken in recent times in response to the increasing demand for fast, sensitive, and selective sensors. Notably, fluorescent sensors have acquired prominence owing to the numerous advantages such as outstanding specificity, reversibility, and sensitivity. Further, it also explores the discussion of various nanomaterials employed in sensing heavy metal ions. In this regard, the exclusive emphasis is placed on fluorescent nanomaterials based on organic dyes, quantum dots, and fluorescent aptasensors for metal ion removal from aqueous systems to identify the destiny of dangerous heavy metal ions in clean circumstances.

6.
Chembiochem ; : e202400273, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924297

RESUMEN

A series of D-p-A indole-containing fluorescent probes were developed followed by an investigation of their photophysical properties and compounds' suitability for subcellular imaging in living cells. We demonstrate that the preference for mitochondrial localization was lost when morpholine was substituted, resulting in the accumulation of the molecule in the lysosomes. However, interestingly, the presence of a nitro group led to their localization within the lipid droplets despite the presence of the morpholine pendant. We also showcase the probes' sensitivity to pH, the influence of added chloroquine, and the temperature response on the changes in fluorescence intensity within lysosomes. The design of the probes with strong intramolecular charge transfer and substantial Stokes shift could facilitate extensive application in various cellular lysosomal models and contribute to a better understanding of the mechanisms involved in stimuli-responsive diseases.

7.
Small ; : e2401437, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38932671

RESUMEN

Fluorophores with color-shifting characteristics have attracted enormous research interest in the quantitative application of RNA sensors. It reports here a simple synthesis, luminescent properties, and co-transcription ability of de-conjugated triphenylmethane leucomalachite green (LMG). This novel clusteroluminescence fluorophore is rapidly synthesized from malachite green (MG) in reductive transcription system containing dithiothreitol, emitting fluorescence in the UV region through space conjugation. The co-transcribed MG RNA aptamer (MGA) bound to the ligand, resulting in red fluorescence from the through-bond conjugation. Given the equilibrated color-shifting fluorophores, they are rationally employed in a 3WJ-based rolling circle transcription switch, with the target-aptamer acting as an activator to achieve steric allosterism. This one-pot system allows the target to compete continuously for allosteric sites, and the activated transcription switches continue to amplify MGA forward, achieving accurate Aflatoxin 1 quantification at the picomolar level in 1 h. Due to the programmability of this RNA sensor, the design method of target-competitive aptamers is standardized, making it universally applicable.

8.
Adv Healthc Mater ; : e2401117, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848965

RESUMEN

The endoplasmic reticulum (ER) plays an important role in protein synthesis and its disruption can cause protein unfolding and misfolding. Accumulation of such proteins leads to ER stress, which ultimately promotes many diseases. Routine screening of ER activity in immune cells can flag serious conditions at early stages, but the current clinically used bio-probes have limitations. Herein, an ER-specific fluorophore based on a biocompatible benzothiadiazole-imine cage (BTD-cage) with excellent photophysical properties is developed. The cage outperforms commercially available ER stains in long-term live cell imaging with no fading or photobleaching over time. The cage is responsive to different levels of ER stress where its fluorescence increases accordingly. Incorporating the bio-probe into an immune disorder model, a 6-, 21-, and 48-fold increase in intensity is shown in THP-1, Raw 246.7, and Jurkat cells, respectively (within 15 min). These results strongly support that this system can be used for rapid visual and selective detection of ER stress. It is envisaged that tailoring molecular interactions and molecular recognition using supramolecular improved fluorophores can expand the library of biological probes for enhanced selectivity and targetability toward cellular organelles.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124568, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38824757

RESUMEN

To better understand the relationship between molecular structure of the mono-/bis-BF2-core compounds and mechanofluoroboron behaviors, two pyridine-based difluoroboron compounds with triphenylamine group (TPA-ts-BF2 and TPA-ts-2BF2) were designed and successfully synthesized, which TPA-ts-BF2 including a BF2 fluorophore and TPA-ts-2BF2 containing the bisBF2 fluorophores. Based on the photophysical properties measurements results, it was found that TPA-ts-2BF2 had more excellent intramolecular charge transfer characteristics than that of TPA-ts-BF2, and exhibited significant aggregation-induced emission activity, however, TPA-ts-BF2 displayed typical aggregation-caused quenching phenomenon. Meanwhile, the emission spectrum of the solid powders of TPA-ts-2BF2 was red-shifted 52 nm after grinding, that of TPA-ts-BF2 was red-shifted 46 nm, which was resulted from crystalline state switching to amorphous state. According to the theoretical calculations, we conjectured that TPA-ts-BF2 with uncoordinated amide linkage moiety had a tendency to forming a more twisted conformance and higher molecular polarity, which made that mechanofluorochromic behavior was worse than that of TPA-ts-2BF2. Additionally, TPA-ts-2BF2 was applied to latent fingerprint detection due to its prime aggregation-induced emission property.

10.
Top Curr Chem (Cham) ; 382(2): 16, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722386

RESUMEN

Coumarins are secondary metabolites made up of benzene and α-pyrone rings fused together that can potentially treat various ailments, including cancer, metabolic, and degenerative disorders. Coumarins are a diverse category of both naturally occurring as well as synthesized compounds with numerous biological and therapeutic properties. Coumarins as fluorophores play a key role in fluorescent labeling of biomolecules, metal ion detection, microenvironment polarity detection, and pH detection. This review provides a detailed insight into the characteristics of coumarins as well as their biosynthesis in plants and metabolic pathways. Various synthetic strategies for coumarin core involving both conventional and green methods have been discussed comparing advantages and disadvantages of each method. Conventional methods discussed are Pechmann, Knoevenagel, Perkin, Wittig, Kostanecki, Buchwald-Hartwig, and metal-induced coupling reactions such as Heck and Suzuki, as well as green approaches involving microwave or ultrasound energy. Various pharmacological applications of coumarin derivatives are discussed in detail. The structural features and conditions responsible for influencing the fluorescence of coumarin core are also elaborated.


Asunto(s)
Cumarinas , Colorantes Fluorescentes , Cumarinas/química , Cumarinas/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Estructura Molecular , Productos Biológicos/química , Productos Biológicos/síntesis química
11.
J Control Release ; 371: 85-100, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782063

RESUMEN

Lipid conjugates have advanced the field of lipid-based nanomedicine by promoting active-targeting (ligand, peptide, antibody), stability (PEGylation), controlled release (lipoid prodrug), and probe-based tracking (fluorophore). Recent findings indicate lipid conjugates dissociating from nanomedicine upon encountering a biological environment. Yet, implications for (pre)clinical outcomes remain unclear. In this study, using the zebrafish model (Danio rerio), we investigated the fate of liposome-incorporated lipid fluorophore conjugates (LFCs) after intravenous (IV) administration. LFCs having a bilayer mismatch and relatively polar fluorophore revealed counter-predictive outcomes for Caelyx/Doxil (clearance vs. circulating) and AmBisome-like liposomes (scavenger endothelial cell vs. macrophage uptake). Findings on LFC (mis)match for Caelyx/Doxil-like liposomes were supported by translational intravital imaging studies in mice. Importantly, contradicting observations suggest to originate from LFC dissociation in vivo, which was investigated by Asymmetric Flow Field-Flow Fractionation (AF4) upon liposome-serum incubation in situ. Our data suggests that LFCs matching with the liposome bilayer composition - that did not dissociate upon serum incubation - revealed improved predictive outcomes for liposome biodistribution profiles. Altogether, this study highlights the critical importance of fatty acid tail length and headgroup moiety when selecting lipid conjugates for lipid-based nanomedicine.


Asunto(s)
Lípidos , Liposomas , Nanomedicina , Pez Cebra , Animales , Nanomedicina/métodos , Lípidos/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/farmacocinética , Ratones , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Doxorrubicina/análogos & derivados
12.
Sci Rep ; 14(1): 11533, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773170

RESUMEN

Tauopathies, including Alzheimer's disease and Frontotemporal Dementia, are debilitating neurodegenerative disorders marked by cognitive decline. Despite extensive research, achieving effective treatments and significant symptom management remains challenging. Accurate diagnosis is crucial for developing effective therapeutic strategies, with hyperphosphorylated protein units and tau oligomers serving as reliable biomarkers for these conditions. This study introduces a novel approach using nanotechnology to enhance the diagnostic process for tauopathies. We developed humanized ferritin nanocages, a novel nanoscale delivery system, designed to encapsulate and transport a tau-specific fluorophore, BT1, into human retinal cells for detecting neurofibrillary tangles in retinal tissue, a key marker of tauopathies. The delivery of BT1 into living cells was successfully achieved through these nanocages, demonstrating efficient encapsulation and delivery into retinal cells derived from human induced pluripotent stem cells. Our experiments confirmed the colocalization of BT1 with pathological forms of tau in living retinal cells, highlighting the method's potential in identifying tauopathies. Using ferritin nanocages for BT1 delivery represents a significant contribution to nanobiotechnology, particularly in neurodegenerative disease diagnostics. This method offers a promising tool for the early detection of tau tangles in retinal tissue, with significant implications for improving the diagnosis and management of tauopathies. This study exemplifies the integration of nanotechnology with biomedical science, expanding the frontiers of nanomedicine and diagnostic techniques.


Asunto(s)
Ferritinas , Retina , Tauopatías , Proteínas tau , Humanos , Proteínas tau/metabolismo , Ferritinas/metabolismo , Retina/metabolismo , Retina/patología , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/diagnóstico , Células Madre Pluripotentes Inducidas/metabolismo , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología
13.
Talanta ; 275: 126171, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703479

RESUMEN

In recent years, organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH (DFR-MPs-pH) have been attracting much interest in fundamental application research fields. More and more scientific publications have reported the exploration of various DFR-MPs-pH systems that have unique dual-fluorescence ratiometry as the signal output, in-built and signal self-calibration functions to improve precise detection of targets. DFR-MPs-pH systems possess high-performance applications in biosensing, bioimaging and biomedicine fields. This review has comprehensively summarized recent advances of DFR-MPs-pH for the first time. First of all, the compositions and types of DFR-MPs-pH are introduced by summarizing different organic fluorophores-based molecule systems. Then, construction strategies are analyzed based on specific components, structures, properties and functions of DFR-MPs-pH. Afterward, biosensing and bioimaging applications are discussed in detail, primarily referring to pH sensing and imaging detection at the levels of living cells and small animals. Finally, biomedicine applications are fully summarized, majorly involving bio-toxicity evaluation, bio-distribution, biomedical diagnosis and therapeutics. Meanwhile, the current status, challenges and perspectives are rationally commented after detailed discussions of representative and state-of-the-art studies. Overall, this present review is comprehensive, in-time and in-depth, and can facilitate the following further exploration of new and versatile DFR-MPs-pH systems toward rational design, facile preparation, superior properties, adjustable functions and highly efficient applications in promising fields.


Asunto(s)
Técnicas Biosensibles , Colorantes Fluorescentes , Imagen Óptica , Técnicas Biosensibles/métodos , Concentración de Iones de Hidrógeno , Colorantes Fluorescentes/química , Humanos , Animales , Imagen Óptica/métodos , Sondas Moleculares/química
14.
Environ Sci Pollut Res Int ; 31(23): 34309-34323, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698097

RESUMEN

Droughts are becoming more intense and frequent in the Brazilian semiarid because of El Niño and global climate changes. The Jaguaribe River estuary is a semiarid ecosystem that experiences a reduction in freshwater discharges due to droughts and river damming. The decrease in freshwater fluxes has increased metal availability through the water residence time increase in the Jaguaribe River estuary. Then, this study aimed to evaluate the dissolved organic matter quality and its interaction with metals in the Jaguaribe River estuary after a severe drought period. It was performed through carbon analyses, fluorescence spectroscopy, ultrafiltration technique, and determinations of metals by ICP-MS. Optical analysis showed that the dissolved organic carbon (DOC) was preponderantly composed of terrestrial-derived humic compounds, while the low ratio between the particulate organic carbon (POC) and chlorophyll-a indicated that POC was predominantly phytoplankton-derived. DOC and POC presented non-conservative removal during the estuarine mixing. DOM and dissolved elements were mostly distributed within the LMW fraction and presented a low percentage in the colloidal fraction. Li, Rb, Sr, Mo, and U showed conservative behavior, while Cu, Fe, Cr, and V had non-conservative behavior with a significant positive correlation with DOM, suggesting DOM as a relevant driver of metal availability at the Jaguaribe River estuary even during the rainy season.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Metales , Contaminantes Químicos del Agua , Brasil , Metales/análisis , Contaminantes Químicos del Agua/análisis , Ríos/química , Sustancias Húmicas
15.
Bioorg Chem ; 148: 107462, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776650

RESUMEN

Imaging in the shortwave infrared (SWIR, 1000-1700 nm) region is gaining traction for biomedical applications, leading to an in-depth search for fluorophores emitting at these wavelengths. The development of SWIR emitters, to be used in vivo in biological media, is mostly hampered by the considerable lipophilicity of the structures, resulting from the highly conjugated scaffold required to shift the emission to this region, that limit their aqueous solubility. In this work, we have modulated a known SWIR emitter, named Flav7, by adding hydrophilic moieties to the flavylium scaffold and we developed a new series of Flav7-derivatives, which proved to be indeed more polar than the parent compound, but still not freely water-soluble. Optical characterization of these derivatives allowed us to select FlavMorpho, a new compound with improved emission properties compared to Flav7. Encapsulation of the two compounds in micelles resulted in water-soluble SWIR emitters, with FlavMorpho micelles being twice as emissive as Flav7 micelles. The SWIR emission extent of FlavMorpho micelles proved also superior to the tail-emission of Indocyanine Green (ICG), the FDA-approved reference cyanine, in the same region, by exciting the probes at their respective absorption maxima in phosphate buffered saline (PBS) solution. The availability of optical imaging devices equipped with lasers able to excite these dyes at their maximum of absorption in the SWIR region, could pave the way for implemented SWIR imaging results.


Asunto(s)
Diseño de Fármacos , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Estructura Molecular , Rayos Infrarrojos , Micelas , Imagen Óptica , Solubilidad
16.
Angew Chem Int Ed Engl ; 63(29): e202404142, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38715431

RESUMEN

Fluorescent imaging and biosensing in the near-infrared-II (NIR-II) window holds great promise for non-invasive, radiation-free, and rapid-response clinical diagnosis. However, it's still challenging to develop bright NIR-II fluorophores. In this study, we report a new strategy to enhance the brightness of NIR-II aggregation-induced emission (AIE) fluorophores through intramolecular electrostatic locking. By introducing sulfur atoms into the side chains of the thiophene bridge in TSEH molecule, the molecular motion of the conjugated backbone can be locked through intramolecular interactions between the sulfur and nitrogen atoms. This leads to enhanced NIR-II fluorescent emission of TSEH in both solution and aggregation states. Notably, the encapsulated nanoparticles (NPs) of TSEH show enhanced brightness, which is 2.6-fold higher than TEH NPs with alkyl side chains. The in vivo experiments reveal the feasibility of TSEH NPs in vascular and tumor imaging with a high signal-to-background ratio and precise resection for tiny tumors. In addition, polystyrene nanospheres encapsulated with TSEH are utilized for antigen detection in lateral flow assays, showing a signal-to-noise ratio 1.9-fold higher than the TEH counterpart in detecting low-concentration antigens. This work highlights the potential for developing bright NIR-II fluorophores through intramolecular electrostatic locking and their potential applications in clinical diagnosis and biomedical research.


Asunto(s)
Colorantes Fluorescentes , Rayos Infrarrojos , Imagen Óptica , Electricidad Estática , Colorantes Fluorescentes/química , Humanos , Nanopartículas/química , Tiofenos/química , Animales , Ratones , Estructura Molecular
17.
Front Plant Sci ; 15: 1358935, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708397

RESUMEN

Super-resolution microscopy (SRM) approaches revolutionize cell biology by providing insights into the nanoscale organization and dynamics of macromolecular assemblies and single molecules in living cells. A major hurdle limiting SRM democratization is post-acquisition data analysis which is often complex and time-consuming. Here, we present OneFlowTraX, a user-friendly and open-source software dedicated to the analysis of single-molecule localization microscopy (SMLM) approaches such as single-particle tracking photoactivated localization microscopy (sptPALM). Through an intuitive graphical user interface, OneFlowTraX provides an automated all-in-one solution for single-molecule localization, tracking, as well as mobility and clustering analyses. OneFlowTraX allows the extraction of diffusion and clustering parameters of millions of molecules in a few minutes. Finally, OneFlowTraX greatly simplifies data management following the FAIR (Findable, Accessible, Interoperable, Reusable) principles. We provide a detailed step-by-step manual and guidelines to assess the quality of single-molecule analyses. Applying different fluorophores including mEos3.2, PA-GFP, and PATagRFP, we exemplarily used OneFlowTraX to analyze the dynamics of plant plasma membrane-localized proteins including an aquaporin, the brassinosteroid receptor Brassinosteroid Insensitive 1 (BRI1) and the Receptor-Like Protein 44 (RLP44).

18.
Top Curr Chem (Cham) ; 382(2): 14, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671325

RESUMEN

Cancer is one of the major noncommunicable diseases, responsible for millions of deaths every year worldwide. Though various cancer detection and treatment modalities are available today, many deaths occur owing to its late-stage detection and metastatic nature. Noninvasive detection using luminescence-based imaging tools is considered one of the promising techniques owing to its low cost, high sensitivity, and brightness. Moreover, these tools are unique and valuable as they can detect even the slightest changes in the cellular microenvironment. To achieve this, a fluorescent probe with strong tumor uptake and high spatial and temporal resolution, especially with high water solubility, is highly demanded. Recently, several water-soluble molecules with emission windows in the visible (400-700 nm), first near-infrared (NIR-I, 700-1000 nm), and second near-infrared (NIR-II, 1000-1700 nm) windows have been reported in literature. This review highlights recently reported water-soluble small organic fluorophores/dyes with applications in cancer diagnosis and therapeutics. We systematically highlight and describe the key concepts, structural classes of fluorophores, strategies for imparting water solubility, and applications in cancer therapy and diagnosis, i.e., theragnostics. We discuss examples of water-soluble fluorescent probes based on coumarin, xanthene, boron-dipyrromethene (BODIPY), and cyanine cores. Some other emerging classes of dyes based on carbocyclic and heterocyclic cores are also discussed. Besides, emerging molecular engineering methods to obtain such fluorophores are discussed. Finally, the opportunities and challenges in this research area are also delineated.


Asunto(s)
Colorantes Fluorescentes , Neoplasias , Solubilidad , Agua , Colorantes Fluorescentes/química , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/diagnóstico , Agua/química , Imagen Óptica
19.
Chemistry ; 30(34): e202401097, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38624080

RESUMEN

Polymethine dyes of tetraanionic nature comprising 1,3,2-dioxaborine rings in the polymethine chain and end-groups of different electron-accepting abilities have been synthesized. They can be considered as oligomeric polymethines, where a linear conjugated π-system passes through three 1,3,2-dioxaborine units and a number of tri- and dimethine π-bridges between two end-groups. The obtained dyes exhibit near-infrared absorption and fluorescence, with molar absorption coefficients reaching as high as 564000 M-1 cm-1 in DMF, rendering them among the strongest absorbers known. The novel compounds are bright NIR fluorophores, with fluorescence quantum yields up to 0.13 in DMF. A comparative analysis of the electronic structure of the obtained dyes with respective dianionic and trianionic oligomers was conducted through quantum chemical calculations.

20.
J Microsc ; 294(2): 215-224, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556727

RESUMEN

Global efforts to minimise carbon dioxide emissions are also leading to attempts to use calcined clays (CC) as a partial substitute for cement in concrete. While the hydration mechanism of such CC blended cements is now well understood, the range of effective admixtures like polycarboxylate ethers (PCE) is limited. There are PCE types that promise relatively high effectiveness, but the mechanisms of action are not yet sufficiently understood. For a detailed understanding of the adsorption of such PCEs, spatially resolved studies of the binder were performed using a combination of fluorescence and scanning electron microscopy. In a comparison of two superplasticisers, the investigations have shown different sites of preferred adsorption in a CC blended system and the results can be correlated with flow tests and setting behaviour. The investigations have shown that a certain PCE type has a higher adsorption on CC and other components of a blended system in comparison to other types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA