Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Primatol ; 85(11): e23548, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37661600

RESUMEN

Provisioning can significantly affect the ranging patterns, foraging strategies, and time budget of wild primates. In this study, we document for the first time, the effects of provisioning on the activity budget and foraging effort in an Asian colobine. Over 3-years, we used an instantaneous scanning method at 10-min intervals to collect data on the activity budget of a semiprovisioned breeding band (SPB) of black-and-white snub-nosed monkeys (Rhinopithecus bieti) (42-70 individuals) at Xiangguqing (Tacheng), Yunnan, China. We then compared the effects of provisioning in our study band with published data on a sympatric wild nonprovisioned breeding band (NPB) of R. bieti (ca. 360 monkeys) at the same field site. The SPB spent 25.6% of their daytime feeding, 17.1% traveling, 46.9% resting, and 10.3% socializing. In comparison, the NPB devoted more time to feeding (34.9%) and socializing (14.1%), less time to resting (31.3%), and was characterized by a greater foraging effort (1.74 versus 0.96, foraging effort = (feeding + traveling)/resting; see Methods). There was no difference between bands in the proportion of their activity budget devoted to traveling (15.7% vs. 17.1%). In addition, the SPB exhibited a more consistent activity budget and foraging effort across all seasons of the year compared to the NPB. These findings suggest that the distribution, availability, and productivity of naturally occurring feeding sites is a major determinant of the behavioral strategies and activity budget of R. bieti. Finally, a comparison of our results with data on six nonprovisioned R. bieti bands indicates that caution must be raised in meta-analyses or intraspecific comparisons of primate behavioral ecology that contain data generated from both provisioned and nonprovisioned groups.

2.
Am J Primatol ; 85(4): e23467, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36688347

RESUMEN

Food availability and climate represent environmental factors that affect species' social behavior, ranging patterns, diet, and activity budget. From August 2012 to September 2013, we examined the effects of seasonal changes in food availability, temperature, and rainfall on the diet and behavioral ecology of Shortridge's langur (Trachypithecus shortridgei) an Endangered primate species inhabiting moist evergreen broadleaf forests in the Eastern Himalayas. Our field site represents the northernmost latitudinal distribution of this species. Data were collected using scan sampling at 10 min intervals, and analyzed based on generalized linear models. The results indicate that the langurs experienced two feeding peaks (9:00 and 17:00) and two traveling peaks (10:00 and 19:00) during each day. Periods of rest, mainly occurred between 10:00 and 13:00, and overnight. Feeding accounted for 38.5% of the daily activity budget, followed by resting (35%), traveling (24.5%), and socializing (2%). During periods when young leaves were most available, the langurs increased feeding time on young leaves (35% vs. 4%). During periods of maximum fruit availability, the langurs decreased total time spent feeding (36.6% vs. 40.4%), devoted more time to traveling (28.1% vs. 21%), and increased time spent consuming fruit (49.1% vs. 11.8%). During the winter, the langurs increased their consumption of mature leaves (44.5%) and reduced time spent traveling (20.2% vs. 25.4%). Overall, time spent resting was greatest in the spring (47.5%), time spent feeding was greatest during the summer (51.1%), and time spent in traveling was greatest in the autumn (33.2%). The frequency of social interactions remained relatively constant throughout the year. Foraging effort was greatest in the summer, when fruits dominated the diet. Like other species of temperate langurs, T. shortridgei devoted less time to resting, more time to feeding, and was characterized by a greater year-round foraging effort than tropical/subtropical langurs.


Asunto(s)
Presbytini , Animales , Bosques , Dieta/veterinaria , Frutas , Conducta Social , China , Conducta Alimentaria
3.
J Anim Ecol ; 91(12): 2400-2411, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36268692

RESUMEN

The innate immune system is essential for survival, yet many immune traits are highly variable between and within individuals. In recent years, attention has shifted to the role of environmental factors in modulating this variation. A key environmental factor is food availability, which plays a major role in shaping life histories, and may affect resource allocation to immune function through its effect on nutritional state. We developed a technique to permanently increase foraging costs in seed-eating birds, and leveraged this technique to study the effects of food availability on the innate immune system over a 3-year period in 230 zebra finches housed in outdoor aviaries. The immune components we studied were haptoglobin, ovotransferrin, nitric oxide, natural antibodies through agglutination, complement-mediated lysis, and killing capacity of Escherichia coli and Candida albicans, covering a broad spectrum of the innate immune system. We explored the effects of food availability in conjunction with other potentially important variables: season, age, sex and manipulated natal brood size. Increased foraging costs affected multiple components of the immune system, albeit in a variable way. Nitric oxide and agglutination levels were lower under harsh foraging conditions, while Escherichia coli killing capacity was increased. Agglutination levels also varied seasonally, but only at low foraging costs. C. albicans killing capacity was lower in winter, and even more so for animals in harsh foraging conditions that were raised in large broods. Effects of food availability on ovotransferrin were also seasonal, and only apparent in males. Haptoglobin levels were independent of foraging costs and season. Males had higher levels of immune function than females for three of the measured immune traits. Innate immune function was independent of age and manipulated natal brood size. Our finding that food availability affects innate immune function suggests that fitness effects of food availability may at least partially be mediated by effects on the immune system. However, food availability effects on innate immunity varied in direction between traits, illustrating the complexity of the immune system and precluding conclusions on the level of disease resistance.


Asunto(s)
Inmunidad , Óxido Nítrico , Animales
4.
Theor Popul Biol ; 144: 37-48, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35101436

RESUMEN

We propose a predator-prey model to explain diachronic changes in Palaeolithic diet breadth. The fraction of rapidly-reproducing hard-to-catch hares and birds among small animals in the hominin diet shows a significant increase between the Middle and Upper Palaeolithic in the Levant, with an associated decrease in slowly-reproducing easily-caught tortoises. Our model interprets this fraction in terms of foraging effort allocated to, and foraging efficiency for each of these two classes of resource, in addition to their abundances. We focus on evolutionary adjustments in the allocation of foraging effort. The convergence stable strategy (CSS) of foraging effort and the dietary fraction of hares/birds are both highly sensitive to variation in the foraging efficiencies, which may have been upgraded by advanced technology introduced from Africa or developed locally. A positive correlation (not necessarily a cause and effect relationship) is observed between this fraction and forager population when the foraging efficiency for hares/birds is varied. Overexploitation can however result in a reduction of both diet breadth and forager population, as can food sharing within the forager group. Food sharing is routine among recent (and perhaps also Palaeolithic) foragers. We speculate that some controversial issues regarding this public goods problem might be resolved if we could incorporate sexual selection into our model.


Asunto(s)
Hominidae , Conducta Predatoria , Animales , Aves , Dieta , Tecnología de Alimentos , Tecnología
5.
Bull Math Biol ; 81(11): 4778-4802, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30120688

RESUMEN

Under the threat of predation, a species of prey can evolve to its own extinction. Matsuda and Abrams (Theor Popul Biol 45:76-91, 1994a) found the earliest example of evolutionary suicide by demonstrating that the foraging effort of prey can evolve until its population dynamics cross a fold bifurcation, whereupon the prey crashes to extinction. We extend this model in three directions. First, we use critical function analysis to show that extinction cannot happen via increasing foraging effort. Second, we extend the model to non-equilibrium systems and demonstrate evolutionary suicide at a fold bifurcation of limit cycles. Third, we relax a crucial assumption of the original model. To find evolutionary suicide, Matsuda and Abrams assumed a generalist predator, whose population size is fixed independently of the focal prey. We embed the original model into a three-species community of the focal prey, the predator and an alternative prey that can support the predator also alone, and investigate the effect of increasingly strong coupling between the focal prey and the predator's population dynamics. Our three-species model exhibits (1) evolutionary suicide via a subcritical Hopf bifurcation and (2) indirect evolutionary suicide, where the evolution of the focal prey first makes the community open to the invasion of the alternative prey, which in turn makes evolutionary suicide of the focal prey possible. These new phenomena highlight the importance of studying evolution in a broader community context.


Asunto(s)
Evolución Biológica , Extinción Biológica , Cadena Alimentaria , Modelos Biológicos , Conducta Predatoria , Animales , Ecosistema , Conceptos Matemáticos , Densidad de Población , Dinámica Poblacional/estadística & datos numéricos , Selección Genética
6.
Folia Primatol (Basel) ; 89(2): 111-122, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29514166

RESUMEN

The analysis of factors that determine variation in time budgets is important to understand the interactions between environment, behaviour and fitness. We tested the hypothesis that changes in the dietary patterns of black howler monkeys (Alouatta pigra) caused by a decrease in the availability of preferred foods are a main determinant of variation in time budgets. We predicted that individuals would trade off travel time for resting time (i.e., minimize energy expenditure) as the diet included more leaves. We conducted our study in the Mexican state of Campeche between 2005 and 2008, where we studied the behaviour of 28 adult males and 32 adult females belonging to 14 different groups for a total of 3,747.2 focal sampling hours. Study groups lived in forest fragments with variation in habitat quality. Individuals showed different rest:travel trade-offs in response to leaf consumption according to the quality of the forest fragments they lived in. Individuals that lived in high-quality fragments increased resting time under more folivorous regimes, whereas those living in low-quality fragments increased travel time. Our results suggest that howler monkeys living in low-quality fragments spend more time foraging to compensate for the low quality of the available resources.


Asunto(s)
Alouatta/fisiología , Dieta , Metabolismo Energético , Conducta Alimentaria , Animales , Femenino , Masculino , México , Hojas de la Planta , Factores de Tiempo
7.
Front Zool ; 14: 33, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28694838

RESUMEN

BACKGROUND: Foraging efficiency determines whether animals will be able to raise healthy broods, maintain their own condition, avoid predators and ultimately increase their fitness. Using accelerometers and GPS loggers, features of the habitat and the way animals deal with variable conditions can be translated into energetic costs of movement, which, in turn, can be translated to energy landscapes.We investigated energy landscapes in Gentoo Penguins Pygoscelis papua from two colonies at New Island, Falkland/Malvinas Islands. RESULTS: In our study, the marine areas used by the penguins, parameters of dive depth and the proportion of pelagic and benthic dives varied both between years and colonies. As a consequence, the energy landscapes also varied between the years, and we discuss how this was related to differences in food availability, which were also reflected in differences in carbon and nitrogen stable isotope values and isotopic niche metrics. In the second year, the energy landscape was characterized by lower foraging costs per energy gain, and breeding success was also higher in this year. Additionally, an area around three South American Fur Seal Arctocephalus australis colonies was never used. CONCLUSIONS: These results confirm that energy landscapes vary in time and that the seabirds forage in areas of the energy landscapes that result in minimized energetic costs. Thus, our results support the view of energy landscapes and fear of predation as mechanisms underlying animal foraging behaviour. Furthermore, we show that energy landscapes are useful in linking energy gain and variable energy costs of foraging to breeding success.

8.
J Exp Biol ; 220(Pt 2): 304-311, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27811297

RESUMEN

The German cockroach (Blattella germanica) is an excellent model omnivore for studying the effect of foraging effort on nutrient balancing behavior and physiology, and its consequences for performance. We investigated the effect of foraging distance on individual German cockroaches by providing two foods differing in protein-to-carbohydrate ratio at opposite ends of long containers or adjacent to each other in short containers. Each food was nutritionally imbalanced, but the two foods were nutritionally complementary, allowing optimal foraging by selective feeding from both foods. We measured nutrient-specific consumption in fifth instar nymphs and newly eclosed females foraging at the two distances, hypothesizing that individuals foraging over longer distance would select more carbohydrate-biased diets to compensate for the energetic cost of locomotion. We then determined dry mass growth and lipid accumulation in the nymphs as well as mass gain and the length of basal oocytes in the adult females as an estimate of sexual maturation. Nymphs foraging over longer distance accumulated less lipid relative to total dry mass growth, but contrary to our predictions, their protein intake was higher and they accumulated more structural mass. In concordance, adult females foraging over longer distance gained more body mass and matured their oocytes faster. Our results show a positive effect of foraging distance on fitness-related parameters at two life stages, in both cases involving increased consumption of specific nutrients corresponding to requirements at the respective life stage.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Blattellidae/fisiología , Metabolismo Energético , Metabolismo de los Lípidos , Maduración Sexual , Animales , Blattellidae/crecimiento & desarrollo , Conducta Alimentaria , Femenino , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/fisiología , Oocitos/crecimiento & desarrollo
9.
J Exp Biol ; 219(Pt 20): 3284-3293, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27520655

RESUMEN

In response to prolonged periods of fasting, animals have evolved metabolic adaptations helping to mobilize body reserves and/or reduce metabolic rate to ensure a longer usage of reserves. However, those metabolic changes can be associated with higher exposure to oxidative stress, raising the question of how species that naturally fast during their life cycle avoid an accumulation of oxidative damage over time. King penguins repeatedly cope with fasting periods of up to several weeks. Here, we investigated how adult male penguins deal with oxidative stress after an experimentally induced moderate fasting period (PII) or an advanced fasting period (PIII). After fasting in captivity, birds were released to forage at sea. We measured plasmatic oxidative stress on the same individuals at the start and end of the fasting period and when they returned from foraging at sea. We found an increase in activity of the antioxidant enzyme superoxide dismutase along with fasting. However, PIII individuals showed higher oxidative damage at the end of the fast compared with PII individuals. When they returned from re-feeding at sea, all birds had recovered their initial body mass and exhibited low levels of oxidative damage. Notably, levels of oxidative damage after the foraging trip were correlated to the rate of mass gain at sea in PIII individuals but not in PII individuals. Altogether, our results suggest that fasting induces a transitory exposure to oxidative stress and that effort to recover in body mass after an advanced fasting period may be a neglected carryover cost of fasting.


Asunto(s)
Envejecimiento/fisiología , Ayuno/fisiología , Spheniscidae/fisiología , Animales , Antioxidantes/metabolismo , Peso Corporal , Ayuno/sangre , Conducta Alimentaria , Modelos Lineales , Océanos y Mares , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/sangre , Spheniscidae/sangre , Superóxido Dismutasa/metabolismo
10.
Glob Chang Biol ; 18(10): 3063-3070, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28741828

RESUMEN

Recent mass mortalities of bats, birds and even humans highlight the substantial threats that rising global temperatures pose for endotherms. Although less dramatic, sublethal fitness costs of high temperatures may be considerable and result in changing population demographics. Endothermic animals exposed to high environmental temperatures can adjust their behaviour (e.g. reducing activity) or physiology (e.g. elevating rates of evaporative water loss) to maintain body temperatures within tolerable limits. The fitness consequences of these adjustments, in terms of the ability to balance water and energy budgets and therefore maintain body condition, are poorly known. We investigated the effects of daily maximum temperature on foraging and thermoregulatory behaviour as well as maintenance of body condition in a wild, habituated population of Southern Pied Babblers Turdoides bicolor. These birds inhabit a hot, arid area of southern Africa where they commonly experience environmental temperatures exceeding optimal body temperatures. Repeated measurements of individual behaviour and body mass were taken across days varying in maximum air temperature. Contrary to expectations, foraging effort was unaffected by daily maximum temperature. Foraging efficiency, however, was lower on hotter days and this was reflected in a drop in body mass on hotter days. When maximum air temperatures exceeded 35.5 °C, individuals no longer gained sufficient weight to counter typical overnight weight loss. This reduction in foraging efficiency is likely driven, in part, by a trade-off with the need to engage in heat-dissipation behaviours. When we controlled for temperature, individuals that actively dissipated heat while continuing to forage experienced a dramatic decrease in their foraging efficiency. This study demonstrates the value of investigations of temperature-dependent behaviour in the context of impacts on body condition, and suggests that increasingly high temperatures will have negative implications for the fitness of these arid-zone birds.

11.
Front Neurosci ; 5: 101, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21954375

RESUMEN

This study examined instantaneous and cumulative effects of competitive interactions on impulsiveness in the inter-temporal choices in domestic chicks. Chicks were trained to peck colored beads to gain delayed food rewards (1 or 6 grains of millet delivered after a delay ranging between 0 and 4.5 s), and were tested in binary choices between a small-short delay option (SS) and a large-long delay alternative (LL). To examine whether competitive foraging instantaneously changes impulsiveness, we intraindividually compared choices between two consecutive tests in different contexts, one with competitors and another without. We found that (1) the number of the choice of LL was not influenced by competition in the tests, but (2) the operant peck latency was shortened by competition, suggesting a socially enhanced incentive for food. To further examine the lasting changes, two groups of chicks were consecutively trained and tested daily for 2 weeks according to a "behavioral titration" procedure, one with competitors and another without. Inter-group comparisons of the choices revealed that (3) choice impulsiveness gradually decreased along development, while (4) the chicks trained in competition maintained a higher level of impulsiveness. These results suggest that competitive foraging causes impulsive choices not by direct/contextual modification. Causal link between the instantaneous enhancement of incentive and the gradual effects on impulsiveness remains to be examined. Some (yet unspecified) factors may be indirectly involved.

12.
Oecologia ; 105(1): 64-73, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28307123

RESUMEN

We tested the alternative hypotheses that foraging effort will increase (energy maximizer model) or decrease (due to increased costs or risks) when food supply increased, using a Namib desert burrowing spider, Seothyra henscheli (Eresidae), which feeds mainly on ants. The web of S. henscheli has a simple geometrical configuration, comprising a horizontal mat on the sand surface, with a variable number of lobes lined with sticky silk. The sticky silk is renewed daily after being covered by wind-blown sand. In a field experiment, we supplemented the spiders' natural prey with one ant on each day that spiders had active webs and determined the response to an increase in prey. We compared the foraging activity and web geometry of prey-supplemented spiders to non-supplemented controls. We compared the same parameters in fooddeprived and supplemented spiders in captivity. The results support the "costs of foraging" hypothesis. Supplemented spiders reduced their foraging activity and web dimensions. They moulted at least once and grew rapidly, more than doubling their mass in 6 weeks. By contrast, food-deprived spiders increased foraging effort by enlarging the diameter of the capture web. We suggest that digestive constraints prevented supplemented spiders from fully utilizing the available prey. By reducing foraging activities on the surface, spiders in a prey-rich habitat can reduce the risk of predation. However, early maturation resulting from a higher growth rate provides no advantage to S. henscheli owing to the fact that the timing of mating and dispersal are fixed by climatic factors (wind and temperature). Instead, large female body size will increase fitness by increasing the investiment in young during the period of extended maternal care.

13.
Evolution ; 50(3): 1052-1061, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28565288

RESUMEN

The effects of nonselective predation on the optimal age and size of maturity of their prey are investigated using mathematical models of a simple life history with juvenile and adult stages. Fitness is measured by the product of survival to the adult stage and expected adult reproduction, which is usually an increasing function of size at maturity. Size is determined by both age at maturity and the value of costly traits that increase mean growth rate (growth effort). The analysis includes cases with fixed size but flexible time to maturity, fixed time but flexible size, and adaptively flexible values of both variables. In these analyses, growth effort is flexible. For comparison with previous theory, models with a fixed growth effort are analyzed. In each case, there may be indirect effects of predation on the prey's food supply. The effect of increased predation depends on (1) which variables are flexible; (2) whether increased growth effort requires increased exposure to predators; and (3) how increased predator density affects the abundance of food for juvenile prey. If there is no indirect effect of predators on prey food supply, size at maturity will generally decrease in response to increased predation. However, the indirect effect from increased food has the opposite effect, and the net result of predation is often increased size. Age at maturity may either increase or decrease, depending on functional forms and parameter values; this is true regardless of the presence of indirect effects. The results are compared with those of previous theoretical analyses. Observed shifts in life history in response to predation are reviewed, and the role of size-selective predation is reassessed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA