RESUMEN
OBJECTIVE: This study mainly explores (2R,6R; 2S,6S)-HNK and its compounds whether there are antidepressant effects. METHODS: Four HNK compounds were obtained from 2-(Chlorophenyl) Cyclopentylmethanone. Forced swimming test, locomotor sensitization test, and conditioned location preference test were used to screen the antidepressant activity of the synthesized target compounds. RESULTS: In the case of 10 mg HNK treatment, compared with saline, the immobile time of mice in the HNK group, I5 group and I6 group at 1 h and 7 days had statistical significance. In the case of 10 mg HNK treatment, compared with saline, the immobile time of compound C and D groups in the glass cylinder area was significantly different. In the locomotor sensitization test, the movement distance of compound C and D groups on day 15 and day 7 mice increased significantly compared with the first day. In the conditioned place preference experiment, compound C and compound D induced conditioned place preference in mice compared with the Veh group. CONCLUSION: The results of the forced swimming test, locomotor sensitization test, and conditioned location preference test showed that compounds C and D may have certain anti-depressant activity. However, HNK exerts a rapid and significant antidepressant effect within 1 week, but the duration is short.
Asunto(s)
Antidepresivos , Ketamina , Actividad Motora , Natación , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ratones , Masculino , Ketamina/farmacología , Ketamina/análogos & derivados , Actividad Motora/efectos de los fármacos , Factores de Tiempo , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Reproducibilidad de los ResultadosRESUMEN
Doxycycline is an antibiotic that has shown neuroprotective, anti-inflammatory, and antidepressant-like effects. Low doses of doxycycline revert the behavioral and neuroinflammatory responses induced by lipopolysaccharide treatment in a mice model of depression. However, the molecular mechanisms involved in the antidepressant action of doxycycline are not yet understood. Doxycycline inhibits the synthesis of nitric oxide (NO), which increases after stress exposure. Inducible NO synthase (iNOS) inhibition also causes antidepressant-like effects in animal models sensitive to antidepressant-like effects such as the forced swimming test (FST). However, no direct study has yet investigated if the antidepressant-like effects of doxycycline could involve changes in NO-mediated neurotransmission. Therefore, this study aimed at investigating: i) the behavioral effects induced by doxycycline alone or in association with ineffective doses of a NO donor (sodium nitroprusside, SNP) or an iNOS inhibitor (1400 W) in mice subjected to the FST; and ii) doxycycline effects in NO metabolite levels in the prefrontal cortex and hippocampus these animals. Male mice (8 weeks) received i.p. injection of saline or doxycycline (10, 30, and 50 mg/kg), alone or combined with SNP (0.1, 0.5, and 1 mg/kg) or 1400 W (1, 3, and 10 µg/kg), and 30 min later were submitted to the FST. Animals were sacrificed immediately after, and NO metabolites nitrate/nitrite (NOx) were measured in the prefrontal cortex and hippocampus. Doxycycline (50 mg/kg) reduced both the immobility time in the FST and NOx levels in the prefrontal cortex of mice compared to the saline group. The antidepressant-like effect of doxycycline in the FST was prevented by SNP (1 mg/kg) pretreatment. Additionally, sub-effective doses of doxycycline (30 mg/kg) associated with 1400 W (1 µg/kg) induced an antidepressant-like effect in the FST. Altogether, our data suggest that the reducing NO levels in the prefrontal cortex through inhibition of iNOS could be related to acute doxycycline treatment resulting in rapid antidepressant-like effects in mice.
Asunto(s)
Doxiciclina , Óxido Nítrico , Masculino , Ratones , Animales , Óxido Nítrico/metabolismo , Doxiciclina/farmacología , Depresión/tratamiento farmacológico , Depresión/metabolismo , Antidepresivos/uso terapéutico , Natación , Corteza Prefrontal/metabolismoRESUMEN
Abstract Objective: This study mainly explores (2R,6R; 2S,6S)-HNK and its compounds whether there are antidepressant effects. Methods: Four HNK compounds were obtained from 2-(Chlorophenyl) Cyclopentylmethanone. Forced swimming test, locomotor sensitization test, and conditioned location preference test were used to screen the antidepressant activity of the synthesized target compounds. Results: In the case of 10 mg HNK treatment, compared with saline, the immobile time of mice in the HNK group, I5 group and I6 group at 1 h and 7 days had statistical significance. In the case of 10 mg HNK treatment, compared with saline, the immobile time of compound C and D groups in the glass cylinder area was significantly different. In the locomotor sensitization test, the movement distance of compound C and D groups on day 15 and day 7 mice increased significantly compared with the first day. In the conditioned place preference experiment, compound C and compound D induced conditioned place preference in mice compared with the Veh group. Conclusion: The results of the forced swimming test, locomotor sensitization test, and conditioned location preference test showed that compounds C and D may have certain anti-depressant activity. However, HNK exerts a rapid and significant antidepressant effect within 1 week, but the duration is short.
RESUMEN
Major depressive disorder (MDD) is a debilitating illness that affects millions of people worldwide. Currently available antidepressants often take weeks to months to reach their full effect, which leads to an increased risk of suicidal behavior in patients with MMD. Intranasally, esketamine has emerged as an alternative to current antidepressants because of its rapid onset and long-lasting effects in patients with MDD. Animal models are useful for the initial pharmacological screening and for a better understanding of the mechanisms underlying the effects of new drugs with potential against MDD. There is a lack of data on alternative routes of drug administration, either oral or injectable, that can be used in preclinical studies. This study aimed to test whether ketamine has antidepressant-like effects in mice when administered via nebulization using a low-cost apparatus. When mice whose depressive-like behavior was induced by corticosterone were treated with nebulized ketamine at concentrations of 1.3, 2.6, and 5.2 mg/mL, immobility was reduced by 38.6 %, 62.0 %, and 61.1 %, respectively, in the forced swimming test (FST) and 43.6 %, 42.1 %, and 57.9 %, respectively, in the tail suspension test (TST). When depression-like behavior was induced by dexamethasone, nebulization with ketamine reduced immobility by 79.7 %, 49.2 %, and 44.4 % in the FST and 80.9 %, 71.4 %, and 80.4 %, respectively, in the TST. When depression-like behavior was induced by the association between dexamethasone and unpredictable chronic mild stress (UCMS) exposure, immobility was reduced by 26.1 %, 55.3 %, and 19.1 % in FST. Mice treated with nebulized ketamine did not show significant changes in the distance covered or in the time spent moving in the open field test. The efficacy of intraperitoneal and nebulized ketamine is equivalent, which shows that nebulization can be an alternative inexpensive route of drug administration for behavioral studies in rodents.
Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Humanos , Ratones , Animales , Natación , Ketamina/farmacología , Ketamina/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Suspensión Trasera , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Modelos Animales de Enfermedad , Dexametasona/uso terapéutico , Depresión/tratamiento farmacológicoRESUMEN
Schizophrenia is a chronic, debilitating mental illness that has not yet been completely understood. In this study, we aimed to investigate the effects of different doses of ketamine, a non-competitive NMDA receptor antagonist, on the positive- and negative-like symptoms of schizophrenia. We also explored whether these effects are related to changes in the immunoreactivity of GAD67, TH, and PPAR-γ in brain structures. To conduct the study, male mice received ketamine (20-40 mg/kg) or its vehicle (0.9 % NaCl) intraperitoneally for 14 consecutive days. We quantified stereotyped behavior, the time of immobility in the forced swimming test (FST), and locomotor activity after 7 or 14 days. In addition, we performed ex vivo analysis of the immunoreactivity of GAD, TH, and PPAR-γ, in brain tissues after 14 days. The results showed that ketamine administration for 14 days increased the grooming time in the nose region at all tested doses. It also increased immobility in the FST at 30 mg/kg doses and decreased the number of rearing cycles during stereotyped behavior at 40 mg/kg. These behavioral effects were not associated with changes in locomotor activity. We did not observe any significant alterations regarding the immunoreactivity of brain proteins. However, we found that GAD and TH were positively correlated with the number of rearing during the stereotyped behavior at doses of 20 and 30 mg/kg ketamine, respectively. GAD was positively correlated with the number of rearing in the open field test at a dose of 20 mg/kg. TH was inversely correlated with immobility time in the FST at a dose of 30 mg/kg. PPAR-γ was inversely correlated with the number of bouts of stereotyped behavior at a dose of 40 mg/kg of ketamine. In conclusion, the behavioral alterations induced by ketamine in positive-like symptoms were reproduced with all doses tested and appear to depend on the modulatory effects of TH, GAD, and PPAR-γ. Conversely, negative-like symptoms were associated with a specific dose of ketamine.
Asunto(s)
Ketamina , Esquizofrenia , Ratones , Masculino , Animales , Ketamina/efectos adversos , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/inducido químicamente , PPAR gamma/metabolismo , Correlación de Datos , Natación , Conducta AnimalRESUMEN
Ring-substituted phenethylamines are believed to induce psychedelic effects primarily by interacting with 5-hydroxytryptamine 2 (5-HT2A) receptors in the brain. We assessed the effect of the psychedelic substances 25H-NBOMe and 25H-NBOH on the depressive-like behavior of male adult rats. Naive Wistar rats were divided into groups to assess the effects of different doses (0.1 mg/kg, 1 mg/kg, and 3 mg/kg) of 25H-NBOMe and 25H-NBOH. The substances were administered intraperitoneally and the hallucinogenic properties were evaluated using the head twitch response test (HTR). Additionally, we assessed their locomotor activity in the open field test (OFT) and depressive-like behavior in the forced swimming test (FST). Our data demonstrated that all doses of synthetic psychedelic substances evaluated exhibited hallucinogenic effects. Interestingly, we observed that both 25H-NBOMe and 25H-NBOH produced a significantly greater motivation to escape in the FST, compared to the control group. Furthermore, we found no significant differences in locomotor activity during the OFT, except for the dose of 3 mg/kg, which induced a reduction in locomotion. This study provides new insights into a potential psychedelic substance, specifically by demonstrating the previously unknown antidepressant properties of a single dose of both 25H-NBOMe and 25H-NBOH. These findings contribute to the ongoing progress of experimental psychiatry toward developing safe and effective clinical practices in the field of psychedelics research.
Asunto(s)
Alucinógenos , Ratas , Masculino , Animales , Alucinógenos/farmacología , Ratas Wistar , Antidepresivos/farmacología , Fenetilaminas/farmacología , NataciónRESUMEN
RATIONALE: Depression is a mental disorder that affects approximately 280 million people worldwide. In the search for new treatments for mood disorders, compounds containing selenium and indolizine derivatives show promising results. OBJECTIVES AND METHODS: To evaluate the antidepressant-like effect of 1-(phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) (0.5-50 mg/kg, intragastric-i.g.) on the tail suspension test (TST) and the forced swim test (FST) in adult male Swiss mice and to elucidate the role of the serotonergic system in this effect through pharmacological and in silico approaches, as well to evaluate acute oral toxicity at a high dose (300 mg/kg). RESULTS: MeSeI administered 30 min before the FST and the TST reduced immobility time at doses from 1 mg/kg and at 50 mg/kg and increased the latency time for the first episode of immobility, demonstrating an antidepressant-like effect. In the open field test (OFT), MeSeI did not change the locomotor activity. The antidepressant-like effect of MeSeI (50 mg/kg, i.g.) was prevented by the pre-treatment with p-chlorophenylalanine (p-CPA), a selective tryptophan hydroxylase inhibitor (100 mg/kg, intraperitoneally-i.p. for 4 days), with ketanserin, a 5-HT2A/2C receptor antagonist (1 mg/kg, i.p.), and with GR113808, a 5-HT4 receptor antagonist (0.1 mg/kg, i.p.), but not with WAY100635, a selective 5-HT1A receptor antagonist (0.1 mg/kg, subcutaneous-s.c.) and ondansetron, a 5-HT3 receptor antagonist (1 mg/kg, i.p.). MeSeI showed a binding affinity with 5-HT2A, 5 -HT2C, and 5-HT4 receptors by molecular docking. MeSeI (300 mg/kg, i.g.) demonstrated low potential to cause acute toxicity in adult female Swiss mice. CONCLUSION: In summary, MeSeI exhibits an antidepressant-like effect mediated by the serotonergic system and could be considered for the development of new treatment strategies for depression.
Asunto(s)
Depresión , Indolizinas , Masculino , Femenino , Animales , Ratones , Depresión/tratamiento farmacológico , Depresión/metabolismo , Serotonina/metabolismo , Simulación del Acoplamiento Molecular , Actividad Motora , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Natación , Indolizinas/farmacología , Suspensión TraseraRESUMEN
Several studies reported that rabbiteye blueberry (Vaccinium ashei Reade) leaves present promising biological properties. To the best of our knowledge, no study investigated the possible application of their hydroalcoholic extract for treating mood disorders. Herein, we evaluated if the hydroalcoholic extract of rabbiteye blueberry (Vaccinium ashei Reade) leaves (HEV) promotes an antidepressant-like effect in rodents using chronic experimental approaches. The effect of repeated administration of HEV (50â mg/kg, p.o.) on the immobility time was assessed in the forced swimming test (FST) in an unpredictable chronic mild stress (UCMS) model. Repeated treatment with HEV reversed the depressive-like behavior induced by UCMS by reducing the immobility time. Besides, the exposure to HEV caused no changes in relative organ weights in rats submitted to UCMS. The results indicated that HEV administration presented antidepressant-like action devoid of toxic effects. Thus, it is possible to suggest its potential as a safe and accessible therapeutic tool in the management of depression and other related mood disorders.
Asunto(s)
Arándanos Azules (Planta) , Ratas , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéuticoRESUMEN
Medicinal plants belonging to the Verbenaceae family demonstrated antidepressant effects in preclinical studies. Depression is one of the largest contributors to the global health burden of all countries. Plants from the Aloysia genus are traditionally used for affective disorders, and some of them have proven anxiolytic and antidepressant activity. The aim of this work was to evaluate the antidepressant effect of the ethanolic extract of Aloysia gratissima var. gratissima (Agg) and Aloysia virgata var. platyphylla (Avp) in mice. A tail suspension test (TST) and forced swimming test (FST) were conducted after three doses in a period of 24 h and after 7 days of treatment. Imipramine was used as an antidepressant drug. The main results demonstrated that Agg extract reduced the immobility time in mice treated orally for 7 consecutive days when compared to the control group (reduced by about 77%, imipramine 70%). Animals treated with three doses of Avp in a 24-h period had reduced immobility time in the FST (60%), and after 7 days of treatment the reduction was greater (Avp 50, 100, and 200 about 85%; Avp 400, 96.5%; p < 0.0001, imipramine, 77%). LCMS analysis showed the presence of verbascoside, hoffmaniaketone, and hoffmaniaketone acetate in both, A. virgata var. platyphylla and A. gratissima var gratissima. The flavonoids nepetin and 6-hydroxyluteolin were also found in Agg. Both tested extracts demonstrated promising antidepressant-like activity in mice.
Asunto(s)
Etanol , Verbenaceae , Ratones , Animales , Imipramina/farmacología , Extractos Vegetales/uso terapéutico , Verbenaceae/química , Antidepresivos/farmacología , Antidepresivos/uso terapéuticoRESUMEN
Antidepressants are characterized by their ability to decrease despair behavior assessed in mice as a decrease in immobility time in the forced swimming test (FST) (antidepressant-like behavior). This behavioral parameter is associated with increased neurogenesis in the dentate gyrus of the hippocampus of the rodents summitted to this test. Herein, we describe an optimized protocol used to characterize the melatonin antidepressant-like effect associated with its pro-neurogenic activity after an acute and a triple administration to mice measured by the FST and fluorescence-based immunohistochemistry in brain tissue, respectively.
Asunto(s)
Melatonina , Animales , Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Hipocampo , Inmunohistoquímica , Melatonina/farmacología , Ratones , Neurogénesis , NataciónRESUMEN
Type 1 diabetes mellitus (T1DM) is a chronic disease related to a persistent inflammatory process reaching the central nervous system, which leads to psychiatric comorbidities such as depression and anxiety. The search for new therapeutic agents effective in alleviating the psychiatric condition associated with T1DM becomes critical. Using an animal model of T1DM, we aimed to evaluate the effect of a specific specialized pro-resolving lipid mediator Resolvin D5 (RvD5), in preventing behaviors related to depression and anxiety, investigating its influence on inflammasome in interleukin (IL)-1ß in the hippocampus and prefrontal cortex. After experimental T1DM induction with streptozotocin (60 mg/kg, i.p.), these animals were treated for 23 days and randomly divided into 6 subgroups according to the treatment: vehicle (VEH), the antidepressant Fluoxetine (FLX; 10 mg/kg), the nonsteroidal anti-inflammatory Ibuprofen (IBU; 30 mg/kg) or Resolvin D5 (RvD5; 1 3, or 10 ng/animal). As a control group for the experimental-T1DM condition, a group of normoglycemic animals treated with VEH underwent the same behavioral tests: elevated plus maze, open field, and modified forced swimming tests. In the end, hippocampus and prefrontal cortex samples were processed to analyze the pro-inflammatory cytokine IL-1ß levels. Our data showed that RvD5 treatment prevented the more pronounced anxious-like and reduced the depressive-like behaviors of experimental-T1DM animals and significantly improved the plasma glucose levels. Additionally, RvD5 treatment prevented the increased level of pro-inflammatory cytokine IL-1ß in the hippocampus and prefrontal cortex of experimental-T1DM rats. To conclude, RvD5 presents a preventive therapeutic potential in impairing the development of the emotional complications resulting from T1DM. This potential may be related to its protective profile, as demonstrated in this study by its pro-resolutive action on neuroinflammation in the hippocampus and prefrontal cortex.
Asunto(s)
Diabetes Mellitus Tipo 1 , Animales , Ansiedad/tratamiento farmacológico , Conducta Animal , Citocinas , Depresión/tratamiento farmacológico , Depresión/etiología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos , Hipocampo , RatasRESUMEN
The benign prostatic hyperplasia (BPH) is the main source of lower urinary tract symptoms. The BPH is a common age-dependent disease and tamsulosin is an α1-adrenoceptor blocker widely prescribed for BPH. Beyond the common adverse effects of tamsulosin, increased diagnosis of dementia after prescription was observed. Importantly, a clinical study suggested that tamsulosin may exert antidepressant effects in BPH patients. Considering the expression of α1-adrenoceptors in the brain, this study aimed to investigate the effects of tamsulosin in the forced swimming and open field tests in mice. For this, tamsulosin (0.001-1 mg/kg) was orally administered subacutely (1, 5 and 23 hr) and acutely (60 min) before tests. Mifepristone (10 mg/kg), a glucocorticoid receptor antagonist, and aminoglutethimide (10 mg/kg), a streoidogenesis inhibitor, were intraperitoneally injected before tamsulosin to investigate the role of the hypothalamic-pituitary-adrenal axis in the mediation of tamsulosin-induced effects. Subacute and acute administrations of tamsulosin increased the immobility time in the first exposition to an inescapable stressful situation. In the re-exposition to the swim task, controls displayed a natural increase in the immobility time, and the treatment with tamsulosin further increased this behavioral parameter. Tamsuslosin did not affect spontaneous locomotion neither in naïve nor in stressed mice. Our findings also showed that mifepristone and aminoglutethimide prevented the tamsulosin-induced increase in the immobility time in the first and second swimming sessions, respectively. In conclusion, tamsulosin may contribute to increased susceptibility to depressive-like behaviors, by facilitating the acquisition of a passive stress-copying strategy. These effects seem to be dependent on endogenous glucocorticoids.
Asunto(s)
Adaptación Psicológica/efectos de los fármacos , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Inhibidores de la Aromatasa/farmacología , Depresión/inducido químicamente , Antagonistas de Hormonas/farmacología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Receptores de Glucocorticoides/antagonistas & inhibidores , Tamsulosina/farmacología , Antagonistas de Receptores Adrenérgicos alfa 1/administración & dosificación , Aminoglutetimida/farmacología , Animales , Inhibidores de la Aromatasa/administración & dosificación , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Antagonistas de Hormonas/administración & dosificación , Ratones , Mifepristona/farmacología , Tamsulosina/administración & dosificaciónRESUMEN
Cannabidiol (CBD), a phytocannabinoid compound, presents antidepressant and anxiolytic-like effects in the type-1 diabetes mellitus(DM1) animal model. Although the underlying mechanism remains unknown, the type-1A serotonin receptor (5-HT1A) and cannabinoids type-1 (CB1) and type-2 (CB2) receptors seem to play a central role in mediating the beneficial effects on emotional responses. We aimed to study the involvement of these receptors on an antidepressant- and anxiolytic-like effects of CBD and on some parameters of the diabetic condition itself. After 2 weeks of the DM1 induction in male Wistar rats by streptozotocin (60 mg/kg; i.p.), animals were treated continuously for 2-weeks with the 5-HT1A receptor antagonist WAY100635 (0.1 mg/kg, i.p.), CB1 antagonist AM251 (1 mg/kg i.p.) or CB2 antagonist AM630 (1 mg/kg i.p.) before the injection of CBD (30 mg/kg, i.p.) or vehicle (VEH, i.p.) and then, they were submitted to the elevated plus-maze and forced swimming tests. Our findings show the continuous treatment with CBD improved all parameters evaluated in these diabetic animals. The previous treatment with the antagonists - 5-HT1A, CB1, or CB2 - blocked the CBD-induced antidepressant-like effect whereas only the blockade of 5-HT1A or CB1 receptors was able to inhibit the CBD-induced anxiolytic-like effect. Regarding glycemic control, only the blockade of CB2 was able to inhibit the beneficial effect of CBD in reducing the glycemia of diabetic animals. These findings indicated a therapeutic potential for CBD in the treatment of depression/anxiety associated with diabetes pointing out a complex intrinsic mechanism in which 5-HT1A, CB1, and/or CB2 receptors are differently recruited.
Asunto(s)
Ansiolíticos/uso terapéutico , Antidepresivos/uso terapéutico , Cannabidiol/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Animales , Ansiolíticos/farmacología , Antidepresivos/farmacología , Cannabidiol/farmacología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/psicología , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/psicología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Receptor de Serotonina 5-HT1A/metabolismoRESUMEN
Ketamine (KET) is an N-methyl-D-aspartate (NMDA) antagonist with rapid and long-lasting antidepressant effects, but how the drug shows its sustained effects is still a matter of controversy. The objectives were to evaluate the mechanisms for KET rapid (30 min) and long-lasting (15 and 30 days after) antidepressant effects in mice. A single dose of KET (2, 5, or 10 mg/kg, po) was administered to male Swiss mice and the forced swim test (FST) was performed 30 min, 15, or 30 days later. Imipramine (IMI, 30 mg/kg, ip), a tricyclic antidepressant drug, was used as reference. The mice were euthanized, separated into two time-point groups (D1, first day after KET injection; D30, 30 days later), and brain sections were processed for glycogen synthase kinase-3 (GSK-3), histone deacetylase (HDAC), brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP) immunohistochemical assays. KET (5 and 10 mg/kg) presented rapid and long-lasting antidepressant-like effects. As expected, the immunoreactivities for brain GSK-3 and HDAC decreased compared to control groups in all areas (striatum, DG, CA1, CA3, and mainly pre-frontal cortex, PFC) after KET injection. Increases in BDNF immunostaining were demonstrated in the PFC, DG, CA1, and CA3 areas at D1 and D30 time-points. GFAP immunoreactivity was also increased in the PFC and striatum at both time-points. In conclusion, KET changed brain BDNF and GFAP expressions 30 days after a single administration. Although neuroplasticity could be involved in the observed effects of KET, more studies are needed to explain the mechanisms for the drug's sustained antidepressant-like effects.
Asunto(s)
Animales , Masculino , Conejos , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ketamina/farmacología , Antidepresivos/farmacología , Astrocitos , Glucógeno Sintasa Quinasa 3 , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía , Histona DesacetilasasRESUMEN
The role of stress in the etiology of depression has been largely reported. In this line, exogenous glucocorticoids are employed to mimic the influence of stress on the development of depression. The N/OFQ-NOP receptor system has been implicated in the modulation of stress and emotional behaviors. In fact, the blockade of NOP receptors induces antidepressant effects and increases resilience to acute stress. This study investigated the effects of the NOP receptor blockade on dexamethasone-treated mice exposed to acute and prolonged swimming stress. Swiss and NOP(+/+) and NOP(-/-) mice were treated with dexamethasone, and the protective effects of the NOP antagonist SB-612111 (10 mg/kg, ip) or imipramine (20 mg/kg, ip) were investigated in three swimming sessions. The re-exposure to swim stress increased immobility time in Swiss and NOP(+/+), but not in NOP(-/-) mice. Acute and repeated dexamethasone administration induced a further increase in the immobility time, and facilitated body weight loss in Swiss mice. Single administration of SB-612111, but not imipramine, prevented swimming stress- and dexamethasone-induced increase in the immobility time. Repeated administrations of SB-612111 prevented the deleterious effects of 5 days of dexamethasone treatment. Imipramine also partially prevented the effects of repeated glucocorticoid administration on the immobility time, but did not affect the body weight loss. NOP(-/-) mice were more resistant than NOP(+/+) mice to inescapable swimming stress, but not dexamethasone-induced increase in the immobility time and body weight loss. In conclusion, the blockade of the NOP receptor facilitates an active stress copying response and attenuates body weight loss due to repeated stress.
RESUMEN
RATIONALE: Reduced levels of orexin-A (OXA) in the central nervous system (CNS) have been associated with the pathophysiology of depression and its exogenous administration promotes antidepressant-like effect. The mechanisms associated with these effects are, however, not yet known. Herein, we investigated the hypothesis that OXA effects could be associated with orexin 1 receptor (OX1R) and tyrosine receptor kinase B (TrkB) activation, in the ventromedial prefrontal cortex (vmPFC), a brain region that is central to depression neurobiology. OBJECTIVES: 1. To Investigate the effects induced by OXA administration into the vmPFC; 2. Evaluate the participation of OX1R and TrkB in behavioral responses induced by OXA. METHODS: Male Wistar rats received intra-vmPFC injections of OXA (10, 50 and 100 pmol/0.2 µL) and were exposed to the forced swimming test (FST) or the open field test (OFT). Independent groups received an intra-vmPFC injection of SB334867 (OX1R antagonist, 10 nmol/0.2 µL) or K252a (non-selective Trk antagonist, 10 pmol/0.2 µL), before local injection of OXA, and were exposed to the same tests. RESULTS: OXA injection (100 pmol/0.2 µL) into the vmPFC induced antidepressant-like effect, which was prevented by SB334867 and K252a pretreatments. CONCLUSION: OXA signaling in the vmPFC induces antidepressant-like effect in the FST which is dependent on OX1R and Trk receptors.
Asunto(s)
Depresión/tratamiento farmacológico , Orexinas/farmacología , Corteza Prefrontal/metabolismo , Animales , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Receptores de Orexina/efectos de los fármacos , Receptores de Orexina/metabolismo , Orexinas/administración & dosificación , Orexinas/metabolismo , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Wistar , Receptor trkB/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés PsicológicoRESUMEN
A previous study demonstrated that glutathione (GSH) produces specific antidepressant-like effect in the forced swimming test (FST), a predictive test of antidepressant activity. The present study investigated the involvement of multiple cellular targets implicated in the antidepressant-like effect of GSH in the FST. The antidepressant-like effect of GSH (300 nmol/site, icv) lasted up to 3 h when mice were submitted to FST. The central administration of oxidized GSH (GSSG, 3-300 nmol/site) did not alter the behavior of mice submitted to the FST. Furthermore, the combined treatment of sub-effective doses of GSH (100 nmol/site, icv) with a sub-effective dose of classical antidepressants (fluoxetine 10 mg/kg, and imipramine 5 mg/kg, ip) presented synergistic effect by decreasing the immobility time in the FST. The antidepressant-like effect of GSH was abolished by prazosin (1 mg/kg, ip, α1-adrenoceptor antagonist), baclofen (1 mg/kg, ip, GABAB receptor agonist), bicuculline (1 mg/kg, ip, GABAA receptor antagonist), l-arginine (750 mg/kg, ip, NO precursor), SNAP (25 µg/site, icv, NO donor), but not by yohimbine (1 mg/kg, ip, α2-adrenoceptor antagonist). The NMDA receptor antagonists, MK-801(0.001 mg/kg, ip) or GMP (0.5 mg/kg, ip), potentiated the effect of a sub-effective dose of GSH in the FST. These results suggest that the antidepressant-like effect induced by GSH is connected to the activation of α1 adrenergic and GABAA receptors, as well as the inhibition of GABAB and NMDA receptors and NO biosyntesis. We speculate that redox-mediated signaling on the extracelular portion of cell membrane receptors would be a common mechanism of action of GSH.
Asunto(s)
Antidepresivos/farmacología , Glutatión/farmacología , Terapia Molecular Dirigida , Antagonistas Adrenérgicos/farmacología , Animales , Arginina/farmacología , Sinergismo Farmacológico , Femenino , Glutatión/administración & dosificación , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inmovilización , Masculino , Ratones , Receptores Adrenérgicos/metabolismo , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacología , NataciónRESUMEN
Cannabidiol (CBD), a non-psychotomimetic component of Cannabis sativa plant, shows therapeutic potential in psychiatric disorders, including depression. The molecular mechanisms underlying the antidepressant-like effects of CBD are not yet understood. Previous studies in differentiated skin cells demonstrated that CBD regulates DNA methylation, an overall repressive epigenetic mechanism. Both stress exposure and antidepressant treatment can modulate DNA methylation in the brain, and lead to gene expression changes associated with depression neurobiology. We investigated herein if the antidepressant effect of CBD could be associated with changes in DNA methylation in the prefrontal cortex (PFC) and hippocampus (HPC) of mice submitted to the forced swimming test (FST). Therefore, we assessed: i) the behavioral effects induced by CBD and DNA methylation inhibitors (DNMTi: 5-AzaD and RG108), alone or in association; ii) the effects induced by CBD and DNMTi in global DNA methylation and DNMT activity, in PFC and HPC. Results showed that treatment with CBD (10 mg/kg), 5-AzaD and RG108 (0.2 mg/kg) induced an antidepressant-like effect in the FST. Similar effects were observed after the combination of sub-effective doses of CBD (7 mg/kg) and 5-AzaD or CBD (7 mg/kg) and RG108 (0.1 mg/kg). Also, stress reduced DNA methylation and DNMT activity in the HPC and increased it in the PFC. CBD and DNMTi treatment prevented these changes in both brain structures. Altogether, our results indicate that CBD regulates DNA methylation in brain regions relevant for depression neurobiology, suggesting that this mechanism could be related to CBD-induced antidepressant effects.
Asunto(s)
Antidepresivos/administración & dosificación , Cannabidiol/administración & dosificación , Metilación de ADN , Depresión/metabolismo , Hipocampo/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Corteza Prefrontal/metabolismoRESUMEN
Animal studies have shown that antagonists of receptor 1 of Melanin-Concentrating Hormone (MCH-R1) elicit antidepressive-like behavior, suggesting that MCH-R1 might be a novel target for the treatment of depression and supports the hypothesis that MCHergic signaling regulates depressive-like behaviors. Consistent with the evidence that MCHergic neurons send projections to dorsal and median raphe nuclei, we have previously demonstrated that MCH microinjections in both nuclei induced a depressive-like behavior. Even though MCH neurons also project to Locus Coeruleus (LC), only a few studies have reported the behavioral and neurochemical effect of MCH into the LC. We studied the effects of MCH (100 and 200 ng) into the LC on coping-stress related behaviors associated with depression, using two different behavioral tests: the forced swimming test (FST) and the learned helplessness (LH). To characterize the functional interaction between MCH and the noradrenergic LC system, we also evaluated the neurochemical effects of MCH (100 ng) on the extracellular levels of noradrenaline (NA) in the medial prefrontal cortex (mPFC), an important LC terminal region involved in emotional processing. MCH administration into the LC elicited a depressive-like behavior evidenced in both paradigms. Interestingly, in the LH, MCH (100) elicited a significant increase in escape failures only in stressed animals. A significant decrease in prefrontal levels of NA was observed after MCH microinjection into the LC. Our results demonstrate that increased MCH signaling into the LC triggers depressive-like behaviors, especially in stressed animals. These data further corroborate the important role of MCH in the neurobiology of depression.
Asunto(s)
Hormonas Hipotalámicas/farmacología , Locus Coeruleus/metabolismo , Melaninas/farmacología , Hormonas Hipofisarias/farmacología , Receptores de Somatostatina/metabolismo , Animales , Antidepresivos/farmacología , Depresión/inducido químicamente , Depresión/fisiopatología , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Emociones/efectos de los fármacos , Hormonas Hipotalámicas/metabolismo , Locus Coeruleus/efectos de los fármacos , Masculino , Melaninas/metabolismo , Neuronas/fisiología , Norepinefrina/análisis , Hormonas Hipofisarias/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Receptores de Somatostatina/antagonistas & inhibidores , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatologíaRESUMEN
Previous studies indicated that some general anesthetics induce long-term antidepressant and/or anxiolytic-like effects. This raises the concern about the use of anesthesia in surgeries that precede psychopharmacological tests, since it may be a potential bias on results depending on the experimental design used. Thus, we evaluated whether general anesthetics used in surgeries preceding psychopharmacological tests would affect rats behavior in tests predictive of antidepressant or anxiolytic-like effects. We tested if a single exposure to sub-anesthetic or anesthetic doses of tribromoethanol, chloral hydrate, thiopental or isoflurane would change rats behavior in the forced swimming test (FST) or in the elevated plus-maze (EPM) test, at 2 h or 7 days after their administration. We also evaluated whether prior anesthesia would interfere in the detection of the antidepressant-like effect of imipramine or the anxiolytic-like effect of diazepam. Previous anesthesia with the aforementioned anesthetics did not change rats behaviors in FST per se nor it changed the antidepressant-like effect induced by imipramine treatment. Rats previously anesthetized with tribromoethanol or chloral hydrate exhibited, respectively, anxiogenic-like and anxiolytic-like behaviors in the EPM. Prior anesthesia with thiopental or isoflurane did not produce any per se effect in rats behaviors in the EPM nor disturbed the anxiolytic-like effect of diazepam. Our results suggest that, in our experimental conditions, tribromoethanol and chloral hydrate are improper anesthetics for surgeries that precede behavioral analysis in the EPM. Isoflurane or thiopental may be suitable for anesthesia before evaluation in the EPM or in the FST.