RESUMEN
Synaptic dysfunction is an early feature in Alzheimer's disease (AD) pathogenesis and a major morphological correlate of memory deficits. Given the main synaptic location of N-methyl-D-aspartate receptors (NMDARs), their dysregulation has been implicated in these pathological effects. Here, to detect possible alterations in the expression and synaptic localisation of the GluN1 subunit in the brain of amyloidogenic APP/PS1 mice, we employed histoblot and SDS-digested freeze-fracture replica labelling (SDS-FRL) techniques. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus in a layer-dependent manner, in the cortex and the caudate putamen of APP/PS1 transgenic mice at 12 months of age but was unaltered at 1 and 6 months. Using quantitative SDS-FRL, we unravelled the molecular organisation of GluN1 in seven excitatory synapse populations at a high spatial resolution in the CA1 and CA3 fields and the DG of the hippocampus in 12-month-old APP/PS1 mice. In the CA1 field, the labelling density for GluN1 in the excitatory synapses established on spines and interneurons, was significantly reduced in APP/PS1 mice compared to age-matched wild-type mice in the stratum lacunosum-moleculare but unaltered in the stratum radiatum. In the CA3 field, synaptic GluN1 was reduced in mossy fibre-CA3 pyramidal cell synapses but unaltered in the A/C-CA3 pyramidal cell synapses. In the DG, the density of GluN1 in granule cell-perforant pathway synapses was reduced in APP/PS1 mice. Altogether, our findings provide evidence of specific alterations of synaptic GluN1 in the trisynaptic circuit of the hippocampus in Aß pathology. This differential vulnerability in the disruption of NMDARs may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit and cognitive impairment characteristic of APP/PS1 mice.
Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Receptores de N-Metil-D-Aspartato , Sinapsis , Animales , Masculino , Ratones , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Ratones Transgénicos , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Sinapsis/patologíaRESUMEN
In this chapter we describe different electron microscopy techniques such as freeze fracture, deep etching, and three-dimensional reconstruction, obtained by electron tomography or focused ion beam scanning electron microscopy (FIB-SEM), combined with quick-freezing methods in order to reveal aspects of the cell structure in trypanosomatids. For this purpose, we chose protists that evolve in a mutualistic way with a symbiotic bacterium. Such cells represent excellent models to study the positioning and distribution of organelles, since the symbiotic bacterium interacts with different organelles of the host trypanosomatid. We demonstrate that the employment of such techniques can show the proximity and even the interaction of the symbiotic bacterium with different structures of the protist host, such as the nucleus and the glycosomes. In addition, the quick-freezing approach can reveal new aspects of the gram-negative bacterial envelope, such as the presence of a greatly reduced cell wall between the two membrane units.
Asunto(s)
Bacterias/citología , Microscopía Electrónica de Rastreo/métodos , Trypanosomatina/microbiología , Núcleo Celular/microbiología , Pared Celular , Microcuerpos/microbiología , Microscopía Electrónica de Rastreo/instrumentación , Simbiosis , Trypanosomatina/citologíaRESUMEN
Rhoptries are organelles that have important, complex roles in Apicomplexa biology. During Toxoplasma gondii infection, these organelles take part in several essential and complex processes that include host cell entry and parasite development. Using different electron microscopy techniques, we characterized the fine morphology of the rhoptries of two of the most important life stages of T. gondii: the tachyzoite and the bradyzoite forms. The observed tachyzoite and bradyzoite rhoptries had delimited regions characterized by a dark and electron-dense neck, an amorphous and less electron-dense bulb, and a region of intermediate electron density, which connects the bulb to the neck. Metal replicas of frozen-fractured tachyzoites showed intramembranous particles of different densities and sizes on the fractured faces of rhoptry membranes. Both in tachyzoites and bradyzoites, the intramembranous particles were arranged in distinctive parallel arrays that decorated most part of these organelles. Tubulo-vesicular subcompartments and free particles within the rhoptry lumen were observed on freeze-fractured replicas. Cryo-fixed, deep-etched samples showed several pore-like structures localized in the bulb portion. No obvious evidence was found of a possible connection between rhoptries and micronemes.