Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Intervalo de año de publicación
1.
JIMD Rep ; 65(4): 255-261, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38974614

RESUMEN

Hereditary tyrosinemia type 1 (HT1) is a rare metabolic disease resulting in acute liver failure in early infancy, hypophosphataemic rickets, neurological crises, liver cirrhosis and risk of hepatocellular carcinoma later on in life. It is caused by the deficiency of the enzyme fumarylacetoacetate hydrolase which is involved in the terminal step of the catabolic pathway of tyrosine. Diagnosis is made through clinical suspicion supported by biochemical abnormalities that result from accumulation of upstream metabolites. Detection of succinylacetone (SA) in dried blood spot or urine remains pathognomonic, however it is not always detectable. Here we describe three cases of HT1 presenting with atypical biochemistry, where SA was not always detectable, highlighting the importance of an additional disease biomarker, 4-oxo-6-hydroxyheptanoate.

2.
Mol Genet Genomic Med ; 11(1): e2090, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36369907

RESUMEN

BACKGROUND: Hereditary tyrosinemia type 1 (HT1) is a rare inherited metabolic disease characterized by severe liver and renal dysfunction. Early identification in affected children is critical for improved treatment options and prognosis. METHODS: In this study, we identified novel compound heterozygous mutations (NM_000137: c.657delC (p.K220Rfs*12) and c.607G>A (p.A203T)) in the fumarylacetoacetate hydrolase (FAH) gene in a family. We also characterized the clinical phenotype of the proband and verified the pathogenic effects of the mutations. Furthermore, we explored the pathogenic mechanism of renal injury through renal biopsy pathology and cell-based in vitro assays. Our study aims to verify the association between novel fumarylacetoacetate hydrolase (FAH) variants and HT1, confirm the pathogenic effects of the mutations and explore the pathogenic mechanism of renal injury. RESULTS: We showed these FAH mutations were inherited in an autosomal recessive manner and resulted in abnormal FAH protein expression and dysfunction, leading to fumarylacetoacetate (FAA) accumulation. The proband also showed apparent renal injury, including glomerular filtration barrier dysfunction and abnormal tubular protein reabsorption. CONCLUSIONS: These observations may provide deeper insights on disease pathogenesis and identify potential therapeutic approaches for HT1 from a genetic perspective. Similarly, we hope to provide valuable information for genetic counseling and prenatal diagnostics.


Asunto(s)
Tirosinemias , Humanos , Tirosinemias/genética , Mutación , Riñón/metabolismo , Hígado/patología
3.
Mol Ther Methods Clin Dev ; 26: 294-308, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-35949297

RESUMEN

Hereditary tyrosinemia type 1 is an inborn error of amino acid metabolism characterized by deficiency of fumarylacetoacetate hydrolase (FAH). Only limited treatment options (e.g., oral nitisinone) are available. Patients must adhere to a strict diet and face a life-long risk of complications, including liver cancer and progressive neurocognitive decline. There is a tremendous need for innovative therapies that standardize metabolite levels and promise normal development. Here, we describe an mRNA-based therapeutic approach that rescues Fah-deficient mice, a well-established tyrosinemia model. Repeated intravenous or intramuscular administration of lipid nanoparticle-formulated human FAH mRNA resulted in FAH protein synthesis in deficient mouse livers, stabilized body weight, normalized pathologic increases in metabolites after nitisinone withdrawal, and prevented early death. Dose reduction and extended injection intervals proved therapeutically effective. These results provide proof of concept for an mRNA-based therapeutic approach to treating hereditary tyrosinemia type 1 that is superior to the standard of care.

4.
Mol Genet Metab Rep ; 30: 100836, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35242570

RESUMEN

Tyrosinemia type 1 (HT1) is an inborn error of tyrosine catabolism that leads to severe liver, kidney, and neurological dysfunction. Newborn screening (NBS) can enable a timely diagnosis and early initiation of treatment. We presented the follow up of the only two Slovenian patients diagnosed with HT1. Metabolic control was monitored by measuring tyrosine, phenylalanine and succinylacetone from dried blood spots (DBSs). Retrograde screening of HT1 was performed from DBSs taken at birth using tandem mass spectrometry. First patient was diagnosed at the age of 6 months in the asymptomatic phase due to an abnormal liver echogenicity, the other presented at 2.5 months with an acute liver failure and needed a liver transplantation. The first was a compound heterozygote for a novel FAH intronic variant c.607-21A>G and c.192G>T whereas the second was homozygous for c.192G>T. At the non-transplanted patient, 66% of tyrosine and 79% of phenylalanine measurements were in strict reference ranges of 200-400 µmol/L and >30 µmol/L, respectively, which resulted in a favorable cognitive outcome at 3.6 years. On retrograde screening, both patients had elevated SA levels; on the other hand, tyrosine was elevated only at one. We showed that non-coding regions should be analyzed when clinical and biochemical markers are characteristic of HT1. DBSs represent a convenient sample type for frequent amino acid monitoring. Retrograde diagnosis of HT1 was possible after more than three years of birth with SA as a primary marker, complemented by tyrosine.

5.
JHEP Rep ; 4(4): 100416, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35243280

RESUMEN

Hepatocellular carcinoma (HCC) is the predominant primary cancer arising from the liver and is one of the major causes of cancer-related mortality worldwide. The cellular origin of HCC has been a topic of great interest due to conflicting findings regarding whether it originates in hepatocytes, biliary cells, or facultative stem cells. These cell types all undergo changes during liver injury, and there is controversy about their contribution to regenerative responses in the liver. Most HCCs emerge in the setting of chronic liver injury from viral hepatitis, fatty liver disease, alcohol, and environmental exposures. The injuries are marked by liver parenchymal changes such as hepatocyte regenerative nodules, biliary duct cellular changes, expansion of myofibroblasts that cause fibrosis and cirrhosis, and inflammatory cell infiltration, all of which may contribute to carcinogenesis. Addressing the cellular origin of HCC is the key to identifying the earliest events that trigger it. Herein, we review data on the cells of origin in regenerating liver and HCC and the implications of these findings for prevention and treatment. We also review the origins of childhood liver cancer and other rare cancers of the liver.

6.
Indian J Clin Biochem ; 37(1): 40-50, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35125692

RESUMEN

Tyrosinemia type 1 (TYR1) is a devastating aminoacidopathy, leading to mortality without medical intervention. Although, detection and quantification of tyrosine in dried blood spot (DBS) is possible, but being a non-specific marker for TYR1 and its frequent association with transient neonatal tyrosinemia limits its applicability. Despite, Succinylacetone (SUAC) being a pathognomonic marker for TYR1, but not often detectable by routine newborn screening (NBS). We envisaged to determine SUAC in DBS by an in-house flow injection analysis method on a liquid chromatography/tandem mass spectrometry (LC-MS/MS). Succinylacetone was eluted from the residual 3.2 mm DBS of primary NBS by an extraction solution containing acetonitrile-water-formic acid mixture containing stable-isotope labelled internal standard (IS) for SUAC and hydrazine. Detection and quantification was performed by the mass spectrometer using multiple reaction monitoring mode at m/z 155.1 → 109.1 for SUAC and m/z 160.1 → 114.1 for the SUAC IS. The assay was linear over a calibration range of 0.122-117.434 µmol/L. The Intra-day and Inter-day precision and accuracy for the assay was determined at two different levels of SUAC (2.542 µmol/L and 14.641 µmol/L), which showed a coefficient of variation of (6.91% and 12.65%) and (8.57% and 12.27%) respectively. The accuracy also ranged between 101.2 and 103.87%.This method provided the necessary sensitivity, precision, accuracy, recovery and linearity and hence, has the potential to reduce the false positive, false negative results which significantly minimise the cost involved in the screening and follow up of TYR1 patients. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s12291-020-00944-z) contains supplementary material, which is available to authorized users.

7.
JHEP Rep ; 3(3): 100281, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34036256

RESUMEN

BACKGROUND & AIMS: The accumulation of neutral lipids within hepatocytes underlies non-alcoholic fatty liver disease (NAFLD), which affects a quarter of the world's population and is associated with hepatitis, cirrhosis, and hepatocellular carcinoma. Despite insights gained from both human and animal studies, our understanding of NAFLD pathogenesis remains limited. To better study the molecular changes driving the condition we aimed to generate a humanised NAFLD mouse model. METHODS: We generated TIRF (transgene-free Il2rg -/-/Rag2 -/-/Fah -/-) mice, populated their livers with human hepatocytes, and fed them a Western-type diet for 12 weeks. RESULTS: Within the same chimeric liver, human hepatocytes developed pronounced steatosis whereas murine hepatocytes remained normal. Unbiased metabolomics and lipidomics revealed signatures of clinical NAFLD. Transcriptomic analyses showed that molecular responses diverged sharply between murine and human hepatocytes, demonstrating stark species differences in liver function. Regulatory network analysis indicated close agreement between our model and clinical NAFLD with respect to transcriptional control of cholesterol biosynthesis. CONCLUSIONS: These NAFLD xenograft mice reveal an unexpected degree of evolutionary divergence in food metabolism and offer a physiologically relevant, experimentally tractable model for studying the pathogenic changes invoked by steatosis. LAY SUMMARY: Fatty liver disease is an emerging health problem, and as there are no good experimental animal models, our understanding of the condition is poor. We here describe a novel humanised mouse system and compare it with clinical data. The results reveal that the human cells in the mouse liver develop fatty liver disease upon a Western-style fatty diet, whereas the mouse cells appear normal. The molecular signature (expression profiles) of the human cells are distinct from the mouse cells and metabolic analysis of the humanised livers mimic the ones observed in humans with fatty liver. This novel humanised mouse system can be used to study human fatty liver disease.

8.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804275

RESUMEN

Fumarylacetoacetate hydrolase (FAH) proteins form a superfamily found in Archaea, Bacteria, and Eukaryota. However, few fumarylacetoacetate hydrolase domain (FAHD)-containing proteins have been studied in Metazoa and their role in plants remains elusive. Sequence alignments revealed high homology between two Arabidopsis thaliana FAHD-containing proteins and human FAHD1 (hFAHD1) implicated in mitochondrial dysfunction-associated senescence. Transcripts of the closest hFAHD1 orthologue in Arabidopsis (AtFAHD1a) peak during seed maturation drying, which influences seed longevity and dormancy. Here, a homology study was conducted to assess if AtFAHD1a contributes to seed longevity and vigour. We found that an A. thaliana T-DNA insertional line (Atfahd1a-1) had extended seed longevity and shallower thermo-dormancy. Compared to the wild type, metabolite profiling of dry Atfahd1a-1 seeds showed that the concentrations of several amino acids, some reducing monosaccharides, and δ-tocopherol dropped, whereas the concentrations of dehydroascorbate, its catabolic intermediate threonic acid, and ascorbate accumulated. Furthermore, the redox state of the glutathione disulphide/glutathione couple shifted towards a more reducing state in dry mature Atfahd1a-1 seeds, suggesting that AtFAHD1a affects antioxidant redox poise during seed development. In summary, AtFAHD1a appears to be involved in seed redox regulation and to affect seed quality traits such as seed thermo-dormancy and longevity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolasas/genética , Latencia en las Plantas/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Germinación/genética , Humanos , Longevidad/genética , Oxidación-Reducción , Semillas/genética , Semillas/crecimiento & desarrollo
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(1): 111-121, 2021 Feb 25.
Artículo en Chino | MEDLINE | ID: mdl-33899435

RESUMEN

The emergence of regular short repetitive palindromic sequence clusters (CRISPR) and CRISPR- associated proteins 9 (Cas9) gene editing technology has greatly promoted the wide application of genetically modified pigs. Efficient single guide RNA (sgRNA) is the key to the success of gene editing using CRISPR/Cas9 technology. For large animals with a long reproductive cycle, such as pigs, it is necessary to screen out efficient sgRNA in vitro to avoid wasting time and resource costs before animal experiments. In addition, how to efficiently obtain positive gene editing monoclonal cells is a difficult problem to be solved. In this study, a rapid sgRNA screening method targeting the pig genome was established and we rapidly obtained Fah gene edited cells, laying a foundation for the subsequent production of Fah knockout pigs as human hepatocyte bioreactor. At the same time, the method of obtaining monoclonal cells using pattern microarray culture technology was explored.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Kinetoplastida , Animales , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica , ARN Guía de Kinetoplastida/genética , Porcinos
10.
JHEP Rep ; 3(2): 100223, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33604532

RESUMEN

BACKGROUND & AIMS: Zinc finger and BTB domain containing 20 (ZBTB20) has been implicated as a potential oncogene in liver cancer. However, knockout studies have shown it to be a transcriptional repressor of the alpha-foetoprotein (Afp) gene in adult liver, and reduced levels of ZBTB20 allow for upregulation of AFP with increased tumour severity in certain cases of hepatocellular carcinoma (HCC). As there are many discrepancies in the literature regarding its role in liver tumourigenesis, the aim of this study was to elucidate the role of ZBTB20 in HCC tumourigenesis. METHODS: A reverse genetic study using the Sleeping Beauty (SB) transposon system in mice was performed to elucidate the role of ZBTB20 in HCC tumourigenesis. In vitro ZBTB20 gain- and loss-of-function experiments were used to assess the relationship amongst ZBTB20, peroxisome proliferator activated receptor gamma (PPARG) and catenin beta 1 (CTNNB1). RESULTS: Transgenic overexpression of ZBTB20 in hepatocytes and in the context of transformation related protein (T r p53) inactivation induced hepatic hypertrophy, activation of WNT/CTNNB1 signalling, and development of liver tumours. In vitro overexpression and knockout experiments using CRISPR/Cas9 demonstrated the important role for ZBTB20 in downregulating PPARG, resulting in activation of the WNT/CTNNB1 signalling pathway and its downstream effectors in HCC tumourigenesis. CONCLUSIONS: These findings demonstrate a novel interaction between ZBTB20 and PPARG, which leads to activation of the WNT/CTNNB1 signalling pathway in HCC tumourigenesis. LAY SUMMARY: ZBTB20 has been implicated as a potential oncogene in liver cancer. Herein, we uncover its important role in liver cancer development. We show that it interacts with PPARG to upregulate the WNT/CTNNB1 signalling pathway, leading to tumourigenesis.

11.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-879256

RESUMEN

The emergence of regular short repetitive palindromic sequence clusters (CRISPR) and CRISPR- associated proteins 9 (Cas9) gene editing technology has greatly promoted the wide application of genetically modified pigs. Efficient single guide RNA (sgRNA) is the key to the success of gene editing using CRISPR/Cas9 technology. For large animals with a long reproductive cycle, such as pigs, it is necessary to screen out efficient sgRNA


Asunto(s)
Animales , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica , /genética , Porcinos
12.
Mayo Clin Proc Innov Qual Outcomes ; 4(3): 315-338, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32542223

RESUMEN

An understanding of the molecular basis of liver regeneration will open new horizons for the development of novel therapies for chronic liver failure. Such therapies would solve the drawbacks associated with liver transplant, including the shortage of donor organs, long waitlist time, high medical costs, and lifelong use of immunosuppressive agents. Regeneration after partial hepatectomy has been studied in animal models, particularly fumarylacetoacetate hydrolase-deficient (FAH -/-) mice and pigs. The process of regeneration is distinctive, complex, and well coordinated, and it depends on the interplay among several signaling pathways (eg, nuclear factor κß, Notch, Hippo), cytokines (eg, tumor necrosis factor α, interleukin 6), and growth factors (eg, hepatocyte growth factor, epidermal growth factor, vascular endothelial growth factor), and other components. Furthermore, endocrinal hormones (eg, norepinephrine, growth hormone, insulin, thyroid hormones) also can influence the aforementioned pathways and factors. We believe that these endocrinal hormones are important hepatic mitogens that strongly induce and accelerate hepatocyte proliferation (regeneration) by directly and indirectly triggering the activity of the involved signaling pathways, cytokines, growth factors, and transcription factors. The subsequent induction of cyclins and associated cyclin-dependent kinase complexes allow hepatocytes to enter the cell cycle. In this review article, we comprehensively summarize the current knowledge regarding the roles and mechanisms of these hormones in liver regeneration. Articles used for this review were identified by searching MEDLINE and EMBASE databases from inception through June 1, 2019.

13.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32244944

RESUMEN

The elucidation of aberrant splicing mechanisms, frequently associated with disease has led to the development of RNA therapeutics based on the U1snRNA, which is involved in 5' splice site (5'ss) recognition. Studies in cellular models have demonstrated that engineered U1snRNAs can rescue different splicing mutation types. However, the assessment of their correction potential in vivo is limited by the scarcity of animal models with the targetable splicing defects. Here, we challenged the U1snRNA in the FAH5961SB mouse model of hepatic fumarylacetoacetate hydrolase (FAH) deficiency (Hereditary Tyrosinemia type I, HT1) due to the FAH c.706G>A splicing mutation. Through minigene expression studies we selected a compensatory U1snRNA (U1F) that was able to rescue this mutation. Intriguingly, adeno-associated virus-mediated delivery of U1F (AAV8-U1F), but not of U1wt, partially rescued FAH splicing in mouse hepatocytes. Consistently, FAH protein was detectable only in the liver of AAV8-U1F treated mice, which displayed a slightly prolonged survival. Moreover, RNA sequencing revealed the negligible impact of the U1F on the splicing profile and overall gene expression, thus pointing toward gene specificity. These data provide early in vivo proof-of-principle of the correction potential of compensatory U1snRNAs in HTI and encourage further optimization on a therapeutic perspective, and translation to other splicing-defective forms of metabolic diseases.


Asunto(s)
Hidrolasas/genética , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , Tirosinemias/enzimología , Tirosinemias/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
14.
Mol Genet Genomic Med ; 7(12): e937, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31568711

RESUMEN

BACKGROUND: Tyrosinemia type 1 (HT1, MIM#276700) is caused by a deficiency in fumarylacetoacetate hydrolase (FAH) and it is associated with severe liver and renal disfunction. At present, the mutational FAH (15q25.1, MIM*613871) spectrum underlying HT1 in the Mexican population is unknown. The objective of this study was to determine the FAH genotypes in eight nonrelated Mexican patients with HT1, who were diagnosed clinically. METHODS: Sequencing of FAH and their exon-intron boundaries and in silico protein modeling based on the crystallographic structure of mouse FAH. RESULTS: We identified pathogenic variants in 15/16 studied alleles (93.8%). Nine different variants were found. The most commonly detected HT1-causing allele was NM_000137.2(FAH):c.3G > A or p.(?) [rs766882348] (25%, n = 4/16). We also identified a novel missense variant NM_000137.2(FAH):c.36C > A or p.(Phe12Leu) in a homozygous patient with an early and fatal acute form. The latter was classified as a likely pathogenic variant and in silico protein modeling showed that Phe-12 residue substitution for Leu, produces a repulsion in all possible Leu rotamers, which in turn would lead to a destabilization of the protein structure and possible loss-of-function. CONCLUSION: HT1 patients had a heterogeneous mutational and clinical spectrum and no genotype-phenotype correlation could be established.


Asunto(s)
Hidrolasas/genética , Mutación Missense , Tirosinemias/enzimología , Tirosinemias/genética , Alelos , Preescolar , Exones , Femenino , Genotipo , Humanos , Hidrolasas/metabolismo , Lactante , Intrones , Hígado/patología , Masculino , México/epidemiología , Tirosinemias/patología
15.
Biochem Biophys Res Commun ; 509(3): 773-778, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30630595

RESUMEN

Fumarylacetoacetate hydrolase (FAH) is essential for the degradation of aromatic amino acids as well as for the cleavage of carbon-carbon bonds in metabolites or small organic compounds. Here, the X-ray crystal structure of EaFAH, a dimeric fumarylacetoacetate hydrolase from Exiguobacterium antarcticum, was determined, and its functional properties were investigated using biochemical methods. EaFAH adopts a mixed ß-sandwich roll fold with a highly flexible lid region (Val73-Leu94), and an Mg2+ ion is bound at the active site by coordinating to the three carboxylate oxygen atoms of Glu124, Glu126, and Asp155. The hydrolytic activity of EaFAH toward various substrates, including linalyl acetate was investigated using native polyacrylamide gel electrophoresis, activity staining, gel filtration, circular dichroism spectroscopy, fluorescence, and enzyme assays.


Asunto(s)
Bacillaceae/química , Proteínas Bacterianas/química , Hidrolasas/química , Secuencia de Aminoácidos , Bacillaceae/genética , Bacillaceae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Hidrolasas/genética , Hidrolasas/metabolismo , Hidrólisis , Magnesio/metabolismo , Modelos Moleculares , Filogenia , Conformación Proteica , Multimerización de Proteína , Alineación de Secuencia , Especificidad por Sustrato
16.
Clin Mass Spectrom ; 12: 1-6, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34841073

RESUMEN

Tyrosinemia type 1 is an autosomal recessive aminoacidopathy caused by fumarylacetoacetate hydrolase (FAH) deficiency. Consequently, tyrosine and its metabolites accumulate, resulting in liver and kidney toxicity. Symptoms of the disease usually manifest after three weeks of life and include vomiting, failure to thrive, hepatomegaly, jaundice, bleeding diathesis, rickets and renal tubular dysfunction. Untreated, the disease eventually progresses to liver or kidney failure and generally results in a fatal outcome. Expedient diagnosis is critical because an early start of treatment can increase the likelihood of a positive outcome. Here, we report on a male newborn with a family history positive for tyrosinemia type 1 who was subjected to a metabolic work-up immediately after birth. Amino acids were quantified by tandem mass spectrometry coupled with ultra performance liquid chromatography. Urinary organic acids were analyzed on capillary gas chromatography coupled with mass spectrometry. DNA analysis of the FAH gene was performed by Sanger sequencing. On the first day of life, the patient's plasma amino acids showed an increased tyrosine concentration, while urine organic acids detected succinylacetone, a tyrosine metabolite specific for tyrosinemia type 1. The patient's DNA analysis revealed homozygosity of the c.554-1G > T mutation in the FAH gene, which was consistent with the diagnosis. Nitisinone treatment, combined with a dietary restriction of tyrosine and phenylalanine, was introduced immediately. Regular visits and measurement of amino acid concentrations, which enables therapy adjustment and treatment efficiency monitoring in patients with tyrosinemia type 1, has continued over the past 4+ years, and is expected to continue.

17.
Cell Transplant ; 28(1): 79-88, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30477316

RESUMEN

Orthotopic liver transplantation remains the only curative therapy for inborn errors of metabolism. Given the tremendous success for primary immunodeficiencies using ex-vivo gene therapy with lentiviral vectors, there is great interest in developing similar curative therapies for metabolic liver diseases. We have previously generated a pig model of hereditary tyrosinemia type 1 (HT1), an autosomal recessive disorder caused by deficiency of fumarylacetoacetate hydrolase (FAH). Using this model, we have demonstrated curative ex-vivo gene and cell therapy using a lentiviral vector to express FAH in autologous hepatocytes. To further evaluate the long-term clinical outcomes of this therapeutic approach, we continued to monitor one of these pigs over the course of three years. The animal continued to thrive off the protective drug NTBC, gaining weight appropriately, and maintaining sexual fecundity for the course of his life. The animal was euthanized 31 months after transplantation to perform a thorough biochemical and histological analysis. Biochemically, liver enzymes and alpha-fetoprotein levels remained normal and abhorrent metabolites specific to HT1 remained corrected. Liver histology showed no evidence of tumorigenicity and Masson's trichrome staining revealed minimal fibrosis and no evidence of cirrhosis. FAH-immunohistochemistry revealed complete repopulation of the liver by transplanted FAH-positive cells. A complete histopathological report on other organs, including kidney, revealed no abnormalities. This study is the first to demonstrate long-term safety and efficacy of hepatocyte-directed gene therapy in a large animal model. We conclude that hepatocyte-directed ex-vivo gene therapy is a rational choice for further exploration as an alternative therapeutic approach to whole organ transplantation for metabolic liver disease, including HT1.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Terapia Genética/métodos , Hidrolasas/metabolismo , Tirosinemias/enzimología , Tirosinemias/terapia , Animales , Biología Computacional , Modelos Animales de Enfermedad , Hidrolasas/genética , Masculino , Porcinos , Tirosinemias/metabolismo
18.
JIMD Rep ; 45: 89-93, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30414057

RESUMEN

BACKGROUND: Hereditary tyrosinemia (HT1) is an autosomal recessive disorder characterized by impaired tyrosine catabolism because of fumarylacetoacetate hydrolase deficiency. HT1 is caused by homozygous or compound heterozygous mutations in the FAH gene. The HT1 frequency worldwide is 1:100,000-1:120,000 live births. The frequency of HT1 in the Russian Federation is unknown. AIM: To estimate the spectrum of mutations in HT1 in several ethnic groups of the Russian Federation. MATERIALS AND METHODS: From 2004 to 2017, 43 patients were diagnosed with HT1. The analysis of amino acids and succinylacetone was performed using NeoGram Amino Acids and Acylcarnitines Tandem Mass Spectrometry Kit and a Sciex QTrap 3200 quadrupole tandem mass spectrometer. Bi-directional DNA sequence analysis was performed on PCR products using an ABI Prism 3500. RESULTS: In the Russian Federation, the most common mutation associated with HT1 (32.5% of all mutant alleles) is c.1025C>T (p.Pro342Leu), which is typical for the Chechen ethnic group. Patients of the Yakut, the Buryat, and the Nenets origins had a homozygous mutation c.1090G>C (p.Glu364Gln). High frequency of these ethnicity-specific mutations is most likely due to the founder effect. In patients from Central Russia, the splicing site mutations c.554-1G>T and c.1062+5G>A were the most prevalent, which is similar to the data obtained in the Eastern and Central Europe countries. CONCLUSION: There are ethnic specificities in the spectrum of mutations in the FAH gene in HT1. The Chechen Republic has one of the highest prevalence of HT1 in the world.

19.
Transl Res ; 205: 44-50, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30399369

RESUMEN

Liver is the second most transplanted organ according to United network for organ sharing. Due to shortage of compatible donors, surgical difficulties, immunological hindrance, and high postoperative cost, stem cell therapy is an attractive substitute of liver transplant for millions of patients suffering from hepatic failure. Due to several technical limitations such as viral integration, inefficient differentiation, and adult phenotypes and epigenetic memory of fibroblasts, induced pluripotent stem cells, mesenchymal stem cells, or induced hepatocyte may not present a great clinical substitute for liver transplant. We pioneered a novel technology for robust expansion of quiescent liver stem cells (LSCs) from mice via utilizing of Hedgehog agonist HhAg1.5 for 3 weeks. These expanded LSCs retained stem-like properties after multiple passaging and differentiated to hepatocytes and cholangiocytes. Grafting of ex vivo expanded LSCs in Fah-/- Rag2-/- Il2rg-/- knockout mice, significantly increased life span compared to control group (P < 0.001). Thus in this study, we provide a promising viable substitute for primary hepatocytes for regenerative medicine and for life-threatening metabolic liver diseases.


Asunto(s)
Células Madre Adultas/citología , Proteínas Hedgehog/agonistas , Fallo Hepático/terapia , Hígado/citología , Bibliotecas de Moléculas Pequeñas/farmacología , Antígeno AC133/inmunología , Células Madre Adultas/inmunología , Animales , Sistema Biliar/citología , Diferenciación Celular , Hepatocitos/citología , Antígenos Comunes de Leucocito/inmunología , Hígado/inmunología , Longevidad , Ratones , Ratones Noqueados , Medicina Regenerativa
20.
Mol Genet Metab Rep ; 14: 55-58, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29326876

RESUMEN

BACKGROUND: A high level of succinylacetone (SA) in blood is a sensitive, specific marker for the screening and diagnosis of hepatorenal tyrosinemia (HT1, MIM 276700). HT1 is caused by mutations in the FAH gene, resulting in deficiency of fumarylacetoacetate hydrolase. HT1 newborns are usually clinically asymptomatic, but have coagulation abnormalities revealing liver dysfunction. Treatment with nitisinone (NTBC) plus dietary restriction of tyrosine and phenylalanine prevents the complications of HT1. OBSERVATIONS: Two newborns screened positive for SA but had normal coagulation testing. Plasma and urine SA levels were 3-5 fold above the reference range but were markedly lower than in typical HT1. Neither individual received nitisinone or dietary therapy. They remain clinically normal, currently aged 9 and 15 years. Each was a compound heterozygote, having a splicing variant in trans with a prevalent "pseudodeficient" FAH allele, c.1021C > T (p.Arg341Trp), which confers partial FAH activity. All newborns identified with mild hypersuccinylacetonemia in Québec have had genetic deficiencies of tyrosine degradation: either deficiency of the enzyme preceding FAH, maleylacetoacetate isomerase, or partial deficiency of FAH itself. CONCLUSION: Compound heterozygotes for c.1021C > T (p.Arg341Trp) and a severely deficient FAH allele have mild hypersuccinylacetonemia and to date they have remained asymptomatic without treatment. It is important to determine the long term outcome of such individuals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA