Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39368537

RESUMEN

Insomnia is increasingly prevalent with significant associations with depression. Delineating specific neural circuits for chronic insomnia disorder (CID) with and without depressive symptoms is fundamental to develop precision diagnosis and treatment. In this study, we examine static, dynamic and network topology changes of individual large-scale functional network for CID with (CID-D) and without depression to reveal their specific neural underpinnings. Seventeen individual-specific functional brain networks are obtained using a regularized nonnegative matrix factorization technique. Disorders-shared and -specific differences in static and dynamic large-scale functional network connectivities within or between the cognitive control network, dorsal attention network, visual network, limbic network, and default mode network are found for CID and CID-D. Additionally, CID and CID-D groups showed compromised network topological architecture including reduced small-world properties, clustering coefficients and modularity indicating decreased network efficiency and impaired functional segregation. Moreover, the altered neuroimaging indices show significant associations with clinical manifestations and could serve as effective neuromarkers to distinguish among healthy controls, CID and CID-D. Taken together, these findings provide novel insights into the neural basis of CID and CID-D, which may facilitate developing new diagnostic and therapeutic approaches.

2.
Front Psychiatry ; 15: 1474313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364382

RESUMEN

Introduction: Schizophrenia (SZ) and bipolar disorder (BD) share common clinical features, symptoms, and neurocognitive deficits, which results in common misdiagnosis. Recently, it has been suggested that alterations within brain networks associated with perceptual organization yield potential to distinguish SZ and BD individuals. The aim of our study was to evaluate whether functional connectivity (FC) of the dorsal attention network (DAN) may differentiate both conditions. Methods: The study involved 90 participants: 30 remitted SZ patients, 30 euthymic BD patients, and 30 healthy controls (HC). Resting state functional magnetic resonance imaging was used to compare the groups in terms of the FC within the core nodes of the DAN involving frontal eye fields (FEF) and intraparietal sulcus (IPS). Results: BD patients presented weaker inter-hemispheric FC between right and left FEF than HC. While SZ did not differ from HC in terms of inter-FEF connectivity, they presented increased inter- and intra-hemispheric FC between FEF and IPS. When compared with BD, SZ patients showed increased FC between right FEF and other nodes of the network (bilateral IPS and left FEF). Conclusion: We have shown that altered resting state FC within DAN differentiates BD, SZ, and HC groups. Divergent pattern of FC within DAN, consisting of hypoconnectivity in BD and hyperconnectivity in SZ, might yield a candidate biomarker for differential diagnosis between both conditions. More highly powered studies are needed to confirm these possibilities.

3.
Geroscience ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361232

RESUMEN

The intrinsic brain functional network organization continuously changes with aging. By integrating spatial and temporal information, the process of how brain networks temporally reconfigure and remain well-organized spatial structure largely reflects the brain function, thereby holds the potential to capture its age-related declines. In this study, we examined the spatiotemporal brain dynamics from resting-state functional Magnetic Resonance Imaging (fMRI) data of healthy young and older adults using a Hidden Markov Model (HMM). Six brain states were generated by HMM, with the young group showing higher fractional occupancy and mean dwell time in states 1, 3, and 4 (SY1, SY2 and SY3), and the older group in states 2, 5, and 6 (SO1, SO2 and SO3). Importantly, comparisons of transition probabilities revealed that the older group showed a reduced brain ability to transition into states dominated by the younger group, as well as a diminished capacity to persist in them. Moreover, graph analysis revealed that these young-specific states exhibited higher modularity and k-coreness. Collectively, these findings suggested that the older group showed impaired brain ability of both transition into and sustain well spatially organized states. This emphasized that the temporal changes in brain state organization, rather than its static mode, could be a key biomarker for detecting age-related functional decline. These insights may pave the way for targeted interventions aimed at mitigating cognitive decline in the aging population.

4.
Hum Brain Mapp ; 45(14): e70031, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39360550

RESUMEN

Cognitive flexibility, the ability to switch between mental processes to generate appropriate behavioral responses, is reduced with typical aging. Previous studies have found that age-related declines in cognitive flexibility are often accompanied by variations in the activation of multiple regions. However, no meta-analyses have examined the relationship between cognitive flexibility in aging and age-related variations in activation within large-scale networks. Here, we conducted a meta-analysis employing multilevel kernel density analysis to identify regions with different activity patterns between age groups, and determined how these regions fall into functional networks. We also employed lateralization analysis to explore the spatial distribution of regions exhibiting group differences in activation. The permutation tests based on Monte Carlo simulation were used to determine the significance of the activation and lateralization results. The results showed that cognitive flexibility in aging was associated with both decreased and increased activation in several functional networks. Compared to young adults, older adults exhibited increased activation in the default mode, dorsal attention, ventral attention, and somatomotor networks, while displayed decreased activation in the visual network. Moreover, we found a global-level left lateralization for regions with decreased activation, but no lateralization for regions with higher activation in older adults. At the network level, the regions with decreased activation were left-lateralized, while the regions with increased activation showed varying lateralization patterns within different networks. To sum up, we found that networks that support various mental functions contribute to age-related variations in cognitive flexibility. Additionally, the aging brain exhibited network-dependent activation and lateralization patterns in response to tasks involving cognitive flexibility. We highlighted that the comprehensive meta-analysis in this study offered new insights into understanding cognitive flexibility in aging from a network perspective.


Asunto(s)
Envejecimiento , Lateralidad Funcional , Red Nerviosa , Humanos , Envejecimiento/fisiología , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Lateralidad Funcional/fisiología , Adulto , Anciano , Función Ejecutiva/fisiología , Adulto Joven , Persona de Mediana Edad , Imagen por Resonancia Magnética , Cognición/fisiología
5.
Diabetes Metab Syndr Obes ; 17: 3239-3248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234209

RESUMEN

Background: Diabetic retinopathy (DR) is a prevalent ocular manifestation of diabetic microvascular complications and a primary driver of irreversible blindness. Existing studies have illuminated the presence of aberrant brain activity in individuals affected by DR. However, the alterations in the modular segregation of brain networks among DR patients remain inadequately understood. The study aims to explore the modular segregation of brain networks in patients with DR. Methods: We examined the blood oxygen levels dependent (BOLD) signals using resting-state functional magnetic resonance imaging (R-fMRI) in a cohort of 46 DRpatients and 43 age-matched healthy controls (HC). Subsequently, Modular analysis utilizing graph theory method was applied to quantify the degree of brain network segregation by computing the participation coefficient (PC). Deviations from typical PC values were further elucidated through intra- and inter-module connectivity analyses. Results: The DR group demonstrated significantly lower mean PC in the frontoparietal network (FPN), sensorimotor network (SMN), and visual network (VN) compared to the HCgroup. Moreover, increased inter-module connections were observed between the default-mode network (DMN) and SMN, as well as between FPN and VN within the DR group. In terms of nodal analysis, higher PC values were detected in the left thalamus, right frontal lobe, and right precentral gyrus in the DR group compared to the HC group. Conclusion: Patients with DR show impairments in primary sensory networks and higher cognitive networks within their functional brain networks. These changes may provide essential insights into the neurobiological mechanisms of DR by identifying alterations in the brain networks of DR patients and pinpointing sensitive neurobiological markers that could serve as vital imaging references for future treatments of diabetic retinopathy.

6.
Front Cell Neurosci ; 18: 1404605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309702

RESUMEN

Introduction: Cytoarchitectonic studies have uncovered a correlation between higher levels of cortical hierarchy and reduced dendritic size. This hierarchical organization extends to the brain's timescales, revealing longer intrinsic timescales at higher hierarchical levels. However, estimating the contribution of single-neuron dendritic morphology to the hierarchy of timescales, which is typically characterized at a macroscopic level, remains challenging. Method: Here we mapped the intrinsic timescales of six functional networks using functional magnetic resonance imaging (fMRI) data, and characterized the influence of neuronal dendritic size on intrinsic timescales of brain regions, utilizing a multicompartmental neuronal modeling approach based on digitally reconstructed neurons. Results: The fMRI results revealed a hierarchy of intrinsic timescales encompassing both cortical and subcortical brain regions. The neuronal modeling indicated that neurons with larger dendritic structures exhibit shorter intrinsic timescales. Together these findings highlight the contribution of dendrites at the neuronal level to the hierarchy of intrinsic timescales at the whole-brain level. Discussion: This study sheds light on the intricate relationship between neuronal structure, cytoarchitectonic maps, and the hierarchy of timescales in the brain.

7.
Front Psychol ; 15: 1435003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086427

RESUMEN

Background: Poor self-control is a strong correlate of criminal propensity. It is conceptualized and operationalized differently in criminology than in other scientific traditions. Aims: (1) To verify the dimensionality of the criminological Grasmick self-control items, other self-regulation items and morality ones. (2) To re-interpret the dimensions using a clinical perspective, a taxonomic/diagnostic model and references to possible "biological underpinnings." (3) Validate the dimensions by associations with crime. Method: Population: all persons born 1995 in Malmö and living there at age 12. A random sample (N = 525) filled in a comprehensive self-report questionnaire on themes like personality, crime/abuse and social aspects at age 15, 16 and 18. Age 18 data were analysed: 191 men and 220 women. Results: Self-regulation items were 4-dimensional: ADHD problems (Behavior control and Executive skills) and two Aggression factors. Morality items formed a fifth dimension. Negative Affect and Social interaction factors covered the rest of the variance. The validity of these factors was backed up by correlations with similar items/factors. Self-regulation subscales predicted crimes better than the Grasmick scale; an interaction with morality improved prediction still further. Sex differences were over-all small with three exceptions: Aggression, Morality and Negative affect. Conclusion: We identified four dimensions of the 20-item Grasmick instrument: Cognitive action control (impulsiveness/sensation seeking, response inhibition), Executive skills/future orientation, Affective/aggression reactivity and Aggression control. All should be possible to link to brain functional modules. Much can be gained if we are able to formulate an integrated model of self-regulation including distinct brain functional modules, process-and trait-oriented models, relevant diagnoses and clinical experiences of individual cases.

8.
Neuroimage ; 298: 120804, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173695

RESUMEN

Deciphering the functional architecture that underpins diverse cognitive functions is fundamental quest in neuroscience. In this study, we employed an innovative machine learning framework that integrated cognitive ontology with functional connectivity analysis to identify brain networks essential for cognition. We identified a core assembly of functional connectomes, primarily located within the association cortex, which showed superior predictive performance compared to two conventional methods widely employed in previous research across various cognitive domains. Our approach achieved a mean prediction accuracy of 0.13 across 16 cognitive tasks, including working memory, reading comprehension, and sustained attention, outperforming the traditional methods' accuracy of 0.08. In contrast, our method showed limited predictive power for sensory, motor, and emotional functions, with a mean prediction accuracy of 0.03 across 9 relevant tasks, slightly lower than the traditional methods' accuracy of 0.04. These cognitive connectomes were further characterized by distinctive patterns of resting-state functional connectivity, structural connectivity via white matter tracts, and gene expression, highlighting their neurogenetic underpinnings. Our findings reveal a domain-general functional network fingerprint that pivotal to cognition, offering a novel computational approach to explore the neural foundations of cognitive abilities.


Asunto(s)
Cognición , Conectoma , Aprendizaje Automático , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Cognición/fisiología , Conectoma/métodos , Masculino , Adulto , Femenino , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto Joven , Memoria a Corto Plazo/fisiología
9.
Biol Psychol ; 192: 108847, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038634

RESUMEN

The locus coeruleus (LC) produces the neuromodulators norepinephrine and dopamine, and projects widely to subcortical and cortical brain regions. The LC has been a focus of neuroimaging biomarker development for the early detection of Alzheimer's disease (AD) since it was identified as one of the earliest brain regions to develop tau pathology. Our recent research established the use of positron emission tomography (PET) to measure LC catecholamine synthesis capacity in cognitively unimpaired older adults. We extend this work by investigating the possible influence of pathology and LC neurochemical function on LC network activity using functional magnetic resonance imaging (fMRI). In separate sessions, participants underwent PET imaging to measure LC catecholamine synthesis capacity ([18F]Fluoro-m-tyrosine), tau pathology ([18F]Flortaucipir), and amyloid-ß pathology ([11C]Pittsburgh compound B), and fMRI imaging to measure LC functional network activity at rest. Consistent with a growing body of research in aging and preclinical AD, we find that higher functional network activity is associated with higher tau burden in individuals at risk of developing AD (amyloid-ß positive). Critically, relationships between higher LC network activity and higher pathology (amyloid-ß and tau) were moderated by LC catecholamine synthesis capacity. High levels of LC catecholamine synthesis capacity reduced relationships between higher network activity and pathology. Broadly, these findings support the view that individual differences in functional network activity are shaped by interactions between pathology and neuromodulator function, and point to catecholamine systems as potential therapeutic targets.

10.
CNS Neurosci Ther ; 30(7): e14859, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39009557

RESUMEN

OBJECTIVE: The objective of this study is to explore potential differences in brain functional networks at baseline between individuals with progressive subjective cognitive decline (P-SCD) and stable subjective cognitive decline (S-SCD), as well as to identify potential indicators that can effectively distinguish between P-SCD and S-SCD. METHODS: Alzheimer's Disease Neuroimaging Initiative (ADNI) database was utilized to enroll SCD individuals with a follow-up period of over 3 years. This study included 39 individuals with S-SCD, 15 individuals with P-SCD, and 45 cognitively normal (CN) individuals. Brain functional networks were constructed based on the AAL template, and graph theory analysis was performed to determine the topological properties. RESULTS: For global metric, the S-SCD group exhibited stronger small-worldness with reduced connectivity among nearby nodes and accelerated compensatory information transfer capacity. For nodal efficiency, the S-SCD group showed increased connectivity in bilateral posterior cingulate gyri (PCG). However, for nodal local efficiency, the P-SCD group exhibited significantly reduced connectivity in the right cerebellar Crus I compared with the S-SCD group. CONCLUSION: There are differences in brain functional networks at baseline between P-SCD and S-SCD groups. Furthermore, the right cerebellar Crus I region may be a potentially useful brain area to distinguish between P-SCD and S-SCD.


Asunto(s)
Encéfalo , Disfunción Cognitiva , Progresión de la Enfermedad , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico , Femenino , Masculino , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Anciano de 80 o más Años , Autoevaluación Diagnóstica , Persona de Mediana Edad
11.
Artículo en Inglés | MEDLINE | ID: mdl-39059466

RESUMEN

BACKGROUND: While the amygdala receives early tau deposition in Alzheimer's disease (AD) and is involved in social and emotional processing, the relationship between amygdalar tau and early neuropsychiatric symptoms in AD is unknown. We sought to determine whether focal tau binding in the amygdala and abnormal amygdalar connectivity were detectable in a preclinical AD cohort and identify relationships between these and self-reported mood symptoms. METHODS: We examined 598 individuals (347 amyloid positive [58% female], 251 amyloid negative [62% female] subset in tau positron emission tomography and functional magnetic resonance imaging cohorts) from the A4 (Anti-Amyloid Treatment in Asymptomatic AD) Study. In the tau positron emission tomography cohort, we used amygdalar segmentations to examine representative nuclei from 3 functional divisions of the amygdala. We analyzed between-group differences in division-specific tau binding in the amygdala in preclinical AD. We conducted seed-based functional connectivity analyses from each division in the functional magnetic resonance imaging cohort. Finally, we conducted exploratory post hoc correlation analyses between neuroimaging biomarkers of interest and anxiety and depression scores. RESULTS: Amyloid-positive individuals demonstrated increased tau binding in the medial and lateral amygdala, and tau binding in these regions was associated with mood symptoms. Across amygdalar divisions, amyloid-positive individuals had relatively higher regional connectivity from the amygdala to other temporal regions, the insula, and the orbitofrontal cortex, but medial amygdala to retrosplenial cortex connectivity was lower. Medial amygdala to retrosplenial connectivity was negatively associated with anxiety symptoms, as was retrosplenial tau. CONCLUSIONS: Our findings suggest that preclinical tau deposition in the amygdala and associated changes in functional connectivity may be related to early mood symptoms in AD.

12.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895308

RESUMEN

BACKGROUND: While the amygdala receives early tau deposition in Alzheimer's disease (AD) and is involved in social and emotional processing, the relationship between amygdalar tau and early neuropsychiatric symptoms in AD is unknown. We sought to determine whether focal tau binding in the amygdala and abnormal amygdalar connectivity were detectable in a preclinical AD cohort and identify relationships between these and self-reported mood symptoms. METHODS: We examined n=598 individuals (n=347 amyloid-positive (58% female), n=251 amyloid-negative (62% female); subset into tau PET and fMRI cohorts) from the A4 Study. In our tau PET cohort, we used amygdalar segmentations to examine representative nuclei from three functional divisions of the amygdala. We analyzed between-group differences in division-specific tau binding in the amygdala in preclinical AD. We conducted seed-based functional connectivity analyses from each division in the fMRI cohort. Finally, we conducted exploratory post-hoc correlation analyses between neuroimaging biomarkers of interest and anxiety and depression scores. RESULTS: Amyloid-positive individuals demonstrated increased tau binding in medial and lateral amygdala (F(4,442)=14.61, p=0.00045; F(4,442)=5.83, p=0.024, respectively). Across amygdalar divisions, amyloid-positive individuals had relatively increased regional connectivity from amygdala to other temporal regions, insula, and orbitofrontal cortex. There was an interaction by amyloid group between tau binding in the medial and lateral amygdala and anxiety. Medial amygdala to retrosplenial connectivity negatively correlated with anxiety symptoms (rs=-0.103, p=0.015). CONCLUSIONS: Our findings suggest that preclinical tau deposition in the amygdala may result in meaningful changes in functional connectivity which may predispose patients to mood symptoms.

13.
Biol Psychiatry ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857821

RESUMEN

BACKGROUND: Alzheimer's disease (AD), which has been identified as the most common type of dementia, presents considerable heterogeneity in its clinical manifestations. Early intervention at the stage of mild cognitive impairment (MCI) holds potential in AD prevention. However, characterizing the heterogeneity of neurobiological abnormalities and identifying MCI subtypes pose significant challenges. METHODS: We constructed sex-specific normative age models of dynamic brain functional networks and mapped the deviations of the brain characteristics for individuals from multiple datasets, including 295 patients with AD, 441 patients with MCI, and 1160 normal control participants. Then, based on these individual deviation patterns, subtypes for both AD and MCI were identified using the clustering method, and their similarities and differences were comprehensively assessed. RESULTS: Individuals with AD and MCI were clustered into 2 subtypes, and these subtypes exhibited significant differences in their intrinsic brain functional phenotypes and spatial atrophy patterns, as well as in disease progression and cognitive decline trajectories. The subtypes with positive deviations in AD and MCI shared similar deviation patterns, as did those with negative deviations. There was a potential transformation of MCI with negative deviation patterns into AD, and participants with MCI had a more severe cognitive decline rate. CONCLUSIONS: In this study, we quantified neurophysiological heterogeneity by analyzing deviation patterns from the dynamic functional connectome normative model and identified disease subtypes of AD and MCI using a comprehensive resting-state functional magnetic resonance imaging multicenter dataset. The findings provide new insights for developing early prevention and personalized treatment strategies for AD.

14.
Proc Natl Acad Sci U S A ; 121(26): e2312335121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38889151

RESUMEN

Predicting the effects of one or more mutations to the in vivo or in vitro properties of a wild-type protein is a major computational challenge, due to the presence of epistasis, that is, of interactions between amino acids in the sequence. We introduce a computationally efficient procedure to build minimal epistatic models to predict mutational effects by combining evolutionary (homologous sequence) and few mutational-scan data. Mutagenesis measurements guide the selection of links in a sparse graphical model, while the parameters on the nodes and the edges are inferred from sequence data. We show, on 10 mutational scans, that our pipeline exhibits performances comparable to state-of-the-art deep networks trained on many more data, while requiring much less parameters and being hence more interpretable. In particular, the identified interactions adapt to the wild-type protein and to the fitness or biochemical property experimentally measured, mostly focus on key functional sites, and are not necessarily related to structural contacts. Therefore, our method is able to extract information relevant for one mutational experiment from homologous sequence data reflecting the multitude of structural and functional constraints acting on proteins throughout evolution.


Asunto(s)
Mutación , Proteínas , Proteínas/genética , Proteínas/metabolismo , Proteínas/química , Epistasis Genética , Evolución Molecular , Biología Computacional/métodos
15.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38836288

RESUMEN

Major depressive disorder demonstrated sex differences in prevalence and symptoms, which were more pronounced during adolescence. Yet, research on sex-specific brain network characteristics in adolescent-onset major depressive disorder remains limited. This study investigated sex-specific and nonspecific alterations in resting-state functional connectivity of three core networks (frontoparietal network, salience network, and default mode network) and subcortical networks in adolescent-onset major depressive disorder, using seed-based resting-state functional connectivity in 50 medication-free patients with adolescent-onset major depressive disorder and 56 healthy controls. Irrespective of sex, compared with healthy controls, adolescent-onset major depressive disorder patients showed hypoconnectivity between bilateral hippocampus and right superior temporal gyrus (default mode network). More importantly, we further found that females with adolescent-onset major depressive disorder exhibited hypoconnectivity within the default mode network (medial prefrontal cortex), and between the subcortical regions (i.e. amygdala, striatum, and thalamus) with the default mode network (angular gyrus and posterior cingulate cortex) and the frontoparietal network (dorsal prefrontal cortex), while the opposite patterns of resting-state functional connectivity alterations were observed in males with adolescent-onset major depressive disorder, relative to their sex-matched healthy controls. Moreover, several sex-specific resting-state functional connectivity changes were correlated with age of onset, sleep disturbance, and anxiety in adolescent-onset major depressive disorder with different sex. These findings suggested that these sex-specific resting-state functional connectivity alterations may reflect the differences in brain development or processes related to early illness onset, underscoring the necessity for sex-tailored diagnostic and therapeutic approaches in adolescent-onset major depressive disorder.


Asunto(s)
Encéfalo , Trastorno Depresivo Mayor , Imagen por Resonancia Magnética , Red Nerviosa , Caracteres Sexuales , Humanos , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Femenino , Adolescente , Masculino , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Adulto Joven , Edad de Inicio , Mapeo Encefálico , Red en Modo Predeterminado/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen
16.
Neurol Sci ; 45(10): 4983-4996, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38704479

RESUMEN

BACKGROUND: Juvenile myoclonic epilepsy (JME) is characterized by altered patterns of brain functional connectivity (FC). However, the nature and extent of alterations in the spatiotemporal characteristics of dynamic FC in JME patients remain elusive. Dynamic networks effectively encapsulate temporal variations in brain imaging data, offering insights into brain network abnormalities and contributing to our understanding of the seizure mechanisms and origins. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) data were procured from 37 JME patients and 37 healthy counterparts. Forty-seven network nodes were identified by group-independent component analysis (ICA) to construct the dynamic network. Ultimately, patients' and controls' spatiotemporal characteristics, encompassing temporal clustering and variability, were contrasted at the whole-brain, large-scale network, and regional levels. RESULTS: Our findings reveal a marked reduction in temporal clustering and an elevation in temporal variability in JME patients at the whole-brain echelon. Perturbations were notably pronounced in the default mode network (DMN) and visual network (VN) at the large-scale level. Nodes exhibiting anomalous were predominantly situated within the DMN and VN. Additionally, there was a significant correlation between the severity of JME symptoms and the temporal clustering of the VN. CONCLUSIONS: Our findings suggest that excessive temporal changes in brain FC may affect the temporal structure of dynamic brain networks, leading to disturbances in brain function in patients with JME. The DMN and VN play an important role in the dynamics of brain networks in patients, and their abnormal spatiotemporal properties may underlie abnormal brain function in patients with JME in the early stages of the disease.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Epilepsia Mioclónica Juvenil , Red Nerviosa , Humanos , Epilepsia Mioclónica Juvenil/fisiopatología , Epilepsia Mioclónica Juvenil/diagnóstico por imagen , Masculino , Femenino , Adulto , Adulto Joven , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Adolescente , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología , Mapeo Encefálico , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen
17.
J Neural Eng ; 21(3)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38776897

RESUMEN

Objective.This study explores the changes in the organization of functional brain networks induced by performing a visuomotor integration task, as revealed by noninvasive spontaneous electroencephalographic traces (EEG).Approach.EEG data were acquired during the execution of the Nine Hole Peg Test (NHPT) with the dominant and non-dominant hands in a group of 44 right-handed volunteers. Both spectral analysis and phase-based connectivity analysis were performed in the theta (ϑ), mu (µ) and beta (ß) bands. Graph Theoretical Analysis (GTA) was also performed to investigate the topological reorganization induced by motor task execution.Main results.Spectral analysis revealed an increase of frontoparietal ϑ power and a spatially diffused reduction ofµand ß contribution, regardless of the hand used. GTA showed a significant increase in network integration induced by movement performed with the dominant limb compared to baseline in the ϑ band. Theµand ß bands were associated with a reduction in network integration during the NHPT. In theµrhythm, this result was more evident for the right-hand movement, while in the ß band, results did not show dependence on the laterality. Finally, correlation analysis highlighted an association between frequency-specific topology measures and task performance for both hands.Significance.Our results show that functional brain networks reorganize during visually guided movements in a frequency-dependent manner, differently depending on the hand used (dominant/non dominant).


Asunto(s)
Encéfalo , Electroencefalografía , Lateralidad Funcional , Mano , Movimiento , Red Nerviosa , Desempeño Psicomotor , Humanos , Masculino , Electroencefalografía/métodos , Femenino , Mano/fisiología , Adulto , Desempeño Psicomotor/fisiología , Movimiento/fisiología , Adulto Joven , Red Nerviosa/fisiología , Lateralidad Funcional/fisiología , Encéfalo/fisiología , Percepción Visual/fisiología
18.
J Integr Neurosci ; 23(5): 102, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38812391

RESUMEN

BACKGROUND: Repetitive mild traumatic brain injury (rmTBI) often occurs in individuals engaged in contact sports, particularly boxing. This study aimed to elucidate the effects of rmTBI on phase-locking value (PLV)-based graph theory and functional network architecture in individuals with boxing-related injuries in five frequency bands by employing resting-state electroencephalography (EEG). METHODS: Twenty-fore professional boxers and 25 matched healthy controls were recruited to perform a resting-state task, and their noninvasive scalp EEG data were collected simultaneously. Based on the construction of PLV matrices for boxers and controls, phase synchronization and graph-theoretic characteristics were identified in each frequency band. The significance of the calculated functional brain networks between the two populations was analyzed using a network-based statistical (NBS) approach. RESULTS: Compared to controls, boxers exhibited an increasing trend in PLV synchronization and notable differences in the distribution of functional centers, especially in the gamma frequency band. Additionally, attenuated nodal network parameters and decreased small-world measures were observed in the theta, beta, and gamma bands, suggesting that the functional network efficiency and small-world characteristics were significantly weakened in boxers. NBS analysis revealed that boxers exhibited a significant increase in network connectivity strength compared to controls in the theta, beta, and gamma frequency bands. The functional connectivity of the significance subnetworks exhibited an asymmetric distribution between the bilateral hemispheres, indicating that the optimized organization of information integration and segregation for the resting-state networks was imbalanced and disarranged for boxers. CONCLUSIONS: This is the first study to investigate the underlying deficits in PLV-based graph-theoretic characteristics and NBS-based functional networks in patients with rmTBI from the perspective of whole-brain resting-state EEG. Joint analyses of distinctive graph-theoretic representations and asymmetrically hyperconnected subnetworks in specific frequency bands may serve as an effective method to assess the underlying deficiencies in resting-state network processing in patients with sports-related rmTBI.


Asunto(s)
Boxeo , Conmoción Encefálica , Electroencefalografía , Red Nerviosa , Humanos , Masculino , Adulto , Adulto Joven , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Boxeo/fisiología , Ondas Encefálicas/fisiología , Femenino , Encéfalo/fisiopatología
19.
bioRxiv ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38617291

RESUMEN

Deciphering the functional architecture that underpins diverse cognitive functions is fundamental quest in neuroscience. In this study, we employed an innovative machine learning framework that integrated cognitive ontology with functional connectivity analysis to identify brain networks essential for cognition. We identified a core assembly of functional connectomes, primarily located within the association cortex, which showed superior predictive performance compared to two conventional methods widely employed in previous research across various cognitive domains. Our approach achieved a mean prediction accuracy of 0.13 across 16 cognitive tasks, including working memory, reading comprehension, and sustained attention, outperforming the traditional methods' accuracy of 0.08. In contrast, our method showed limited predictive power for sensory, motor, and emotional functions, with a mean prediction accuracy of 0.03 across 9 relevant tasks, slightly lower than the traditional methods' accuracy of 0.04. These cognitive connectomes were further characterized by distinctive patterns of resting-state functional connectivity, structural connectivity via white matter tracts, and gene expression, highlighting their neurogenetic underpinnings. Our findings reveal a domain-general functional network fingerprint that pivotal to cognition, offering a novel computational approach to explore the neural foundations of cognitive abilities.

20.
Dev Cogn Neurosci ; 66: 101370, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583301

RESUMEN

Childhood environments are critical in shaping cognitive neurodevelopment. With the increasing availability of large-scale neuroimaging datasets with deep phenotyping of childhood environments, we can now build upon prior studies that have considered relationships between one or a handful of environmental and neuroimaging features at a time. Here, we characterize the combined effects of hundreds of inter-connected and co-occurring features of a child's environment ("exposome") and investigate associations with each child's unique, multidimensional pattern of functional brain network organization ("functional topography") and cognition. We apply data-driven computational models to measure the exposome and define personalized functional brain networks in pre-registered analyses. Across matched discovery (n=5139, 48.5% female) and replication (n=5137, 47.1% female) samples from the Adolescent Brain Cognitive Development study, the exposome was associated with current (ages 9-10) and future (ages 11-12) cognition. Changes in the exposome were also associated with changes in cognition after accounting for baseline scores. Cross-validated ridge regressions revealed that the exposome is reflected in functional topography and can predict performance across cognitive domains. Importantly, a single measure capturing a child's exposome could more accurately and parsimoniously predict cognition than a wealth of personalized neuroimaging data, highlighting the importance of children's complex, multidimensional environments in cognitive neurodevelopment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA