Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(12): 3647-3653, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38488282

RESUMEN

With exceptional quantum confinement, 2D monolayer semiconductors support a strong excitonic effect, making them an ideal platform for exploring light-matter interactions and as building blocks for novel optoelectronic devices. Different from the well-known in-plane excitons in transition metal dichalcogenides (TMD), the out-of-plane excitons in indium selenide (InSe) usually show weak emission, which limits their applications as light sources. Here, by embedding InSe in an anisotropic gap plasmon nanocavity, we have realized plasmon-enhanced linearly polarized photoluminescence with an anisotropic ratio up to ∼140, corresponding to degree of polarization (DoP) of ∼98.6%. Such polarization selectivity, originating from the polarization-dependent plasmonic enhancement supported by the "nanowire-on-mirror" nanocavity, can be well tuned by the InSe thickness. Moreover, we have also realized an InSe-based light-emitting diode with polarized electroluminescence. Our research highlights the role of excitonic dipole orientation in designing nanophotonic devices and paves the way for developing InSe-based optoelectronic devices with polarization control.

2.
Nano Lett ; 23(24): 11387-11394, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-37906586

RESUMEN

With a growing demand for detecting light at the single-photon level in various fields, researchers are focused on optimizing the performance of superconducting single-photon detectors (SSPDs) by using multiple approaches. However, input light coupling for visible light has remained a challenge in the development of efficient SSPDs. To overcome these limitations, we developed a novel system that integrates NbN superconducting microwire photon detectors (SMPDs) with gap-plasmon resonators to improve the photon detection efficiency to 98% while preserving all detector performance features, such as polarization insensitivity. The plasmonic SMPDs exhibit a hot-belt effect that generates a nonlinear photoresponse in the visible range operated at 9 K (∼0.64Tc), resulting in a 233-fold increase in phonon-electron interaction factor (γ) compared to pristine SMPDs at resonance under CW illumination. These findings open up new opportunities for ultrasensitive single-photon detection in areas like quantum information processing, quantum optics, imaging, and sensing at visible wavelengths.

3.
J Phys Condens Matter ; 35(39)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37339655

RESUMEN

Control of polarization states of light is crucial for any photonic system. However, conventional polarization-controlling elements are typically static and bulky. Metasurfaces open a new paradigm to realize flat optical components by engineering meta-atoms at sub-wavelength scale. Tunable metasurfaces can provide enormous degrees-of-freedom to tailor electromagnetic properties of light and thus have the potential to realize dynamic polarization control in nanoscale. In this study, we propose a novel electro-tunable metasurface to enable dynamic control of polarization states of reflected light. The proposed metasurface comprises a two-dimensional array of elliptical Ag-nanopillars deposited on indium-tin-oxide (ITO)-Al2O3-Ag stack. In unbiased condition, excitation of gap-plasmon resonance in the metasurface leads to rotation ofx-polarized incident light to orthogonally polarized reflected light (i.e.,y-polarized) at 1.55µm. On the other hand, by applying bias-voltage, we can alter the amplitude and phase of the electric field components of the reflected light. With 2 V applied bias, we achieved a linearly polarized reflected light with a polarization angle of -45°. Furthermore, we can tune the epsilon-near-zero wavelength of ITO at the vicinity of 1.55µm wavelength by increasing the bias to 5 V, which reducesy-component of the electric field to a negligible amplitude, thus, resulting in anx-polarized reflected light. Thus, with anx-polarized incident wave, we can dynamically switch among the three linear polarization states of the reflected wave, allowing a tri-state polarization switching (viz.y-polarization at 0 V, -45° linear polarization at 2 V, andx-polarization at 5 V). The Stokes parameters are also calculated to show a real-time control over light polarization. Thus, the proposed device paves the way toward the realization of dynamic polarization switching in nanophotonic applications.

4.
ACS Nano ; 17(10): 9361-9373, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37171993

RESUMEN

Large scale and low-cost nanopatterning of materials is of tremendous interest for optoelectronic devices. Nanoimprint lithography has emerged in recent years as a nanofabrication strategy that is high-throughput and has a resolution comparable to that of electron-beam lithography (EBL). It is enabled by pattern replication of an EBL master into polydimethylsiloxane (PDMS), that is then used to pattern a resist for further processing, or a sol-gel that could be calcinated into a solid material. Although the sol-gel chemistry offers a wide spectrum of material compositions, metals are still difficult to achieve. This gap could be bridged by using colloidal nanoparticles as resist, but deep understanding of the key parameters is still lacking. Here, we use supported metallic nanocubes as a model resist to gain fundamental insights into nanoparticle imprinting. We uncover the major role played by the surfactant layer trapped between nanocubes and substrate, and measure its thickness with subnanometer resolution by using gap plasmon spectroscopy as a metrology platform. This enables us to quantify the van der Waals (VDW) interactions responsible for the friction opposing the nanocube motion, and we find that these are almost in quantitative agreement with the Stokes drag acting on the nanocubes during nanoimprint, that is estimated with a simplified fluid mechanics model. These results reveal that a minimum thickness of surfactant is required, acting as a spacer layer mitigating van der Waals forces between nanocubes and the substrate. In the light of these findings we propose a general method for resist preparation to achieve optimal nanoparticle mobility and show the assembly of printable Ag and Au nanocube grids, that could enable the fabrication of low-cost transparent electrodes of high material quality upon nanocube epitaxy.

5.
Nano Lett ; 22(23): 9418-9423, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36449564

RESUMEN

Scanning tunneling microscope (STM)-induced luminescence provides an ideal platform for electrical generation and the atomic-scale manipulation of nonclassical states of light. However, despite its extreme importance in quantum technologies, squeezed light emission with reduced quantum fluctuations has hitherto not been demonstrated in such a platform. Here, we theoretically predict that the emitted light from the plasmon mode can be squeezed in an STM single molecular junction subject to an external laser drive. Going beyond the traditional paradigm that generates squeezing with the quadratic interaction of photons, our prediction explores the molecular coherence involved in an anharmonic energy spectrum of a coupled plasmon-molecule-exciton system. Furthermore, we show that, by selectively exciting the energy ladder, the squeezed plasmon can show either sub- or super-Poissonian statistical properties. We also demonstrate that, following the same principle, the molecular excitonic mode can be squeezed simultaneously.

6.
Adv Sci (Weinh) ; 9(27): e2201227, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35821385

RESUMEN

A broadband, high efficiency polarized beam splitter (PBS) metagrating based on integrated resonant units (IRUs) to enable simultaneous polarization analysis, spectral dispersion, and spatial imaging in the near infrared (NIR) is developed. A PBS metagrating with a diameter of 60 mm is the key technology component of the high-resolution multiple-species atmospheric profiler in the NIR (HiMAP-NIR), which is a spaceborne instrument concept crafted to be a core payload of NASA's new generation Earth System Observatory. HiMAP-NIR will enable the aerosol profiling in Earth's planetary boundary layer (from surface to2 km altitude) by simultaneously measuring four spatial-spectral-polarimetric images from 680 to 780 nm. Through detailed optimization of hybridized resonant modes in IRUs, the PBS metagrating shows a diffraction efficiency of 70% (or better) for all four linear-polarized incident light, and polarization contrasts between orthogonal states are 0.996 (or better) from 680 to 780 nm. It meets the stringent performance required by the HiMAP-NIR exploiting a new paradigm for the broad applications of metasurfaces.

7.
Nano Lett ; 22(6): 2177-2186, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35239344

RESUMEN

Strong exciton-plasmon interactions between layered two-dimensional (2D) semiconductors and gap plasmons show a great potential to implement cavity quantum electrodynamics under ambient conditions. However, achieving a robust plasmon-exciton coupling with nanocavities is still very challenging, because the layer area is usually small in the conventional approaches. Here, we report on a robust strong exciton-plasmon coupling between the gap mode of a bowtie and the excitons in MoS2 layers with gold-assisted mechanical exfoliation and nondestructive wet transfer techniques for a large-area layer. Due to the ultrasmall mode volume and strong in-plane field, the estimated effective exciton number contributing to the coupling is largely reduced. With a corrected exciton transition dipole moment, the exciton numbers are extracted as being 40 for the case of a single layer and 48 for eight layers. Our work paves the way to realize strong coupling with 2D materials with a small number of excitons at room temperature.

8.
Nano Lett ; 22(4): 1626-1632, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138860

RESUMEN

Dynamic tuning of metamaterials is a critical step toward advanced functionality and improved bandwidth. In the visible spectrum, full spectral color tuning is inhibited by the large absorption that accompanies index changes, particularly at blue wavelengths. Here, we show that the electrochemical lithiation of anatase TiO2 to Li0.5TiO2 (LTO) results in an index change of 0.65 at 649 nm with absorption coefficient less than 0.1 at blue wavelengths, making this material well-suited for dynamic visible color tuning. Dynamic tunability of TiO2 is leveraged in a Fabry-Perot cavity and a gap plasmon metasurface. In the Fabry-Perot configuration, the device exhibits a shift in reflectance of over 100 nm when subjected to only 2 V bias while the gap plasmon metasurface achieves enhanced switching speed. The dynamic range, speed, and cyclability indicate that the TiO2/LTO system is competitive with established actuators like WO3, with the additional advantage of reduced absorption at high frequencies.

9.
Nanotechnology ; 32(35)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34034240

RESUMEN

Plasmonic nanostructures are successfully demonstrated in solar cells due to their broad spectra-selective resonance in the range of ultraviolet to near-infrared, and thus light absorption can be mostly improved and power conversion efficiency (PCE) further. Here, we demonstrate plasmonic dye-sensitized solar cells (DSSCs) using collapsible Au nanofingers to build photoanode to enhance light absorption. In this plasmonic DSSCs, by balancing local field enhancement due to gap-plasmon resonance and dye fluorescence quenching, the optimal gap size in collapsed Au/Al2O3/Au nanofingers is designed by twice the Al2O3thickness and then deposited a TiO2layer as photoanode. The results show that the PCE of DSSCs is mostly improved as compared to DSSCs with photoanode of Au/Al2O3/TiO2films, which can be ascribed to the coupled local field enhancement within the sub-nanometer gaps. In addition, fluorescence of dyes on plasmonic nanofingers is nearly 10 times higher than plain Au/Al2O3/TiO2films, which further proves the dye absorption enhancement. These plasmonic nanofingers enable the precise engineering of gap-plasmon modes and can be scaled up to wafer scale with low cost by the nanoimprint lithography technique, which suggests the feasibility of applying our result in constructing the photoanode for other types of solar cells.

10.
Nano Lett ; 21(9): 3974-3980, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33881890

RESUMEN

We report highly emissive and radiatively cooled metallic surfaces that sustain multiple and high-amplitude gap plasmon cavity modes within the principal thermal radiation spectrum at room temperature (i.e., 8-13 µm). A square-lattice array of Cu/ZnS/Cu gap plasmon cavities with five different widths was designed to avoid the near-field coupling between adjacent cavities and the anticrossing of a cavity mode and the first diffraction mode. The gap plasmon cavities fabricated on a Si substrate exhibited an effective emissivity of >0.62, up to an incidence of 60°. Outdoor solar heating experiments showed that the Cu/ZnS/Cu multicavity array lowered the Si substrate temperature by 4 °C at a maximum solar irradiance of 800 W/m2, which is equivalent to a near-one-sun intensity, relative to a planar Cu/ZnS/Cu multilayer. Such mid-infrared spectrum management of metals enables heat dissipation via radiation, which will be further utilized for designing electrodes that cool optoelectronic devices with the same metal/dielectric/metal configuration.

11.
ACS Nano ; 14(9): 11670-11676, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32701270

RESUMEN

Lead halide perovskite materials have recently received considerable attention for achieving an economic and tunable laser owing to their solution-processable feature and promising optical properties. However, most reported perovskite-based lasers operate with a large lasing-mode volume, resulting in a high lasing threshold due to the inefficient coupling between the optical gain medium and cavity. Here, we demonstrate a continuous-wave nanolasing from a single lead halide perovskite (CsPbBr3) quantum dot (PQD) in a plasmonic gap-mode nanocavity with an ultralow threshold of 1.9 Wcm-2 under 120 K. The calculated ultrasmall mode volume (∼0.002 λ3) with a z-polarized dipole and the significantly large Purcell enhancement at the corner of the nanocavity inside the gap dramatically enhance the light-matter interaction in the nanocavity, thus facilitating lasing. The demonstration of PQD nanolasing with an ultralow-threshold provides an approach for realizing on-chip electrically driven lasing and integration into on-chip plasmonic circuitry for ultrafast optical communication and quantum information processing.

12.
Nano Lett ; 19(11): 8278-8286, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31650844

RESUMEN

Chemical characterization at the nanoscale is of significant importance for many applications in physics, analytical chemistry, material science, and biology. Despite the intensive studies in the infrared range, high-spatial-resolution and high-sensitivity imaging for compositional identification in the visible range is rarely exploited. In this work, we present a gap-plasmon-enhanced imaging approach based on photothermal-induced resonance (PTIR) for nanoscale chemical identification. With this approach, we experimentally obtained a high spatial resolution of ∼5 nm for rhodamine nanohill characterization and achieved monolayer sensitivity for mapping the single-layer chlorophyll-a islands with the thickness of only 1.9 nm. We also successfully characterized amyloid fibrils stained with methylene blue dye, indicating that this methodology can be also utilized for identification of the radiation-insensitive macromolecules. We believe that our proposed high-performance visible PTIR system can be used to broaden the applications of nanoscale chemical identification ranging from nanomaterial to life science areas.

13.
Nano Lett ; 19(11): 7988-7995, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31560552

RESUMEN

Plasmonic antennas and metasurfaces can effectively control light-matter interactions, and this facilitates a deterministic design of optical materials properties, including structural color. However, these optical properties are generally fixed after synthesis and fabrication, while many modern-day optics applications require active, low-power, and nonvolatile tuning. These needs have spurred broad research activities aimed at identifying materials and resonant structures capable of achieving large, dynamic changes in optical properties, especially in the challenging visible spectral range. In this work, we demonstrate dynamic tuning of polarization-dependent gap plasmon resonators that contain the electrochromic oxide WO3. Its refractive index in the visible changes continuously from n = 2.1 to 1.9 upon electrochemical lithium insertion and removal in a solid-state device. By incorporating WO3 into a gap plasmon resonator, the resonant wavelength can be shifted continuously and reversibly by up to 58 nm with less than 2 V electrochemical bias voltage. The resonator can remain in a tuned state for tens of minutes under open circuit conditions.

14.
Nano Lett ; 19(6): 3796-3803, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31067061

RESUMEN

The field of thermoplasmonics has thrived in the past decades because it uniquely provides remotely controllable nanometer-scale heat sources that have augmented numerous technologies. Despite the extensive studies on steady-state plasmonic heating, the dynamic behavior of the plasmonic heaters in the nanosecond regime has remained largely unexplored, yet such a time scale is indeed essential for a broad range of applications such as photocatalysis, optical modulators, and detectors. Here, we use two distinct techniques based on the temperature-dependent surface reflectivity of materials, optical thermoreflectance imaging (OTI) and time-domain thermoreflectance (TDTR), to comprehensively investigate plasmonic heating in both spatial and temporal domains. Specifically, OTI enables the rapid visualization of plasmonic heating with sub-micron resolution, outperforming a standard thermal camera, and allows us to establish the connection between the optical absorptance and heating efficiency as well as to analyze plasmonic heating dynamics on the millisecond scale. Using the TDTR technique, we, for the first time, study the optical resonance-dependent heat-transfer dynamics of a nanometer-scale plasmonic structure in the nanosecond regime and use a detailed computational model to extract the impulse response and thermal interface conductance of a multilayer plasmonic structure. The study reveals a quantitative relationship between the dimensions of the nanopatterned structure and its spatiotemporal thermal response to the light pulse excitation, a thermoplasmonic effect resulting from the spatial distribution of the absorbed electromagnetic energy. We also conclude that the two thermoreflectance techniques provide necessary feedback to nanoscale thermoplasmonic heat management, for which optimization in either heating power or temperature decay speed is needed.

15.
Nano Lett ; 19(5): 3238-3243, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31009229

RESUMEN

Plasmonic waveguides are key elements in nanophotonic devices, serving as optical interconnects between nanoscale light sources and detectors. Multimode operation in plasmonic two-wire transmission lines promises important degrees of freedom for near-field manipulation and information encoding. However, highly confined plasmon propagation along gold nanostructures is typically limited to the near-infrared region due to ohmic losses, excluding all visible quantum emitters from plasmonic circuitry. We report on the top-down fabrication of complex plasmonic nanostructures in single-crystalline silver plates. We demonstrate the controlled remote excitation of a small ensemble of fluorophores by a set of waveguide modes and the emission of the visible luminescence into the waveguide with high efficiency. This approach opens up the study of a nanoscale light-matter interaction between complex plasmonic waveguides and a large variety of quantum emitters available in the visible spectral range.

16.
Nano Lett ; 18(6): 3637-3642, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29763566

RESUMEN

We present optical trapping with a 10 nm gap resonant coaxial nanoaperture in a gold film. Large arrays of 600 resonant plasmonic coaxial nanoaperture traps are produced on a single chip via atomic layer lithography with each aperture tuned to match a 785 nm laser source. We show that these single coaxial apertures can act as efficient nanotweezers with a sharp potential well, capable of trapping 30 nm polystyrene nanoparticles and streptavidin molecules with a laser power as low as 4.7 mW. Furthermore, the resonant coaxial nanoaperture enables real-time label-free detection of the trapping events via simple transmission measurements. Our fabrication technique is scalable and reproducible, since the critical nanogap dimension is defined by atomic layer deposition. Thus our platform shows significant potential to push the limit of optical trapping technologies.

17.
ACS Nano ; 12(3): 2780-2788, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29498820

RESUMEN

Metal nanoparticles that can couple light into tightly confined surface plasmons bridge the size mismatch between the wavelength of light and nanostructures are one of the smallest building blocks of nano-optics. However, plasmonic nanoparticles have been primarily studied to concentrate or scatter incident light as an ultrasmall antenna, while studies of their intrinsic plasmonic light emission properties have been limited. Although light emission from plasmonic structures can be achieved by inelastic electron tunneling, this strategy cannot easily be applied to isolated single nanoparticles due to the difficulty in making electrical connections without disrupting the particle plasmon mode. Here, we solve this problem by placing gold nanoparticles on a graphene tunnel junction. The monolayer graphene provides a transparent counter electrode for tunneling while preserving the ultrasmall footprint and plasmonic mode of nanoparticle. The tunneling electrons excite the plasmonic mode, followed by radiative decay of the plasmon. We also demonstrate that a dielectric overlayer atop the graphene tunnel junction can be used to tune the light emission. We show the simplicity and scalability of this approach by achieving electroluminescence from single nanoparticles without bulky contacts as well as millimeter-sized arrays of nanoparticles.

18.
ACS Nano ; 12(2): 1720-1731, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29406752

RESUMEN

Directional optical nanoantennas are often realized by nanostructured systems with ingenious or complex designs. Herein we report on the realization of directional scattering of visible light from a simple configuration made of single Ag nanorods supported on Si substrates, where the incident light can be routed toward the two flanks of each nanorod. Such an intriguing far-field scattering behavior, which has not been investigated so far, is proved to result from the near-field coupling between high-aspect-ratio Ag nanorods and high-refractive-index Si substrates. A simple and intuitive model is proposed, where the complicated plasmon resonance is found to be equivalent to several vertically aligned electric dipoles oscillating in phase, to understand the far-field properties of the system. The interference among the electric dipoles results in wavefront reshaping and sidewise light routing in a similar manner to the broadside antenna described in the traditional antenna theory, allowing for the naming of these Si-supported Ag nanorods as "broadside nanoantennas". We have carried out comprehensive experiments to understand the physical origins behind and the affecting factors on the directional scattering behavior of such broadside nanoantennas.

19.
ACS Nano ; 12(2): 1859-1867, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29301073

RESUMEN

Monolayer two-dimensional transition-metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150 nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20 nm-wide gold trenches on flexible substrates, reporting ∼7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 104 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such a fully open, flat, and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

20.
Light Sci Appl ; 7: 17178, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839542

RESUMEN

Integration of multiple diversified functionalities into a single, planar and ultra-compact device has become an emerging research area with fascinating possibilities for realization of very dense integration and miniaturization in photonics that requires addressing formidable challenges, particularly for operation in the visible range. Here we design, fabricate and experimentally demonstrate bifunctional gap-plasmon metasurfaces for visible light, allowing for simultaneous polarization-controlled unidirectional surface plasmon polariton (SPP) excitation and beam steering at normal incidence. The designed bifunctional metasurfaces, consisting of anisotropic gap-plasmon resonator arrays, produce two different linear phase gradients along the same direction for respective linear polarizations of incident light, resulting in distinctly different functionalities realized by the same metasurface. The proof-of-concept fabricated metasurfaces exhibit efficient (>25% on average) unidirectional (extinction ratio >20 dB) SPP excitation within the wavelength range of 600-650 nm when illuminated with normally incident light polarized in the direction of the phase gradient. At the same time, broadband (580-700 nm) beam steering (30.6°-37.9°) is realized when normally incident light is polarized perpendicularly to the phase gradient direction. The bifunctional metasurfaces developed in this study can enable advanced research and applications related to other distinct functionalities for photonics integration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA