Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
2.
Hereditas ; 161(1): 11, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38454479

RESUMEN

BACKGROUND: Mutants have had a fundamental impact upon scientific and applied genetics. They have paved the way for the molecular and genomic era, and most of today's crop plants are derived from breeding programs involving mutagenic treatments. RESULTS: Barley (Hordeum vulgare L.) is one of the most widely grown cereals in the world and has a long history as a crop plant. Barley breeding started more than 100 years ago and large breeding programs have collected and generated a wide range of natural and induced mutants, which often were deposited in genebanks around the world. In recent years, an increased interest in genetic diversity has brought many historic mutants into focus because the collections are regarded as valuable resources for understanding the genetic control of barley biology and barley breeding. The increased interest has been fueled also by recent advances in genomic research, which provided new tools and possibilities to analyze and reveal the genetic diversity of mutant collections. CONCLUSION: Since detailed knowledge about phenotypic characters of the mutants is the key to success of genetic and genomic studies, we here provide a comprehensive description of mostly morphological barley mutants. The review is closely linked to the International Database for Barley Genes and Barley Genetic Stocks ( bgs.nordgen.org ) where further details and additional images of each mutant described in this review can be found.


Asunto(s)
Hordeum , Hordeum/genética , Fitomejoramiento , Mutagénesis , Genómica
3.
Front Plant Sci ; 15: 1358565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504883

RESUMEN

This breeding project, initiated at the United States Potato Genebank (USPG) in collaboration with Peruvian partners Instituto Nacional de Innovacion Agraria (INIA), International Potato Center, Peru (CIP), and local farmers, sought to enhance cold hardiness and frost tolerance in native potato cultivars in Peru. The Andes and Altiplano are often affected by frost, which causes significant reduction in yield; creating varieties with superior resilience is a critical undertaking. The goal was to transfer outstanding non-acclimated cold tolerance and acclimation capacity found in wild potato species Solanum commersonii (cmm). Breeding families segregating for cold hardiness were created using (a) a somatic hybrid cmm + haploid Solanum tuberosum (tbr) (cv. Superior, US variety from Wisconsin) as male and (b) seven cultivars native to Peru of the species S. tuberosum sbsp. andigenum (adg) as females. All plant materials were part of the USPG germplasm collection. Sexual seeds of each family were sent to Peru for evaluations under the natural conditions of the Andean highlands and Altiplano. The plants were assessed for their response to frost, and genotypes showing exceptional tolerance were selected. Plants were also evaluated for good tuber traits and yield. Initial planting involving ~2,500 seedlings in five locations resulted in selecting 58 genotypes with exceptional frost tolerance, good recovery capacity after frost, and good tuber traits. Over the years, evaluations continued and were expanded to replicated field trials in the harsher conditions of the Altiplano (Puno). All trials confirmed consistency of frost tolerance over time and location, tuber quality, and yield. After 8 years, two advanced clones were considered for cultivar release because of their exceptional frost tolerance and superior field productivity that outyielded many of the established cultivars in the region. In November 2018, a new native cultivar named Wiñay, a Quechua word meaning "to grow" was released in Peru. In 2022, a second cultivar followed with the name Llapanchispaq (meaning "for all of us"). This project evidenced that a multinational and all-encompassing approach to deploy valuable genetic diversity can work and deliver effective results. This is even more significant when outcomes can promote food security and sustainability in very vulnerable regions of the world.

5.
Annu Rev Plant Biol ; 75(1): 797-824, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38211950

RESUMEN

Progressive loss of plant diversity requires the protection of wild and agri-/horticultural species. For species whose seeds are extremely short-lived, or rarely or never produce seeds, or whose genetic makeup must be preserved, cryopreservation offers the only possibility for long-term conservation. At temperatures below freezing, most vegetative plant tissues suffer severe damage from ice crystal formation and require protection. In this review, we describe how increasing the concentration of cellular solutes by air drying or adding cryoprotectants, together with rapid cooling, results in a vitrified, highly viscous state in which cells can remain viable and be stored. On this basis, a range of dormant bud-freezing, slow-cooling, and (droplet-)vitrification protocols have been developed, but few are used to cryobank important agricultural/horticultural/timber and threatened species. To improve cryopreservation efficiency, the effects of cryoprotectants and molecular processes need to be understood and the costs for cryobanking reduced. However, overall, the long-term costs of cryopreservation are low, while the benefits are huge.


Asunto(s)
Criopreservación , Plantas , Criopreservación/métodos , Crioprotectores/farmacología , Biodiversidad , Vitrificación , Frío
6.
Plants (Basel) ; 12(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37836193

RESUMEN

Carotenoids are an abundant group of lipid-soluble antioxidants in maize kernels. Maize is a key target crop for carotenoid biofortification focused on using conventional plant breeding in native germplasm of temperate areas traced back partially to traditional cultivars (landraces). In this study, the objectives were to determine the variability of lutein (LUT), zeaxanthin (ZEA), α-cryptoxanthin (αCX), ß-cryptoxanthin (ßCX), α-carotene (αC), and ß-carotene (ßC) contents in the grain of 88 accessions of temperate maize from the Croatian genebank, and to evaluate the relationships among the contents of different carotenoids as well as the relationships between kernel color and hardness and carotenoid content. Highly significant variability among the 88 accessions was detected for all carotenoids. On average, the most abundant carotenoid was LUT with 13.2 µg g-1 followed by ZEA with 6.8 µg g-1 dry matter. A Principal Component Analysis revealed a clear distinction between α- (LUT, αCX, and αC) and ß-branch (ZEA; ßCX, and ßC) carotenoids. ß-branch carotenoids were positively correlated with kernel color, and weakly positively associated with kernel hardness. Our results suggest that some genebank accessions with a certain percentage of native germplasm may be a good source of carotenoid biofortification in Southeast Europe. However, due to the lack of association between LUT and ZEA, the breeding process could be cumbersome.

7.
Plants (Basel) ; 12(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37765458

RESUMEN

Onion (Allium cepa L.) is recognized globally as a crucial vegetable crop, prized not only for its culinary applications but also for its numerous health-promoting properties. With climate change relentlessly exerting mounting challenges to agriculture, the preservation and deployment of onion germplasm has become critical to ensuring sustainable agriculture and safeguarding food security. Global onion germplasm collections function as repositories of genetic diversity, holding within them an extensive array of valuable traits or genes. These can be harnessed to develop varieties resilient to climate adversities. Therefore, detailed information concerning onion germplasm collections from various geographical regions can bolster their utility. Furthermore, an amplified understanding of the importance of fostering international and inter-institutional collaborations becomes essential. Sharing and making use of onion genetic resources can provide viable solutions to the looming agricultural challenges of the future. In this review, we have discussed the preservation and worldwide distribution of onion germplasm, along with its implications for agricultural sustainability. We have also underscored the importance of international and interinstitutional collaboration in onion germplasm collecting and conservation for agricultural sustainability.

8.
Front Plant Sci ; 14: 1227656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701801

RESUMEN

Genome-wide prediction is a powerful tool in breeding. Initial results suggest that genome-wide approaches are also promising for enhancing the use of the genebank material: predicting the performance of plant genetic resources can unlock their hidden potential and fill the information gap in genebanks across the world and, hence, underpin prebreeding programs. As a proof of concept, we evaluated the power of across-genebank prediction for extensive germplasm collections relying on historical data on flowering/heading date, plant height, and thousand kernel weight of 9,344 barley (Hordeum vulgare L.) plant genetic resources from the German Federal Ex situ Genebank for Agricultural and Horticultural Crops (IPK) and of 1,089 accessions from the International Center for Agriculture Research in the Dry Areas (ICARDA) genebank. Based on prediction abilities for each trait, three scenarios for predictive characterization were compared: 1) a benchmark scenario, where test and training sets only contain ICARDA accessions, 2) across-genebank predictions using IPK as training and ICARDA as test set, and 3) integrated genebank predictions that include IPK with 30% of ICARDA accessions as a training set to predict the rest of ICARDA accessions. Within the population of ICARDA accessions, prediction abilities were low to moderate, which was presumably caused by a limited number of accessions used to train the model. Interestingly, ICARDA prediction abilities were boosted up to ninefold by using training sets composed of IPK plus 30% of ICARDA accessions. Pervasive genotype × environment interactions (GEIs) can become a potential obstacle to train robust genome-wide prediction models across genebanks. This suggests that the potential adverse effect of GEI on prediction ability was counterbalanced by the augmented training set with certain connectivity to the test set. Therefore, across-genebank predictions hold the promise to improve the curation of the world's genebank collections and contribute significantly to the long-term development of traditional genebanks toward biodigital resource centers.

9.
Biology (Basel) ; 12(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37626957

RESUMEN

Conservation at cryogenic temperatures, usually in liquid nitrogen (LN) or in its vapor, is the only reliable method for the long-term ex situ conservation of fruit and berry crops with vegetative reproduction. In this study, five bird cherry (Padus Mill.) varieties of different genetic origin from the bird cherry genebank at the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR, Russia) were tested for their response to cryopreservation in LN vapor (-183--185 °C). The response included viability under laboratory and field conditions, morphological assessment of the developed plants and biochemical analysis of fruits produced during three consecutive years by plants developed from cryopreserved cuttings. All parameters were compared to those recorded after cold storage of cuttings (-5 °C), a routine mid-term conservation method currently used at the VIR genebank. The initial viability of winter cuttings varied from 86.7% to 93.3%. Six-month cold storage and cryopreservation reduced viability to 53.3-86.7% and 43.3-60.0%, respectively, which was above the 40% viability threshold in all varieties tested. Cuttings after cold storage showed better viability when recovered in the laboratory (80% mean viability) than in the field (58% mean viability); viability of cryopreserved cuttings was not affected by recovery conditions. The results of a two-way analysis of covariance suggested that storage and recovery conditions had the most significant effect on viability (p < 0.0001), while the effects of genotype (p = 0.062) and factor interactions (p = 0.921) were minor. Cryopreservation had little or no influence on morphological parameters of the plants recovered in the field, including plant height, number of shoots, internodes and roots, and root length. Similarly, no effect of cryopreservation was recorded on dry matter content, total sugar content and ascorbic acid concentration in fruits produced by plants developed from the cryopreserved cuttings. These results suggest that cryopreservation in LN vapor is a reliable method for conservation of the bird cherry genetic collection and is worth testing with a broader variety of genotypes.

10.
Front Plant Sci ; 14: 1220134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575920

RESUMEN

The past decade has seen an observable loss of plant biodiversity which can be attributed to changing climate conditions, destroying ecosystems to create farmlands and continuous selective breeding for limited traits. This loss of biodiversity poses a significant bottleneck to plant biologists across the globe working on sustainable solutions to address the current barriers of agricultural productivity. Plant genetic resources centers or genebanks that conserve plant germplasm can majorly contribute towards addressing this problem. Second only to soybean, Brassica remains the largest oil-seed crop and is cultivated across 124 countries, and FAO estimates for a combined gross production values of broccoli, cabbages, cauliflower, mustard and rape seeds stands at a staggering 67.5 billion US dollars during the year 2020. With such a global status, wide variety of uses and more recently, growing importance in the health food sector, the conservation of diverse genetic resources of Brassica appeals for higher priority. Here we review the current status of Brassica conservation across plant genebanks. At present, at least 81,752 accessions of Brassica are recorded to be conserved in 148 holding institutes spread across only 81 countries. Several aspects that need to be addressed to improve proper conservation of the Brassica diversity was well as dissemination of germplasm are discussed. Primarily, the number of accessions conserved across countries and the diversity of Brassica taxa most countries has been highly limited which may lead to biodiversity loss in the longer run. Moreover, several practical challenges in Brassica germplasm conservation especially with respect to taxonomic authorities have been discussed. The current review identifies and highlights areas for progress in Brassica conservation, which include but are not limited to, distribution of conserved Brassica biodiversity, challenges faced by conservation biologists, conservation methods, technical hurdles and future avenues for research in diverse Brassica species.

11.
Plants (Basel) ; 12(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570979

RESUMEN

The National Agrobiodiversity Center under the Rural Development Administration (RDA) in Jeonju, Republic of Korea stands as the foremost national genebank in the country. Over the years, the National Agrobiodiversity Center has remained committed to enriching its collection with foreign genetic resources, elevating its status to a world-class plant genetic resources (PGR)- holding genebank. Currently, several steps are being undertaken to improve the accessibility of the collection to national as well as international researchers, improve the data available on the resources, and amend the passport information for the accessions. With the implementation of the Nagoya Protocol, the origin of genetic resources is being highlighted as an important input in the passport information. The RDA-Genebank actively responds to the Nagoya Protocol by supplementing passport data for resources lacking information on their origin. In addition, a large number of conserved resources are continuously multiplied, and agronomic traits are investigated concurrently. With the traditional methods of characterization of the germplasm requiring a significant amount of time and effort, we have initiated high-throughput phenotyping using digital techniques to improve our germplasm data. Primarily, we have started adding seed phenotype information followed by measuring root phenotypes which are stored under agronomic traits. This may be the initial step toward using largescale high-throughput techniques for a germplasm. In this study, we aim to provide an introduction to the RDA-Genebank, to adopted international standards, and to the establishment of high-throughput phenotyping techniques for the improvement of passport information.

12.
Plant Biotechnol J ; 21(12): 2426-2432, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37549196

RESUMEN

Professor Andreas Graner stands as a towering figure in international crop plant genomics research, leaving an indelible imprint on the field over the past four decades. As we commemorate the 80th anniversary of Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany and Professor Graner's retirement in September 2023, here we celebrate and acknowledge his profound impact on crop genome analyses and genebank genomics. His trailblazing work extends from developing the first integrated RFLP map of barley, establishing the foundation of barley genome sequencing, and advancing functional genomics of malting quality, to pioneering the use of high-throughput phenomics. As the dedicated custodian of Germany's largest ex situ genebank at IPK Gatersleben, Professor Graner has fortified the institution's collection management and crop research, thereby contributing significantly to global efforts on conservation and utilization of plant genetic resources through genomics approaches. Alongside his impressive array of scientific achievements, Professor Graner's inspiring mentorship has nurtured a new generation of scientists, including us, leaving a lasting legacy in the field. This tribute underscores his enduring influence and celebrates his unwavering dedication to the scientific community.


Asunto(s)
Productos Agrícolas , Fitomejoramiento , Productos Agrícolas/genética , Genoma de Planta/genética , Genómica
13.
Front Nutr ; 10: 1165580, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324736

RESUMEN

Linseed or flaxseed is a well-recognized nutritional food with nutraceutical properties owing to high omega-3 fatty acid (α-Linolenic acid), dietary fiber, quality protein, and lignan content. Currently, linseed enjoys the status of a 'superfood' and its integration in the food chain as a functional food is evolving continuously as seed constituents are associated with lowering the risk of chronic ailments, such as heart diseases, cancer, diabetes, and rheumatoid arthritis. This crop also receives much attention in the handloom and textile sectors as the world's coolest fabric linen is made up of its stem fibers which are endowed with unique qualities such as luster, tensile strength, density, bio-degradability, and non-hazardous nature. Worldwide, major linseed growing areas are facing erratic rainfall and temperature patterns affecting flax yield, quality, and response to biotic stresses. Amid such changing climatic regimes and associated future threats, diverse linseed genetic resources would be crucial for developing cultivars with a broad genetic base for sustainable production. Furthermore, linseed is grown across the world in varied agro-climatic conditions; therefore it is vital to develop niche-specific cultivars to cater to diverse needs and keep pace with rising demands globally. Linseed genetic diversity conserved in global genebanks in the form of germplasm collection from natural diversity rich areas is expected to harbor genetic variants and thus form crucial resources for breeding tailored crops to specific culinary and industrial uses. Global genebank collections thus potentially play an important role in supporting sustainable agriculture and food security. Currently, approximately 61,000 germplasm accessions of linseed including 1,127 wild accessions are conserved in genebanks/institutes worldwide. This review analyzes the current status of Linum genetic resources in global genebanks, evaluation for agro-morphological traits, stress tolerance, and nutritional profiling to promote their effective use for sustainable production and nutrition enhancement in our modern diets.

14.
Foods ; 12(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37372611

RESUMEN

The aim of this study was to analyze glucosinolates (GSLs) in germplasm that are currently conserved at the RDA-Genebank. The analysis focused on the glucosinolate diversity among the analyzed germplasms, with the goal of identifying those that would be most useful for future breeding efforts to produce nutritionally rich Choy sum plants. In total, 23 accessions of Choy sums that possessed ample background passport information were selected. On analyzing the glucosinolate content for 17 different glucosinolates, we observed aliphatic GSLs to be the most common (89.45%) and aromatic GSLs to be the least common (6.94%) of the total glucosinolates detected. Among the highly represented aliphatic GSLs, gluconapin and glucobrassicanapin were found to contribute the most (>20%), and sinalbin, glucoraphanin, glucoraphasatin, and glucoiberin were detected the least (less than 0.05%). We identified one of the accessions, IT228140, to synthesize high quantities of glucobrassicanapin and progoitrin, which have been reported to contain several therapeutic applications. These conserved germplasms are potential bioresources for breeders, and the availability of information, including therapeutically important glucosinolate content, can help produce plant varieties that can naturally impact public health.

15.
Plant Commun ; 4(3): 100549, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-36642955

RESUMEN

Wheat (Triticum aestivum) is among the most important staple crops for safeguarding the food security of the growing world population. To bridge the gap between genebank diversity and breeding programs, we developed an advanced backcross-nested association mapping plus inter-crossed population (AB-NAMIC) by crossing three popular wheat cultivars as recurrent founders to 20 germplasm lines from a mini core collection. Selective backcrossing combined with selection against undesirable traits and extensive crossing within and between sub-populations created new opportunities to detect unknown genes and increase the frequency of beneficial alleles in the AB-NAMIC population. We performed phenotyping of 590 AB-NAMIC lines and a natural panel of 476 cultivars for six consecutive growing seasons and genotyped these 1066 lines with a 660K SNP array. Genome-wide association studies of both panels for plant development and yield traits demonstrated improved power to detect rare alleles and loci with medium genetic effects in AB-NAMIC. Notably, genome-wide association studies in AB-NAMIC detected the candidate gene TaSWEET6-7B (TraesCS7B03G1216700), which has high homology to the rice SWEET6b gene and exerts strong effects on adaptation and yield traits. The commercial release of two derived AB-NAMIC lines attests to its direct applicability in wheat improvement. Valuable information on genome-wide association study mapping, candidate genes, and their haplotypes for breeding traits are available through WheatGAB. Our research provides an excellent framework for fast-tracking exploration and accumulation of beneficial alleles stored in genebanks.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Alelos , Triticum/genética , Fitomejoramiento , Aclimatación
16.
Front Plant Sci ; 14: 1270298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38273944

RESUMEN

Globally, wheat (Triticum aestivum L.) is a major source of proteins in human nutrition despite its unbalanced amino acid composition. The low lysine content in the protein fraction of wheat can lead to protein-energy-malnutrition prominently in developing countries. A promising strategy to overcome this problem is to breed varieties which combine high protein content with high lysine content. Nevertheless, this requires the incorporation of yet undefined donor genotypes into pre-breeding programs. Genebank collections are suspected to harbor the needed genetic diversity. In the 1970s, a large-scale screening of protein traits was conducted for the wheat genebank collection in Gatersleben; however, this data has been poorly mined so far. In the present study, a large historical dataset on protein content and lysine content of 4,971 accessions was curated, strictly corrected for outliers as well as for unreplicated data and consolidated as the corresponding adjusted entry means. Four genomic prediction approaches were compared based on the ability to accurately predict the traits of interest. High-quality phenotypic data of 558 accessions was leveraged by engaging the best performing prediction model, namely EG-BLUP. Finally, this publication incorporates predicted phenotypes of 7,651 accessions of the winter wheat collection. Five accessions were proposed as donor genotypes due to the combination of outstanding high protein content as well as lysine content. Further investigation of the passport data suggested an association of the adjusted lysine content with the elevation of the collecting site. This publicly available information can facilitate future pre-breeding activities.

17.
Front Plant Sci ; 14: 1338377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38304449

RESUMEN

Crop diversity conserved in genebanks facilitates the development of superior varieties, improving yields, nutrition, adaptation to climate change and resilience against pests and diseases. Cassava (Manihot esculenta) plays a vital role in providing carbohydrates to approximately 500 million people in Africa and other continents. The International Center for Tropical Agriculture (CIAT) conserves the largest global cassava collection, housing 5,963 accessions of cultivated cassava and wild relatives within its genebank. Efficient genebank management requires identifying and eliminating genetic redundancy within collections. In this study, we optimized the identification of genetic redundancy in CIAT's cassava genebank, applying empirical distance thresholds, and using two types of molecular markers (single-nucleotide polymorphism (SNP) and SilicoDArT) on 5,302 Manihot esculenta accessions. A series of quality filters were applied to select the most informative and high-quality markers and to exclude low-quality DNA samples. The analysis identified a total of 2,518 and 2,526 (47 percent) distinct genotypes represented by 1 to 87 accessions each, using SNP or SilicoDArT markers, respectively. A total of 2,776 (SNP) and 2,785 (SilicoDArT) accessions were part of accession clusters with up to 87 accessions. Comparing passport and historical characterization data, such as pulp color and leaf characteristic, we reviewed clusters of genetically redundant accessions. This study provides valuable guidance to genebank curators in defining minimum genetic-distance thresholds to assess redundancy within collections. It aids in identifying a subset of genetically distinct accessions, prioritizing collection management activities such as cryopreservation and provides insights for follow-up studies in the field, potentially leading to removal of duplicate accessions.

18.
Biosci. j. (Online) ; 39: e39020, 2023. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1415915

RESUMEN

The cocoa and chocolate production chain involves US$60 billion annually and three million farmers around the world, in an area exceeding nine million hectares. The use of wild germplasm will enable to generate new disease- and pest-resistant cultivars and ability to adapt to changing environments. Here we evaluated 145 cocoa accessions, originated from nine Amazonian basins, based on eight fruit traits. Univariate anova showed significant differences (p<0.05) for all traits. For seven traits, the variance component within basins was higher (81.5%, on average). Therefore, it is recommended that the collection of wild accessions prioritize a larger number of plants from a few populations of the most divergent basins. The multivariate analyses revealed a greater divergence between the Ji-Paraná-RO and Solimões/Amazonas-PA basins (27.69) and a greater similarity between Alien clones-PER and Solimões/Amazonas-AM (0.66) in relation to their populations. They also revealed that the accessions differentiation occurred according to the river basin system. These results allowed elucidate the genetic structure and distribution of cacao populations. In addition, strengthen the importance of collecting and conserving germplasm to preserve genetic resources.


Asunto(s)
Variación Genética , Cacao , Cuencas Hidrográficas , Ecosistema Amazónico , Banco de Semillas
19.
Plant J ; 112(4): 897-918, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36073999

RESUMEN

Breeding has increasingly altered the genetics of crop plants since the domestication of their wild progenitors. It is postulated that the genetic diversity of elite wheat breeding pools is too narrow to cope with future challenges. In contrast, plant genetic resources (PGRs) of wheat stored in genebanks are valuable sources of unexploited genetic diversity. Therefore, to ensure breeding progress in the future, it is of prime importance to identify the useful allelic diversity available in PGRs and to transfer it into elite breeding pools. Here, a diverse collection consisting of modern winter wheat cultivars and genebank accessions was investigated based on reduced-representation genomic sequencing and an iSelect single nucleotide polymorphism (SNP) chip array. Analyses of these datasets provided detailed insights into population structure, levels of genetic diversity, sources of new allelic diversity, and genomic regions affected by breeding activities. We identified 57 regions representing genomic signatures of selection and 827 regions representing private alleles associated exclusively with genebank accessions. The presence of known functional wheat genes, quantitative trait loci, and large chromosomal modifications, i.e., introgressions from wheat wild relatives, provided initial evidence for putative traits associated within these identified regions. These findings were supported by the results of ontology enrichment analyses. The results reported here will stimulate further research and promote breeding in the future by allowing for the targeted introduction of novel allelic diversity into elite wheat breeding pools.


Asunto(s)
Pan , Triticum , Triticum/genética , Alelos , Fitomejoramiento , Genoma de Planta/genética , Polimorfismo de Nucleótido Simple/genética
20.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36040109

RESUMEN

Maintaining duplicate germplasms in genebanks hampers effective conservation and utilization of genebank resources. The redundant germplasm adds to the cost of germplasm conservation by requiring a large proportion of the genebank financial resources towards conservation rather than enriching the diversity. Besides, genome-wide-association analysis using an association panel with over-represented germplasms can be biased resulting in spurious marker-trait associations. The conventional methods of germplasm duplicate removal using passport information suffer from incomplete or missing passport information and data handling errors at various stages of germplasm enrichment. This limitation is less likely in the case of genotypic data. Therefore, we developed a web-based tool, Germplasm Duplicate Identification and Removal Tool (G-DIRT), which allows germplasm duplicate identification based on identity-by-state analysis using single-nucleotide polymorphism genotyping information along with pre-processing of genotypic data. A homozygous genotypic difference threshold of 0.1% for germplasm duplicates has been determined using tetraploid wheat genotypic data with 94.97% of accuracy. Based on the genotypic difference, the tool also builds a dendrogram that can visually depict the relationship between genotypes. To overcome the constraint of high-dimensional genotypic data, an offline version of G-DIRT in the interface of R has also been developed. The G-DIRT is expected to help genebank curators, breeders and other researchers across the world in identifying germplasm duplicates from the global genebank collections by only using the easily sharable genotypic data instead of physically exchanging the seeds or propagating materials. The web server will complement the existing methods of germplasm duplicate identification based on passport or phenotypic information being freely accessible at http://webtools.nbpgr.ernet.in/gdirt/.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Genotipo , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA