Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Med Rep ; 30(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39301652

RESUMEN

Ginkgolic acid (GA), isolated from the leaves and seed coats of Ginkgo biloba, exerts several biological effects, including antitumor, antibacterial, anti­HIV and anti­inflammatory effects. However, the effects of GA on C2C12 myoblasts remain unclear. The present study assessed cell viability with the MTT assay and evaluated colony formation through crystal violet staining. Flow cytometry was used to analyze apoptosis with Annexin V/7­AAD staining, proliferation with Ki67 staining and cell cycle arrest. Western blotting detected myogenic markers and other relevant proteins. Myotube formation was examined by immunofluorescence, and autophagy was measured using an LC3 antibody­based kit via flow cytometry. The present study showed that treatment of C2C12 cells with GA significantly inhibited their viability and colony formation capacity but did not trigger apoptosis, as indicated by Annexin V/7­AAD staining. However, Ki67 staining indicates that GA exerted dose­dependent antiproliferative effects. Further analysis revealed that GA partially inhibited the growth of C2C12 cells via cell cycle arrest in S phase, highlighting its role in the disruption of cell proliferation. Furthermore, treatment with GA impaired myoblast differentiation, as evidenced by a reduction in the expression of the myogenesis markers, the myosin­heavy chain, myoblast determination protein 1 and myogenin, and suppressed myotube formation. Notably, during C2C12 cell differentiation, GA promoted apoptosis without affecting cell cycle progression or Ki67 expression. Mechanistically, GA could suppress nuclear extracellular signal­regulated kinase phosphorylation, suggesting that it modulates cell proliferation pathways. Moreover, GA triggered autophagy in differentiated C2C12 cells, as confirmed by elevated LC3 II levels. These findings highlight the multifaceted effects of GA on C2C12 cells.


Asunto(s)
Apoptosis , Autofagia , Diferenciación Celular , Proliferación Celular , Desarrollo de Músculos , Mioblastos , Salicilatos , Animales , Diferenciación Celular/efectos de los fármacos , Ratones , Mioblastos/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/citología , Proliferación Celular/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Línea Celular , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Salicilatos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
2.
Front Microbiol ; 15: 1426603, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234551

RESUMEN

The successful evolution of KPC-2 in bacteria has limited the clinical practice of carbapenems. This dilemma deteriorated the prognosis of associated infections and hence attracted increasing attention from researchers to explore alternative therapeutic options. Here, the enzyme inhibition assay was first performed to screen for a potent KPC-2 inhibitor. The synergistic effect of the candidate with carbapenems was further confirmed by checkboard minimum inhibitory concentration (MIC) assay, time-killing assay, disk diffusion method, and live/dead bacteria staining analysis. The mechanisms by which the candidate acts were subsequently explored through molecular dynamics (MD) simulations, etc. Our study found that Ginkgolic Acid (C13:0) (GA) exhibited effective KPC-2 inhibitory activity in both laboratory strain and clinical strain containing KPC-2. It could potentiate the killing effect of carbapenems on KPC-2-positive Klebsiella pnenmoniae (K. pnenmoniae). Further explorations revealed that GA could competitively bind to the active pocket of KPC-2 with meropenem (MEM) via residues Trp104, Gly235, and Leu166. The secondary structure and functional groups of KPC-2 were subsequently altered, which may be the main mechanism by which GA exerted its KPC-2 inhibitory effect. In addition, GA was also found to synergize with MEM to disrupt membrane integrity and increase membrane permeability, which may be another mechanism by which GA reinforced the bactericidal ability of carbapenems. Our study indicated that GA was a significant KPC-2 inhibitor that could prolong the lifespan of carbapenems and improve the prognosis of patients.

3.
J Sep Sci ; 47(13): e2400234, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39005007

RESUMEN

In this study, we employed a combination approach for the preparative separation of constituents from Ginkgo biloba L. leaves. It involved multi-stage solvent extractions utilizing two-phase multi-solvent systems and countercurrent chromatography (CCC) separations using three different solvent systems. The n-heptane/ethyl acetate/water (1:1:2, v/v) and n-heptane/ethyl acetate/methanol/water (HepEMWat, 7:3:7:3, v/v) solvent systems were screened out as extraction systems. The polarities of the upper and lower phases in the multi-solvent systems were adjustable, enabling the effectively segmented separation of complex constituents in G. biloba L. The segmented products were subsequently directly utilized as samples and separated using CCC with the solvent systems acetate/n-butanol/water (4:1:5, v/v), HepEMWat (5:5:5:5, v/v), and HepEMWat (9:1:9:1, v/v), respectively. As a result, a total of 11 compounds were successfully isolated and identified from a 2 g methanol extract of G. biloba L through two-stage extraction and three CCC separation processes; among them, nine compounds exhibited high-performance liquid chromatography purity exceeding 85%.


Asunto(s)
Distribución en Contracorriente , Ginkgo biloba , Extractos Vegetales , Hojas de la Planta , Solventes , Ginkgo biloba/química , Solventes/química , Hojas de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Agua/química , Metanol/química , Acetatos/química , Extracto de Ginkgo
4.
Phytomedicine ; 126: 155148, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387271

RESUMEN

BACKGROUND: Finding a drug for early intervention in the hepatic fibrosis process has important clinical significance. Previous studies have suggested SUMOylation as a potential target for intervention in hepatic fibrosis. However, the role of SAE1, a marker of SUMOylation, in hepatic fibrosis is unknown. Additionally, whether ginkgolic acid (GA), a SUMOylation inhibitor, inhibits hepatic fibrosis by inhibiting SUMO1-activating enzyme subunit 1 (SAE1) should be further investigated. METHODS: Liver tissues of patients with hepatic cirrhosis and a rat model of hepatic fibrosis constructed with CCl4 (400 mg/kg, twice weekly) or TAA (200 mg/kg, twice weekly) were selected, and the degree of hepatic fibrosis was then evaluated using H&E, Sirius red, and Masson's trichrome staining. After knockdown or overexpression of SAE1 in hepatic stellate cells, the expression levels of ferroptosis and hepatic fibrosis markers were measured in vitro. After intervention with a ferroptosis inhibitor, the expression levels were again measured in vivo and in vitro. RESULTS: We first demonstrated that SAE1 increased in patients with hepatic cirrhosis. Subsequently, testing of the rat hepatic fibrosis model confirmed that GA reduced the expression of SAE1 and improved hepatic fibrosis in rats. Then, we used hepatic stellate cell lines to confirm in vitro that GA inhibited SAE1 expression and induced ferroptosis, and that overexpression of SAE1 or inhibition of ferroptosis reversed this process. Finally, we confirmed in vivo that GA induced ferroptosis and alleviated the progression of hepatic fibrosis, while inhibiting ferroptosis also reversed the progression of hepatic fibrosis in rats. CONCLUSION: SAE1 is a potential anti-fibrotic target protein, and GA induces ferroptosis of hepatic stellate cells by targeting SAE1 to exert an anti-hepatic fibrosis effect, which lays an experimental foundation for the future clinical application of its anti-hepatic fibrosis effect.


Asunto(s)
Ferroptosis , Salicilatos , Humanos , Ratas , Animales , Transducción de Señal , Cirrosis Hepática/metabolismo , Hígado , Células Estrelladas Hepáticas , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/farmacología
5.
Molecules ; 29(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38338410

RESUMEN

Ellagic acid, known for its various biological activities, is widely used. Ellagic acid from pomegranate peels is safe for consumption, while that from gallnuts is only suitable for external use. However, there is currently no effective method to confirm the source of ellagic acid. Therefore, this study establishes an analysis method using ultra-high-performance liquid chromatography-electrospray ionization-high-resolution mass spectrometry (UHPLC-ESI-HR-MS) to identify the components of crude ellagic acid extracts from pomegranate peels and gallnuts. The analysis revealed that there was a mix of components in the crude extracts, such as ellagic acid, palmitic acid, oleic acid, stearic acid, and 9(10)-EpODE. Furthermore, it could be observed that ellagic acid extracted from gallnuts contained toxic substances such as anacardic acid and ginkgolic acid (15:1). These components could be used to effectively distinguish the origin of ellagic acid from pomegranate peels or gallnuts. Additionally, a rapid quantitative analysis method using UHPLC-ESI-MS with multiple reaction monitoring (MRM) mode was developed for the quality control of ellagic acid products, by quantifying anacardic acid and ginkgolic acid (15:1). It was found that one of three ellagic acid health care products contained ginkgolic acid (C15:1) and anacardic acid at more than 1 ppm.


Asunto(s)
Ácidos Anacárdicos , Granada (Fruta) , Salicilatos , Espectrometría de Masa por Ionización de Electrospray/métodos , Extractos Vegetales/química , Ácido Elágico/química , Cromatografía Líquida de Alta Presión/métodos
6.
Res Vet Sci ; 164: 105033, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804663

RESUMEN

Pseudorabies virus (PRV) belongs to the species of alphaherpesvirus that can cause substantial economic losses to the world swine industry. Therefore, research on anti-PRV compounds is of great value. In this study, it was found that ginkgolic acid could efficiently inhibit the replication of PRV, and the IC50 and CC50 were 3.407 µM and 102.3 µM, respectively. Moreover, it was discovered that ginkgolic acid had no effect on the adsorption, entry, and release stages of the PRV replication cycle. Importantly, it was found that ginkgolic acid could significantly suppress the transcription of PRV late genes, while the transcription of viral immediate early and early genes was not affected. Finally, in vivo experiments showed that ginkgolic acid could significantly reduce the viral load of PRV in multiple tissues and increase 30% survival rate of mice upon the challenge of PRV. Taken together, a novel PRV replication inhibitor, ginkgolic acid, which worked through suppressing the transcription of the late genes, was found in this study. This study provides a potential therapy method for the infection of PRV.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Ratones , Animales , Porcinos , Herpesvirus Suido 1/genética , Genes Virales , Replicación Viral
7.
ACS Infect Dis ; 9(10): 1867-1877, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37696007

RESUMEN

Streptococcus agalactiae is the major cause of invasive neonatal infections and is a recognized pathogen associated with various diseases in nonpregnant adults. The emergence and spread of antibiotic-resistant S. agalactiae necessitate the development of a novel antibacterial agent. Here, the potential antibacterial activities and mechanisms of ginkgolic acid C15:1 (GA (15:1)) from Ginkgo biloba against clinical S. agalactiae are characterized. The MIC50 and MIC90 values for GA (15:1) against 72 clinical S. agalactiae isolates were 6.25 and 12.5 µM, respectively. GA (15:1) showed a strong bactericidal effect against both planktonic bacteria and bacteria embedded in biofilms as well as significant effectiveness in suppressing the growth of S. agalactiae biofilms. Moreover, GA (15:1) possesses intracellular antibacterial activity and could significantly decrease the bacterial burden in the intraperitoneal infection model of S. agalactiae. Mechanistic studies showed that GA (15:1) triggers membrane damage of S. agalactiae through a unique dual-targeting mechanism of action (MoA). First, GA (15:1) targets phospholipids in the bacterial cytoplasmic membrane. Second, by using mass-spectrometry-based drug affinity responsive target stability (DARTS) and molecular docking, lipoprotein signaling peptidase II (lspA) was identified as a target protein of GA (15:1), whose role is crucial for maintaining bacterial membrane depolarization and permeabilization. Our findings suggest a potential therapeutic strategy for developing GA (15:1) to combat S. agalactiae infections.


Asunto(s)
Antibacterianos , Streptococcus agalactiae , Humanos , Adulto , Recién Nacido , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Salicilatos/farmacología , Bacterias
8.
Int J Biol Macromol ; 226: 780-792, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36521705

RESUMEN

Targeting the interaction between the spike protein receptor binding domain (S-RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and angiotensin-converting enzyme 2 (ACE2) is a potential therapeutic strategy for treating coronavirus disease 2019 (COVID-19). However, we still lack small-molecule drug candidates for this target due to the missing knowledge in the hot spots for the protein-protein interaction. Here, we used NanoBiT technology to identify three Ginkgolic acids from an in-house traditional Chinese medicine (TCM) library, and they interfere with the S-RBD/ACE2 interplay. Our pseudovirus assay showed that one of the compounds, Ginkgolic acid C17:1 (GA171), significantly inhibits the entry of original SARS-CoV-2 and its variants into the ACE2-overexpressed HEK293T cells. We investigated and proposed the binding sites of GA171 on S-RBD by combining molecular docking and molecular dynamics simulations. Site-directed mutagenesis and surface plasmon resonance revealed that GA171 specifically binds to the pocket near R403 and Y505, critical residues of S-RBD for S-RBD interacting with ACE2. Thus, we provide structural insights into developing new small-molecule inhibitors and vaccines against the proposed S-RBD binding site.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , Células HEK293 , Simulación del Acoplamiento Molecular , Glicoproteína de la Espiga del Coronavirus/genética , Simulación de Dinámica Molecular , Unión Proteica
9.
Life Sci ; 311(Pt B): 121174, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36396110

RESUMEN

AIMS: Glioblastoma (GBM) with aggressive nature and poor prognosis has become the most common intracranial tumor. Most clinical chemotherapeutic drugs fail to achieve the anticipated therapeutic outcome. This study identified the anti-GBM effects of ginkgolic acids (GAs) and elucidated the potential molecular mechanisms, exploiting the significant antitumor effects of GAs, which are widely present in the outer bark of Ginkgo biloba. MATERIALS AND METHODS: Two GBM cell lines, U251 and T98G, were selected for in vitro experiments to evaluate the antitumor effects of GA. Cell viability and proliferation were examined by MTT and colony formation assay. The effect of GA on apoptosis and the cell cycle was examined by flow cytometry. Scratch and Transwell assays reflected the migration and invasion ability. The molecular mechanisms were explored by using immunoblot analysis, RNA sequencing and bioinformatics. In the nude mouse transplantation tumor model, preclinical treatment effects were assessed by ultrasound and MRI. KEY FINDINGS: The present study showed that GA inhibited the proliferation, migration, invasion, stemness, epithelial-to-mesenchymal transition (EMT) of GBM cells and induced apoptosis by inhibiting CCL2, affecting the JAK-STAT and PI3K-AKT signaling pathways, and inhibiting the EMT regulators Snail and Slug. Finally, GA showed significant control of tumors in a GBM xenograft model. SIGNIFICANCE: GA inhibits the progression of GBM cells by targeting CCL2, affecting the JAK-STAT and PI3K-AKT signaling pathways, and inhibiting the EMT regulators Snail and Slug. The outstanding antitumor properties of GA provide a novel strategy for the GBM therapy.


Asunto(s)
Glioblastoma , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Movimiento Celular , Proliferación Celular , Línea Celular Tumoral , Glioblastoma/metabolismo , Transducción de Señal , Janus Quinasa 3/metabolismo , Factor de Transcripción STAT1/metabolismo , Quimiocina CCL2/metabolismo
10.
Microb Pathog ; 173(Pt A): 105813, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36202349

RESUMEN

To complete the investigation of the bacterial inhibitory activity of ginkgolic acid (GA), the quorum sensing activity of GA was investigated to assess the potential of ginkgo biloba exocarp for the production of quorum sensing inhibitor. The effect of GA (C15:1) on the growth and secondary metabolism of p. aeruginosa PAO1 were tested. The results showed that GA (C15:1) had no effect on the growth of p. aeruginosa PAO1, and that GA (C15:1) was able to inhibit the formation of quorum sensing dependent virulence factors, but promoted the formation of biofilms. Finally, the above experimental results were verified by LasR-GFP, RhlR-GFP system and fluorescence quantitative PCR. These results suggested that GA (C15:1) was capable of modulating the quorum sensing system of p. aeruginosa PAO1 and possessed potential as an anti-virulence factor drug, but is not suitable for development as a broad-spectrum biofilm inhibitor.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Factores de Virulencia , Antibacterianos/farmacología , Antibacterianos/metabolismo , Biopelículas , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología
11.
Sheng Wu Gong Cheng Xue Bao ; 38(6): 2236-2249, 2022 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-35786475

RESUMEN

For rapid discovery of novel SARS-CoV-2 main protease (Mpro) inhibitors, an optimized fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) assay was developed. The recombinant Mpro was expressed in Escherichia coli Rosetta (DE3) cells and the specific activity of purified Mpro was assessed by a FERT assay using a fluorescently labeled substrate. Subsequently, the reaction buffer, working concentration of Mpro, incubation temperature and length, and DMSO tolerance were systematically optimized. The Mpro was solubly expressed in E. coli cells and exhibited an expected enzymatic activity (40 000 U/mg) in a FRET assay. Through these systematic optimizations, we selected 0.4 µmol/L Mpro and 5 µmol/L FRET substrate as the optimal working concentrations in this FRET screening assay, and a high Z' factor of 0.79 was achieved. More importantly, the addition of reducing reagent 1, 4-dithiothreitol in reaction buffer is necessary to faithfully assess the reliability of the screening assay. Using this assay, plumbagin (PLB) and ginkgolic acid (GA) were identified as potential Mpro inhibitors in vitro from a natural product library. In summary, we developed an optimized FRET-based HTS assay for the discovery of Mpro inhibitors, and PLB and GA could serve as the promissing lead compounds to generate more potent antiviral agents targeting SARS-CoV-2 Mpro.


Asunto(s)
COVID-19 , Ensayos Analíticos de Alto Rendimiento , Proteasas 3C de Coronavirus , Endopeptidasas , Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Humanos , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/genética
12.
Cell Biosci ; 12(1): 65, 2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35590420

RESUMEN

Because of the emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different regions of the world, the battle with infectious coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has been seesawing. Therefore, the identification of antiviral drugs is of particular importance. In order to rapidly identify inhibitors for SARS-CoV-2 3-chymotrypsin-like protease (3CLpro), an enzyme essential for viral replication, we combined the fluorescence polarization (FP) technique with biotin-avidin system (BAS) and developed a novel sandwich-like FP screening assay. Through high-throughput screening, two hits of 3CLpro inhibitors, ginkgolic acid (GA) and anacardic acid (AA) were identified, which showed IC50 values of 11.29 ± 0.48 and 12.19 ± 0.50 µM, respectively. Their binding modes were evaluated by HPLC-Q-TOF-MS. There was no mass increase detected for SARS-CoV-2 3CLpro incubated with either GA or AA, indicating the absence of covalent adducts. The kinetic analysis clearly demonstrated that both GA and AA inhibit SARS-CoV-2 3CLpro via reversible and mixed-inhibition manner. Our results argue against conclusion that GA and AA act as irreversible and covalent inhibitors against SARS-CoV-2 3CLpro, which is based on the studies by Chen et al.

13.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35409287

RESUMEN

Ginkgolic acid (C13:0) (GA), isolated from Ginkgo biloba, is a potential therapeutic agent for type 2 diabetes. A series of GA analogs were designed and synthesized for the evaluation of their structure-activity relationship with respect to their antidiabetic effects. Unlike GA, the synthetic analog 1e exhibited improved inhibitory activity against PTPN9 and significantly stimulated glucose uptake via AMPK phosphorylation in differentiated 3T3-L1 adipocytes and C2C12 myotubes; it also induced insulin-dependent AKT activation in C2C12 myotubes in a concentration-dependent manner. Docking simulation results showed that 1e had a better binding affinity through a unique hydrophobic interaction with a PTPN9 hydrophobic groove. Moreover, 1e ameliorated palmitate-induced insulin resistance in C2C12 cells. This study showed that 1e increases glucose uptake and suppresses palmitate-induced insulin resistance in C2C12 myotubes via PTPN9 inhibition; thus, it is a promising therapeutic candidate for treating type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Palmitatos/metabolismo , Salicilatos , Transducción de Señal , Relación Estructura-Actividad
14.
Food Chem ; 382: 132408, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35176549

RESUMEN

The Ginkgo biloba has astonished scholars globally with enormous bioactives, with sales exceeding $10 billion since 2017. The Ginkgo biloba seed (GBS) is an essential part of culinary culture. Nevertheless, toxins in fresh Ginkgo biloba seed (GBS) have limited GBSs' daily consumption. Ginkgotoxin and ginkgotoxin-5-glucoside cause poisoning, tonic-clonic convulsions, and neurotoxic effects. Ginkgolic acid causes cytotoxicity and allergies. Allergic glycoprotein in GBS causes nausea, seizures, dyspnea, mydriasis, vomiting, and bellyache. The amygdalin-derived hydrocyanic acid cause dizziness, vomiting, cramping, and sleeping disorders. Food products are frequently exposed to various processing techniques to increase food safety and functionality. As a result, this review focused on the technologies that have been used to minimize toxins in GBS. In addition, a comparison of these techniques was made based on their benefits, drawbacks, feasibility, pharmacological activities, and future direction or opportunities to improve current ones were provided.


Asunto(s)
Ginkgo biloba , Hipersensibilidad , Cianuros , Glucósidos , Glicoproteínas , Humanos , Extractos Vegetales , Piridoxina/análogos & derivados , Salicilatos , Semillas
15.
Microbiol Spectr ; 10(1): e0099121, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35019708

RESUMEN

With the increasing reports of community-acquired and nosocomial infection caused by multidrug-resistant Gram-positive pathogens, there is an urgent need to develop new antimicrobial agents with novel antibacterial mechanisms. Here, we investigated the antibacterial activity of the natural product ginkgolic acid (GA) (15:1), derived from Ginkgo biloba, and its potential mode of action against the Gram-positive bacteria Enterococcus faecalis and Staphylococcus aureus. The MIC values of GA (15:1) against clinical E. faecalis and S. aureus isolates from China were ≤4 and ≤8 µg/mL, respectively, from our test results. Moreover, GA (15:1) displayed high efficiency in biofilm formation inhibition and bactericidal activity against E. faecalis and S. aureus. During its inhibition of the planktonic bacteria, the antibacterial activity of GA (15:1) was significantly improved under the condition of abolishing iron homeostasis. When iron homeostasis was abolished, inhibition of planktonic bacteria by GA (15:1) was significantly improved. This phenomenon can be interpreted as showing that iron homeostasis disruption facilitated the disruption of the functions of ribosome and protein synthesis by GA (15:1), resulting in inhibition of bacterial growth and cell death. Genetic mutation of ferric uptake regulator (Fur) led to GA (15:1) tolerance in in vitro-induced resistant derivatives, while overexpression of Fur led to increased GA (15:1) susceptibility. Additionally, GA (15:1) significantly decreased the bacterial loads of S. aureus strain USA300 in the lung tissues of mice in a pneumonic murine model. Conclusively, this study revealed an antimicrobial mechanism of GA (15:1) involving cross talk with iron homeostasis against Gram-positive pathogens. In the future, the natural product GA (15:1) might be applied to combat infections caused by Gram-positive pathogens. IMPORTANCE The increasing emergence of infectious diseases associated with multidrug-resistant Gram-positive pathogens has raised the urgent need to develop novel antibiotics. GA (15:1) is a natural product derived from Ginkgo biloba and possesses a wide range of bioactivities, including antimicrobial activity. However, its antibacterial mechanisms remain unclear. Our current study found that the function of ferric uptake regulator (Fur) was highly correlated with the antimicrobial activity of GA (15:1) against E. faecalis and that the antibacterial activity of GA (15:1) could be strengthened by the disruption of iron homeostasis. This study provided important insight into the mode of action of GA (15:1) against Gram-positive bacteria and suggested that GA (15:1) holds the potential to be an antimicrobial treatment option for infection caused by multidrug-resistant Gram-positive pathogens.


Asunto(s)
Antibacterianos/administración & dosificación , Enterococcus faecalis/efectos de los fármacos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Hierro/metabolismo , Extractos Vegetales/administración & dosificación , Salicilatos/administración & dosificación , Staphylococcus aureus/efectos de los fármacos , Animales , Enterococcus faecalis/metabolismo , Femenino , Ginkgo biloba , Infecciones por Bacterias Grampositivas/microbiología , Homeostasis/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/metabolismo
16.
Front Med (Lausanne) ; 9: 1108882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36743669

RESUMEN

Background: Excessive inflammation and increased apoptosis of macrophages contribute to organ damage and poor prognosis of sepsis. Ginkgolic acid (GA) is a natural constituent extracted from the leaves of Ginkgo biloba, that can regulate inflammation and apoptosis. The present study aims to investigate the potential effect of GA in treating sepsis and its possible mechanisms. Materials and methods: Here, a classic septic mice model and a lipopolysaccharide (LPS)-induced RAW 264.7 inflammation model were established. Cytokines in serum and culture supernatant were detected by ELISA, and the mRNA levels of them were examined by PCR. Hematoxylin and eosin (H&E) staining was performed to determine histopathological changes in liver, lung and kidney. Bacterial burden in the blood, peritoneal lavage fluids (PLFs) and organs were observed on Luria-Bertani agar medium. Flow cytometry and western blotting was used to detect apoptosis and the expression level of apoptosis related molecules, respectively. Moreover, the levels of SUMOylation were detected by western blotting. The activity of NF-κB p65 was assessed by immunofluorescence staining and western blotting. Results: The result showed that GA promoted inflammatory responses, reduced bacterial clearance, aggravated organ damage, and increased mortality in septic mice. GA increased apoptosis in peritoneal macrophages (PMs) and RAW 264.7 cells. Meanwhile, GA inhibited SUMOylation and increased the nuclear translocation of NF-κB p65 as well as its phosphorylation level. Conclusion: Collectively, GA promotes inflammation and macrophage apoptosis in sepsis, which may be mediated by inhibiting the SUMOylation process and increasing NF-κB p65 activity.

17.
Cancer Sci ; 113(2): 622-633, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34839558

RESUMEN

Small ubiquitin-like modifier (SUMO)ylation is one of the posttranslational modifications and is implicated in many tumor types. Modulation of SUMOylation can affect tumor progression, but the underlying mechanisms remain unclear. Here, we show that, for the first time, in uveal melanoma (UM), the most common intraocular malignancy in adults, global SUMOylation is upregulated and participates in tumor growth. Inhibition of SUMOylation in UM is sufficient to reduce tumor growth both in vitro and in vivo. Furthermore, we found that retinoblastoma protein (Rb) is a target protein and a critical downstream effector of the upregulated SUMOylation activity in UM. Increased SUMOylation of the Rb protein leads to its hyperphosphorylation and inactivation in UM cells, promoting UM cell proliferation. In summary, our results provide novel insight into the mechanism underlying SUMOylation-regulated tumor growth in UM.


Asunto(s)
Melanoma/metabolismo , Proteínas de Unión a Retinoblastoma/metabolismo , Sumoilación/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Neoplasias de la Úvea/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Melanoma/patología , Ratones , Fosforilación , Proteína SUMO-1/metabolismo , Sumoilación/efectos de los fármacos , Neoplasias de la Úvea/patología
18.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34681204

RESUMEN

Since December 2019, the COVID-19 pandemic has affected more than 200 million individuals around the globe and caused millions of deaths. Although there are now multiple vaccines for SARS-CoV-2, their efficacy may be limited by current and future viral mutations. Therefore, effective antiviral compounds are an essential component to win the battle against the family of coronaviruses. Ginkgolic Acid (GA) is a pan-antiviral molecule with proven effective in vitro and in vivo activity. We previously demonstrated that GA inhibits Herpes Simplex Virus 1 (HSV-1) by disrupting viral structure, blocking fusion, and inhibiting viral protein synthesis. Additionally, we reported that GA displays broad-spectrum fusion inhibition encompassing all three classes of fusion proteins, including those of HIV, Ebola, influenza A, and Epstein Barr virus. Here, we report that GA exhibited potent antiviral activity against Human Coronavirus strain 229E (HCoV-229E) infection of human epithelial lung cells (MRC-5). GA significantly reduced progeny virus production, expression of viral proteins, and cytopathic effects (CPE). Furthermore, GA significantly inhibited HCoV-229E even when added post-infection. In light of our findings and the similarities of this family of viruses, GA holds promising potential as an effective antiviral treatment for SARS-CoV-2.

19.
J Med Food ; 24(8): 806-816, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34382859

RESUMEN

Even though nasopharyngeal carcinoma (NPC) is not common worldwide, it is a major public health burden in endemic areas. Distant metastasis often leads to a poor prognosis for NPC; therefore, new and effective anticancer strategies are needed. Ginkgolic acid (GA) is small-molecule compound existing in Ginkgo biloba that has various biologically relevant activities, including antitumor properties; however, its effects and mechanism of action in NPC are unknown. The effects of GA on NPC and such underlying mechanisms were investigated using 5-8F and CNE2 cells and NP69 human immortalized nasopharyngeal epithelial cells in this study. Moreover, the xenograft models were built to examine GA's effection in vivo. GA treatment decreased the survival and invasive capacity of 5-8F and CNE2 and induced their apoptosis, which varied with dose; this was accompanied by downregulation of B cell lymphoma (Bcl)2, upregulation of Bcl2-associated X protein, and activation of poly-ADP ribose polymerase, and caspase-9/-3. G0/G1 phase arrest was induced by GA in NPCs. It also reduced the expression of cyclin-dependent kinase 6 and its regulators cyclin D2 and cyclin D3. GA inhibited the activation of protein kinase B/nuclear factor signaling; this effect was potentiated with GA and 5-fluorouracil (5-FU), which also enhanced 5-FU-induced apoptosis. In summary, GA may be effective as an adjuvant to conventional chemotherapy drugs in preventing the progression of NPC.


Asunto(s)
FN-kappa B , Neoplasias Nasofaríngeas , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , FN-kappa B/genética , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Salicilatos
20.
Hum Exp Toxicol ; 40(12): 2156-2164, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34132136

RESUMEN

Endometrial cancer (EC) is the fourth most common malignancy in women in developed countries. The prognosis of EC is extremely poor, and it is an important factor that contributes to the death of patients. Therefore, studying EC pathogenesis and therapeutic targets, and exploring effective drugs are the primary tasks to improve the prognosis of EC. In the present study, we aimed to explore the function of ginkgolic acid (GA) in EC cell apoptosis and autophagy through PI3K/Akt/mTOR signal pathway in vitro and in vivo. Firstly, MTT assay and clone formation assay were employed to analyze the Ishikawa and HEC-1-B cell viabilities and proliferation after treatment with GA. The results showed that GA inhibited endometrial cancer cell survival. Flow cytometry assay and western blot assay were applied to examine the apoptosis and apoptosis related protein Bcl-2, Bax, Cleaved caspase-3 expression levels of Ishikawa and HEC-1-B cells after treatment with GA. Next, we applied western blot assay to analyze the autophagy associated proteins LC3I, LC3II, p62 and Beclin-1 in GA treated Ishikawa and HEC-1-B cells. We found that GA promoted apoptosis and induced autophagy of endometrial cancer cells. Meanwhile, western blot assay was also used to determine the expression levels of the PI3K/Akt/mTOR signal pathway related protein and the results revealed that GA inhibited the activity of PI3K/Akt/mTOR pathway. Finally, we found that GA inhibited tumor growth in vivo through immunohistochemistry assay. In conclusion, GA induces apoptosis and autophagy of EC cells via inhibiting PI3K/Akt/mTOR pathway in vivo and vitro.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias Endometriales/tratamiento farmacológico , Salicilatos/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Salicilatos/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA