Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Front Pharmacol ; 15: 1471542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39376599

RESUMEN

Introduction: Bouvardia ternifolia is a plant known for its traditional medicinal uses, particularly in treating inflammation and oxidative stress. Recent studies have explored its potential in neuroprotection, especially in the context of cerebral ischemia/reperfusion injury, a condition where blood supply returns to the brain after a period of ischemia, leading to oxidative stress and inflammation. This damage is a major contributor to neuronal death and neurodegenerative diseases. Methods: A BCCAO/reperfusion model was induced, followed by treatment with B. ternifolia extract. Various molecular biology methods were employed, including Western blot analysis, gene expression assessment via RT-qPCR, and the measurement of oxidative stress mediators. Results: In the BCCAO/reperfusion model, the compounds in the dichloromethane extract work by targeting various signaling pathways. They prevent the activation of iNOS and nNOS, reducing harmful reactive oxygen and nitrogen species, and boosting antioxidant enzymes like catalase and superoxide dismutase. This lowers oxidative stress and decreases the expression of proteins and genes linked to cell death, such as Bax, Bcl-2, and caspase-3. The extract also blocks the TLR4 receptor, preventing NF-κB from triggering inflammation. Additionally, it reduces the activation of microglia and astrocytes, as shown by lower levels of glial activation genes like GFAP and AiF1. Conclusion: The dichloromethane extract of B. ternifolia demonstrated significant neuroprotective effects in the BCCAO/reperfusion model by modulating multiple signaling pathways. It effectively reduced oxidative stress, inhibited inflammation, and attenuated apoptosis, primarily through the downregulation of key proteins and genes associated with these processes. These findings suggest that the extract holds therapeutic potential for mitigating ischemia/reperfusion-induced neuronal damage.

2.
Neurol Int ; 16(5): 933-944, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39311343

RESUMEN

Diabetes mellitus-related morbidity and mortality are primarily caused by long-term complications such as retinopathy, nephropathy, cardiomyopathy, and neuropathy. Diabetic neuropathy (DN) involves the progressive degeneration of axons and nerve fibers due to chronic exposure to hyperglycemia. This metabolic disturbance leads to excessive activation of the glycolytic pathway, inducing oxidative stress and mitochondrial dysfunction, ultimately resulting in nerve damage. There is no specific treatment for painful DN, and new approaches should aim not only to relieve pain but also to prevent oxidative stress and reduce inflammation. Given that existing therapies for painful DN are not effective for diabetic patients, mesenchymal stromal cells (MSCs)-based therapy shows promise for providing immunomodulatory and paracrine regulatory functions. MSCs from various sources can improve neuronal dysfunction associated with DN. Transplantation of MSCs has led to a reduction in hyperalgesia and allodynia, along with the recovery of nerve function in diabetic rats. While the pathogenesis of diabetic neuropathic pain is complex, clinical trials have demonstrated the importance of MSCs in modulating the immune response in diabetic patients. MSCs reduce the levels of inflammatory factors and increase anti-inflammatory cytokines, thereby interfering with the progression of DM. Further investigation is necessary to ensure the safety and efficacy of MSCs in preventing or treating neuropathic pain in diabetic patients.

3.
J Clin Periodontol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223037

RESUMEN

AIM: To investigate the hypothesis supporting the link between periodontitis and dopaminergic neuron degeneration. MATERIALS AND METHODS: Adult male Wistar rats were used to induce dopaminergic neuronal injury with 6-hydroxydopamine (6-OHDA) neurotoxin and experimental periodontitis via ligature placement. Motor function assessments were conducted before and after periodontitis induction in controls and 6-OHDA-injury-induced rats. Tissue samples from the striatum, jaw and blood were collected for molecular analyses, encompassing immunohistochemistry of tyrosine hydroxylase, microglia and astrocyte, as well as micro-computed tomography, to assess alveolar bone loss and for the analysis of striatal oxidative stress and plasma inflammatory markers. RESULTS: The results indicated motor impairment in 6-OHDA-injury-induced rats exacerbated by periodontitis, worsening dopaminergic striatal degeneration. Periodontitis alone or in combination with 6-OHDA-induced lesion was able to increase striatal microglia, while astrocytes were increased by the combination only. Periodontitis increased striatal reactive oxygen species levels and plasma tumour necrosis factor-alpha levels in rats with 6-OHDA-induced lesions and decreased the anti-inflammatory interleukin-10. CONCLUSIONS: This study provides original insights into the association between periodontitis and a neurodegenerative condition. The increased inflammatory pathway associated with both 6-OHDA-induced dopaminergic neuron lesion and periodontal inflammatory processes corroborates that the periodontitis-induced systemic inflammation may aggravate neuroinflammation in Parkinson's-like disease, potentially hastening disease progression.

4.
Medicina (B.Aires) ; Medicina (B.Aires);84(4): 769-773, ago. 2024. graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1575275

RESUMEN

Resumen La astrocitopatía autoinmune asociada a proteína ácida fibrilar glial (GFAP) fue descripta por primera vez en el año 2016. La manifestación clínica más frecuente es la meningoencefalomielitis asociado a un patrón imagenológico característico que permite la sospecha diagnóstica y su confirmación mediante la determina ción de los anticuerpos en suero y en líquido cefalorra quídeo (LCR). Presentamos el caso de una paciente de 35 años con compromiso del sistema nervioso a nivel central y periférico y un reciente diagnóstico de cáncer de tiroides, que frente al cuadro clínico compatible de meningoencefalomielitis, los hallazgos característicos en resonancia magnética y luego de la exclusión de enfermedades alternativas, finalmente se arribó al diag nóstico por la determinación positiva de anti GFAP en LCR. Realizó tratamiento quirúrgico y con iodo radio activo por su tumor hallado y posteriormente recibió tratamiento con corticoides con mejoría parcial de la signo-sintomatología neurológica. Destacamos que en esta enfermedad las imágenes por resonancia magnética presentan un patrón característico, aunque no patog nomónico, siendo necesario considerar otras causas. Ante una alta sospecha de esta entidad por el cuadro clínico e imagenológico, es conveniente realizar dosaje del anticuerpo en LCR, dada la mayor sensibilidad y especificidad en comparación con su pesquisa en suero, con el fin de arribar al diagnóstico etiológico definitivo como en el caso clínico presentado.


Abstract Autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy was described for the first time in 2016. The most common clinical manifestation is menin goencephalomyelitis associated with a characteristic imaging pattern that allows diagnostic suspicion and its confirmation through determination of antibodies in serum and cerebrospinal fluid (CSF). We present a case of a 35-year-old patient with involvement of the central and peripheral nervous system and a recent diagnosis of thyroid cancer, which compared to the compatible clinical picture of meningoencephalomyelitis, characteristic findings on MRI and after the exclusion of alternative pathologies, we finally arrived at the diagnosis by the positive determination of anti-GFAP in CSF. The patient underwent surgical treatment and radioactive iodine for the diagnosed thyroid tumor and she subsequently received treatment with corticosteroids with partial improvement of the neurological symptomatology. We emphasize that in this pathology the MRI images usually depict a characteristic pattern, although not pathogno monic, it is necessary to consider other causes. Before a high suspicion of this entity due to the clinical and imaging picture, it is convenient to measure the anti body in CSF, given the greater sensitivity and specificity compared to its serum screening, in order to arrive to the definitive etiological diagnosis as it was done in the clinical case that is presented.

5.
Neurochem Res ; 49(11): 3069-3077, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39120794

RESUMEN

Autism spectrum disorder (ASD) is known as a group of neurodevelopmental conditions including stereotyped and repetitive behaviors, besides social and sensorimotor deficits. Anatomical and functional evidence indicates atypical maturation of the striatum. Astrocytes regulate the maturation and plasticity of synaptic circuits, and impaired calcium signaling is associated with repetitive behaviors and atypical social interaction. Spontaneous calcium transients (SCT) recorded in the striatal astrocytes of the rat were investigated in the preclinical model of ASD by prenatal exposure to valproic acid (VPA). Our results showed sensorimotor delay, augmented glial fibrillary acidic protein -a typical intermediate filament protein expressed by astrocytes- and diminished expression of GABAA-ρ3 through development, and increased frequency of SCT with a reduced latency that resulted in a diminished amplitude in the VPA model. The convulsant picrotoxin, a GABAA (γ-aminobutyric acid type A) receptor antagonist, reduced the frequency of SCT in both experimental groups but rescued this parameter to control levels in the preclinical ASD model. The amplitude and latency of SCT were decreased by picrotoxin in both experimental groups. Nipecotic acid, a GABA uptake inhibitor, reduced the mean amplitude only for the control group. Nevertheless, nipecotic acid increased the frequency but diminished the latency in both experimental groups. Thus, we conclude that striatal astrocytes exhibit SCT modulated by GABAA-mediated signaling, and prenatal exposure to VPA disturbs this tuning.


Asunto(s)
Astrocitos , Cuerpo Estriado , Animales , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Femenino , Embarazo , Ratas , Ácido Valproico/farmacología , Ratas Wistar , Picrotoxina/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Modelos Animales de Enfermedad , Masculino , Calcio/metabolismo , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo
6.
Glia ; 72(12): 2190-2200, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39152717

RESUMEN

The mechanisms underlying regeneration of the central nervous system (CNS) following lesions have been studied extensively in both vertebrate and invertebrate models. To shed light on regeneration, ascidians, a sister group of vertebrates and with remarkable ability to regenerate their brains, constitute an appropriate model system. Glial cells have been implicated in regeneration in vertebrates; however, their role in the adult ascidian CNS regeneration is unknown. A model of degeneration and regeneration using the neurotoxin 3-acetylpyridine (3AP) in the brain of the ascidian Styela plicata was used to identify astrocyte-like cells and investigate their role. We studied the CNS of control ascidians (injected with artificial sea water) and of ascidians whose CNS was regenerating (1 and 10 days after the injection with 3AP). Our results show that the mRNA of the ortholog of glutamine synthetase (GS), a glial-cell marker in vertebrates, is increased during the early stages of regeneration. Confirming the identity of GS, the protein was identified via immunostaining in a cell population during the same regeneration stage. Last, a single ortholog of GS (GSII) is present in ascidian and amphioxus genomes, while two types exist in fungi, some invertebrates, and vertebrates, suggesting that ascidians have lost the GSI type. Taken together, our findings revealed that a cell population expressing glial-cell markers may play a role in regeneration in adult ascidians. This is the first report of astrocyte-like cells in the adult ascidian CNS, and contributes to understanding of the evolution of glial cells among metazoans.


Asunto(s)
Astrocitos , Sistema Nervioso Central , Glutamato-Amoníaco Ligasa , Urocordados , Animales , Urocordados/fisiología , Sistema Nervioso Central/citología , Sistema Nervioso Central/fisiología , Astrocitos/fisiología , Astrocitos/metabolismo , Astrocitos/citología , Glutamato-Amoníaco Ligasa/metabolismo , Regeneración Nerviosa/fisiología
7.
Microorganisms ; 12(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203555

RESUMEN

Respiratory viral infections pose a significant public health threat, particularly in children and older adults, with high mortality rates. Some of these pathogens are the human respiratory syncytial virus (hRSV), severe acute respiratory coronavirus-2 (SARS-CoV-2), influenza viruses (IV), human parvovirus B19 (B19V), and human bocavirus 1 (HBoV1). These viruses cause various respiratory symptoms, including cough, fever, bronchiolitis, and pneumonia. Notably, these viruses can also impact the central nervous system (CNS), leading to acute manifestations such as seizures, encephalopathies, encephalitis, neurological sequelae, and long-term complications. The precise mechanisms by which these viruses affect the CNS are not fully understood. Glial cells, specifically microglia and astrocytes within the CNS, play pivotal roles in maintaining brain homeostasis and regulating immune responses. Exploring how these cells interact with viral pathogens, such as hRSV, SARS-CoV-2, IVs, B19V, and HBoV1, offers crucial insights into the significant impact of respiratory viruses on the CNS. This review article examines hRSV, SARS-CoV-2, IV, B19V, and HBoV1 interactions with microglia and astrocytes, shedding light on potential neurological consequences.

8.
Adv Neurobiol ; 37: 379-395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39207703

RESUMEN

Aging is the greatest risk factor for neurodegenerative diseases. Microglia are the resident immune cells in the central nervous system (CNS), playing key roles in its normal functioning, and as mediators for age-dependent changes of the CNS, condition at which they generate a hostile environment for neurons. Transforming Growth Factor ß1 (TGFß1) is a regulatory cytokine involved in immuneregulation and neuroprotection, affecting glial cell inflammatory activation, neuronal survival, and function. TGFß1 signaling undergoes age-dependent changes affecting the regulation of microglial cells and can contribute to the pathophysiology of neurodegenerative diseases. This chapter focuses on assessing the role of age-related changes on the regulation of microglial cells and their impact on neuroinflammation and neuronal function, for understanding age-dependent changes of the nervous system.


Asunto(s)
Envejecimiento , Microglía , Enfermedades Neuroinflamatorias , Microglía/metabolismo , Humanos , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Sistema Nervioso Central/metabolismo , Neuronas/metabolismo , Transducción de Señal
9.
Brain Sci ; 14(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39199436

RESUMEN

Pain is a complex response to noxious stimuli. Upon detection of the nociceptive stimulus by first-order neurons or nociceptors, an action potential ascends to the spinal dorsal horn, a crucial site for synapsing with second-order neurons. These second-order neurons carry the nociceptive stimulus to supraspinal regions, notably the thalamus. Although extensive research has focused on spinal-level nociceptive mechanisms (e.g., neurotransmitters, receptors, and glial cells), the thalamus is still poorly elucidated. The role of the thalamus in relaying sensory and motor responses to the cortex is well known. However, a comprehensive understanding of the mechanisms in the synapse between the second-order and third-order neurons that transmit this impulse to the somatosensory cortex, where the response is processed and interpreted as pain, is still lacking. Thus, this review investigated the thalamus's role in transmitting nociceptive impulses. Current evidence indicates the involvement of the neurotransmitters glutamate and serotonin, along with NMDA, P2X4, TLR4, FGR, and NLRP3 receptors, as well as signaling pathways including ERK, P38, NF-κB, cytokines, and glial cells at nociceptive synapses within the thalamus.

10.
Medicina (B Aires) ; 84(4): 769-773, 2024.
Artículo en Español | MEDLINE | ID: mdl-39172580

RESUMEN

Autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy was described for the first time in 2016. The most common clinical manifestation is meningoencephalomyelitis associated with a characteristic imaging pattern that allows diagnostic suspicion and its confirmation through determination of antibodies in serum and cerebrospinal fluid (CSF). We present a case of a 35-year-old patient with involvement of the central and peripheral nervous system and a recent diagnosis of thyroid cancer, which compared to the compatible clinical picture of meningoencephalomyelitis, characteristic findings on MRI and after the exclusion of alternative pathologies, we finally arrived at the diagnosis by the positive determination of anti-GFAP in CSF. The patient underwent surgical treatment and radioactive iodine for the diagnosed thyroid tumor and she subsequently received treatment with corticosteroids with partial improvement of the neurological symptomatology. We emphasize that in this pathology the MRI images usually depict a characteristic pattern, although not pathognomonic, it is necessary to consider other causes. Before a high suspicion of this entity due to the clinical and imaging picture, it is convenient to measure the antibody in CSF, given the greater sensitivity and specificity compared to its serum screening, in order to arrive to the definitive etiological diagnosis as it was done in the clinical case that is presented.


La astrocitopatía autoinmune asociada a proteína ácida fibrilar glial (GFAP) fue descripta por primera vez en el año 2016. La manifestación clínica más frecuente es la meningoencefalomielitis asociado a un patrón imagenológico característico que permite la sospecha diagnóstica y su confirmación mediante la determinación de los anticuerpos en suero y en líquido cefalorraquídeo (LCR). Presentamos el caso de una paciente de 35 años con compromiso del sistema nervioso a nivel central y periférico y un reciente diagnóstico de cáncer de tiroides, que frente al cuadro clínico compatible de meningoencefalomielitis, los hallazgos característicos en resonancia magnética y luego de la exclusión de enfermedades alternativas, finalmente se arribó al diagnóstico por la determinación positiva de anti GFAP en LCR. Realizó tratamiento quirúrgico y con iodo radioactivo por su tumor hallado y posteriormente recibió tratamiento con corticoides con mejoría parcial de la signo-sintomatología neurológica. Destacamos que en esta enfermedad las imágenes por resonancia magnética presentan un patrón característico, aunque no patognomónico, siendo necesario considerar otras causas. Ante una alta sospecha de esta entidad por el cuadro clínico e imagenológico, es conveniente realizar dosaje del anticuerpo en LCR, dada la mayor sensibilidad y especificidad en comparación con su pesquisa en suero, con el fin de arribar al diagnóstico etiológico definitivo como en el caso clínico presentado.


Asunto(s)
Proteína Ácida Fibrilar de la Glía , Imagen por Resonancia Magnética , Adulto , Femenino , Humanos , Astrocitos/patología , Autoanticuerpos/sangre , Autoanticuerpos/líquido cefalorraquídeo , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico por imagen , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Proteína Ácida Fibrilar de la Glía/líquido cefalorraquídeo , Proteína Ácida Fibrilar de la Glía/sangre , Proteína Ácida Fibrilar de la Glía/inmunología
11.
Life Sci ; 354: 122979, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39147315

RESUMEN

Stroke is the second most common cause of death and one of the most common causes of disability worldwide. The intestine is home to several microorganisms that fulfill essential functions for the natural and physiological functioning of the human body. There is an interaction between the central nervous system (CNS) and the gastrointestinal system that enables bidirectional communication between them, the so-called gut-brain axis. Based on the gut-brain axis, there is evidence of a link between the gut microbiota and the regulation of microglial functions through glial activation. This interaction is partly due to the immunological properties of the microbiota and its connection with the CNS, such that metabolites produced by the microbiota can cross the gut barrier, enter the bloodstream and reach the CNS and significantly affect microglia, astrocytes and other cells of the immune system. Studies addressing the effects of short-chain fatty acids (SCFAs) on glial function and the BBB in ischemic stroke are still scarce. Therefore, this review aims to stimulate the investigation of these associations, as well as to generate new studies on this topic that can clarify the role of SCFAs after stroke in a more robust manner.


Asunto(s)
Barrera Hematoencefálica , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Accidente Cerebrovascular Isquémico , Neuroglía , Humanos , Barrera Hematoencefálica/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/fisiopatología , Animales , Neuroglía/metabolismo , Eje Cerebro-Intestino/fisiología , Isquemia Encefálica/metabolismo
12.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000096

RESUMEN

The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5'-bromo-2'-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the supraaoptic (SON) and paraventricular (PVN) nuclei. These findings raise new questions about AVPMNS's potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.


Asunto(s)
Movimiento Celular , Proteína Doblecortina , Neurogénesis , Neuronas , Animales , Ratas , Neuronas/metabolismo , Neuronas/citología , Masculino , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Hipotálamo/metabolismo , Hipotálamo/citología , Arginina Vasopresina/metabolismo
13.
Brain Sci ; 14(6)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38928589

RESUMEN

Neuropathic pain arises from injuries to the nervous system in diseases such as diabetes, infections, toxicity, and traumas. The underlying mechanism of neuropathic pain involves peripheral and central pathological modifications. Peripheral mechanisms entail nerve damage, leading to neuronal hypersensitivity and ectopic action potentials. Central sensitization involves a neuropathological process with increased responsiveness of the nociceptive neurons in the central nervous system (CNS) to their normal or subthreshold input due to persistent stimuli, leading to sustained electrical discharge, synaptic plasticity, and aberrant processing in the CNS. Current treatments, both pharmacological and non-pharmacological, aim to alleviate symptoms but often face challenges due to the complexity of neuropathic pain. Neuromodulation is emerging as an important therapeutic approach for the treatment of neuropathic pain in patients unresponsive to common therapies, by promoting the normalization of neuronal and/or glial activity and by targeting cerebral cortical regions, spinal cord, dorsal root ganglia, and nerve endings. Having a better understanding of the efficacy, adverse events and applicability of neuromodulation through pre-clinical studies is of great importance. Unveiling the mechanisms and characteristics of neuromodulation to manage neuropathic pain is essential to understand how to use it. In the present article, we review the current understanding supporting dorsal root ganglia and spinal cord neuromodulation as a therapeutic approach for neuropathic pain.

14.
ACS Biomater Sci Eng ; 10(7): 4279-4296, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38870483

RESUMEN

After traumatic brain injury, the brain extracellular matrix undergoes structural rearrangement due to changes in matrix composition, activation of proteases, and deposition of chondroitin sulfate proteoglycans by reactive astrocytes to produce the glial scar. These changes lead to a softening of the tissue, where the stiffness of the contusion "core" and peripheral "pericontusional" regions becomes softer than that of healthy tissue. Pioneering mechanotransduction studies have shown that soft substrates upregulate intermediate filament proteins in reactive astrocytes; however, many other aspects of astrocyte biology remain unclear. Here, we developed a platform for the culture of cortical astrocytes using polyacrylamide (PA) gels of varying stiffness (measured in Pascal; Pa) to mimic injury-related regions in order to investigate the effects of tissue stiffness on astrocyte reactivity and morphology. Our results show that substrate stiffness influences astrocyte phenotype; soft 300 Pa substrates led to increased GFAP immunoreactivity, proliferation, and complexity of processes. Intermediate 800 Pa substrates increased Aggrecan+, Brevican+, and Neurocan+ astrocytes. The stiffest 1 kPa substrates led to astrocytes with basal morphologies, similar to a physiological state. These results advance our understanding of astrocyte mechanotransduction processes and provide evidence of how substrates with engineered stiffness can mimic the injury microenvironment.


Asunto(s)
Resinas Acrílicas , Astrocitos , Mecanotransducción Celular , Astrocitos/metabolismo , Animales , Resinas Acrílicas/química , Células Cultivadas , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratas , Geles/química , Proliferación Celular , Ratas Sprague-Dawley
15.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38913688

RESUMEN

The outstanding human cognitive capacities are computed in the cerebral cortex, a mammalian-specific brain region and the place of massive biological innovation. Long noncoding RNAs have emerged as gene regulatory elements with higher evolutionary turnover than mRNAs. The many long noncoding RNAs identified in neural tissues make them candidates for molecular sources of cerebral cortex evolution and disease. Here, we characterized the genomic and cellular shifts that occurred during the evolution of the long noncoding RNA repertoire expressed in the developing cerebral cortex and explored putative roles for these long noncoding RNAs in the evolution of the human brain. Using transcriptomics and comparative genomics, we comprehensively annotated the cortical transcriptomes of humans, rhesus macaques, mice, and chickens and classified human cortical long noncoding RNAs into evolutionary groups as a function of their predicted minimal ages. Long noncoding RNA evolutionary groups showed differences in expression levels, splicing efficiencies, transposable element contents, genomic distributions, and transcription factor binding to their promoters. Furthermore, older long noncoding RNAs showed preferential expression in germinative zones, outer radial glial cells, and cortical inhibitory (GABAergic) neurons. In comparison, younger long noncoding RNAs showed preferential expression in cortical excitatory (glutamatergic) neurons, were enriched in primate and human-specific gene co-expression modules, and were dysregulated in neurodevelopmental disorders. These results suggest different evolutionary routes for older and younger cortical long noncoding RNAs, highlighting old long noncoding RNAs as a possible source of molecular evolution of conserved developmental programs; conversely, we propose that the de novo expression of primate- and human-specific young long noncoding RNAs is a putative source of molecular evolution and dysfunction of cortical excitatory neurons, warranting further investigation.


Asunto(s)
Corteza Cerebral , Macaca mulatta , Neuronas , ARN Largo no Codificante , ARN Largo no Codificante/genética , Humanos , Corteza Cerebral/metabolismo , Animales , Ratones , Neuronas/metabolismo , Pollos/genética , Evolución Molecular , Transcriptoma
16.
Heliyon ; 10(9): e30360, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711658

RESUMEN

In amyotrophic lateral sclerosis (ALS), astrocytes are considered key players in some non-cell non-neuronal autonomous mechanisms that underlie motor neuron death. However, it is unknown how much of these deleterious features were permanently acquired. To assess this point, we evaluated if the most remarkable features of neurotoxic aberrant glial phenotypes (AbAs) isolated from paralytic rats of the ALS model G93A Cu/Zn superoxide dismutase 1 (SOD1) could remain upon long lasting cultivation. Real time PCR, immunolabelling and zymography analysis showed that upon many passages, AbAs preserved the cell proliferation capacity, mitochondrial function and response to different compounds that inhibit some key astrocyte functions but decreased the expression of parameters associated to cell lineage, homeostasis and inflammation. As these results are contrary to the sustained inflammatory status observed along disease progression in SOD1G93A rats, we propose that the most AbAs remarkable features related to homeostasis and neurotoxicity were not permanently acquired and might depend on the signaling coming from the injuring microenvironment present in the degenerating spinal cord of terminal rats.

17.
Neurochem Int ; 176: 105742, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641028

RESUMEN

Traumatic brain injury (TBI) remains a major health concern which causes long-term neurological disability particularly in war veterans, athletes and young adults. In spite of intense clinical and research investigations, there is no effective therapy to cease the pathogenesis of the disease. It is believed that axonal injury during TBI is potentiated by neuroinflammation and demyelination and/or failure to remyelination. This study highlights the use of naturally available cinnamein, also chemically known as benzyl cinnamate, in inhibiting neuroinflammation, promoting remyelination and combating the disease process of controlled cortical impact (CCI)-induced TBI in mice. Oral delivery of cinnamein through gavage brought down the activation of microglia and astrocytes to decrease the expression of inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) in hippocampus and cortex of TBI mice. Cinnamein treatment also stimulated remyelination in TBI mice as revealed by PLP and A2B5 double-labeling, luxol fast blue (LFB) staining and axonal double-labeling for neurofilament and MBP. Furthermore, oral cinnamein reduced the size of lesion cavity in the brain, improved locomotor functions and restored memory and learning in TBI mice. These results suggest a new neuroprotective property of cinnamein that may be valuable in the treatment of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Modelos Animales de Enfermedad , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Ratones , Masculino , Ratones Endogámicos C57BL , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
18.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612887

RESUMEN

Intracellular calcium plays a pivotal role in central nervous system (CNS) development by regulating various processes such as cell proliferation, migration, differentiation, and maturation. However, understanding the involvement of calcium (Ca2+) in these processes during CNS development is challenging due to the dynamic nature of this cation and the evolving cell populations during development. While Ca2+ transient patterns have been observed in specific cell processes and molecules responsible for Ca2+ homeostasis have been identified in excitable and non-excitable cells, further research into Ca2+ dynamics and the underlying mechanisms in neural stem cells (NSCs) is required. This review focuses on molecules involved in Ca2+ entrance expressed in NSCs in vivo and in vitro, which are crucial for Ca2+ dynamics and signaling. It also discusses how these molecules might play a key role in balancing cell proliferation for self-renewal or promoting differentiation. These processes are finely regulated in a time-dependent manner throughout brain development, influenced by extrinsic and intrinsic factors that directly or indirectly modulate Ca2+ dynamics. Furthermore, this review addresses the potential implications of understanding Ca2+ dynamics in NSCs for treating neurological disorders. Despite significant progress in this field, unraveling the elements contributing to Ca2+ intracellular dynamics in cell proliferation remains a challenging puzzle that requires further investigation.


Asunto(s)
Calcio , Células-Madre Neurales , Calcio de la Dieta , Diferenciación Celular , Proliferación Celular
19.
Biol Res ; 57(1): 8, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475854

RESUMEN

The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.


Asunto(s)
Vaina de Mielina , Neuroglía , Neuroglía/fisiología , Vaina de Mielina/fisiología , Células Madre , Médula Espinal , Encéfalo
20.
Acta Histochem ; 126(3): 152146, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422841

RESUMEN

Cancer-induced cachexia is associated with systemic inflammation and gastrointestinal dysfunction. How changes to cells of the enteric nervous system contribute to gut dysfunction in tumor development and cancer cachexia is unknown. Here, we tested the hypothesis that changes to enteric glia, a type of peripheral glia that surround enteric neurons and regulate gut homeostasis, are associated with tumor development and that supplementing with the antioxidant L-glutathione is protective against the changes induced. Immunohistochemistry for neurons, enteric glial cells and immune cells was performed in whole-mount preparations and frozen histological sections of the jejunum from 20 Wistar rats, distributed in 4 groups: control, tumor of Walker-256, control administered with 1 % L-glutathione, and tumor of Walker-256 administered with 1 % L-glutathione. Morphoquantitative analyses were made using Image-Pro® Plus 4.5 and ImageJ® 1.43° software. Tumor development significantly reduced neuronal and glial cell populations in the myenteric and submucosal plexuses and enlarged glial cell body area in the submucosal plexus. In contrast, tumors increased glia in the jejunal mucosa and this effect was accompanied by B-lymphocyte recruitment. GSH-supplemented diet was not sufficient to protect against changes to neurons and glia in the submucosal plexus but was partially protective in the myenteric plexus. L-glutathione had no effect on physiological parameters of cachexia but was sufficient to preserve enteric glial cell density in the myenteric plexus. These results suggest that changes to both enteric neurons and glia likely contribute to the gastrointestinal effects of tumor development and that oxidative stress contributes to these effects in the enteric nervous system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA