RESUMEN
The carotid body's glomus cells are the primary sensors of hypoxia in mammals. Previous studies suggested that the glomus cells' hypoxia sensitivity is mediated by lactate in mice. This molecule increases the intracellular [Ca2+] and induces exocytosis in glomus cells, activating the carotid sinus nerve (the axons of chemoreceptive petrosal neurons). On the other hand, how lactate affects the activity of carotid body of rats is still unknown. We hypothesized that lactate activates the carotid body of rats. In Wistar rats, we measured the changes in the electrical properties of isolated glomus cells and petrosal chemoreceptive neurons in in situ preparations in response to different concentrations of lactate. Superfusion of both physiological and supraphysiological concentrations of lactate did not affect the membrane conductance and potential of glomus cells. Moreover, lactate injected into the carotid body did not activate the anatomically and physiologically identified chemoreceptive petrosal neurons. We conclude that the carotid body of Wistar rats is not sensitive to lactate.
Asunto(s)
Cuerpo Carotídeo/metabolismo , Células Quimiorreceptoras/fisiología , Ácido Láctico/metabolismo , Potenciales de la Membrana/fisiología , Animales , Cuerpo Carotídeo/efectos de los fármacos , Células Quimiorreceptoras/efectos de los fármacos , Ácido Láctico/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas WistarRESUMEN
Connexins (Cxs) and Pannexins (Panx) form hemichannels at the plasma membrane of animals. Despite their low open probability under physiological conditions, these hemichannels release signaling molecules (i.e., ATP, Glutamate, PGE2) to the extracellular space, thus subserving several important physiological processes. Oxygen and CO2 sensing are fundamental to the normal functioning of vertebrate organisms. Fluctuations in blood PO2, PCO2 and pH are sensed at the carotid bifurcations of adult mammals by glomus cells of the carotid bodies. Likewise, changes in pH and/or PCO2 of cerebrospinal fluid are sensed by central chemoreceptors, a group of specialized neurones distributed in the ventrolateral medulla (VLM), raphe nuclei, and some other brainstem areas. After many years of research, the molecular mechanisms involved in chemosensing process are not completely understood. This manuscript will review data regarding relationships between chemosensitive cells and the expression of channels formed by Cxs and Panx, with special emphasis on hemichannels.