Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Med ; 51(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37052251

RESUMEN

The aim of the present review was to summarize the potential interactive effects between the gut microbiota and advanced glycation end­product (AGE) accumulation and toxicity in the host, and to reveal potential the mediatory effects of the gut microbiota on AGE­related health effects. The existing data demonstrate that dietary AGEs can have a significant impact on the richness and diversity of the gut microbiota, although the particular effect is dependent on the type of species, as well as the exposure dose. In addition, the gut microbiota may metabolize dietary AGEs. It has been also demonstrated that the characteristics of the gut microbiota, including its richness and relative abundance of certain taxa, is tightly associated with AGE accumulation in the host organism. In turn, a bilateral interplay between AGE toxicity and the modulation of the gut microbiota may contribute to pathogenesis of ageing and diabetes­associated diseases. Bacterial endotoxin lipopolysaccharide appears as the molecule that mediates the interactions between the gut microbiota and AGE toxicity, specifically via the modulation of the receptor for AGE signaling. Therefore, it is proposed that the modulation of the gut microbiota using probiotics or other dietary interventions may have a significant impact on AGE­induced glycative stress and systemic inflammation.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Reacción de Maillard , Inflamación
2.
Biomedicines ; 11(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36830911

RESUMEN

(1) Background: Polycystic ovarian syndrome (PCOS) is a common and multifactorial disease affecting reproductive-age women. Although PCOS ovarian and metabolic features have received extensive research, uterine dysfunction has been poorly investigated. This research aims to investigate morphological and molecular alterations in the PCOS uterus and search for modulating effects of different carnitine formulations. (2) Methods: CD1 mice were administered or not with dehydroepiandrosterone (DHEA, 6 mg/100 g body weight) for 20 days, alone or with 0.40 mg L-carnitine (LC) and 0.20 mg acetyl-L-carnitine (ALC) in the presence or absence of 0.08 mg propionyl-L-carnitine (PLC). Uterine horns from the four groups were subjected to histology, immunohistochemistry and immunoblotting analyses to evaluate their morphology, collagen deposition, autophagy and steroidogenesis. Oxidative-/methylglyoxal (MG)-dependent damage was investigated along with the effects on the mitochondria, SIRT1, SOD2, RAGE and GLO1 proteins. (3) Results: The PCOS uterus suffers from tissue and oxidative alterations associated with MG-AGE accumulation. LC-ALC administration alleviated PCOS uterine tissue alterations and molecular damage. The presence of PLC prevented fibrosis and maintained mitochondria content. (4) Conclusions: The present results provide evidence for oxidative and glycative damage as the main factors contributing to PCOS uterine alterations and include the uterus in the spectrum of action of carnitines on the PCOS phenotype.

3.
Cells ; 12(4)2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36831307

RESUMEN

(1) Background: Diabetes mellitus (DM) is a significant health problem and is associated with dyslipidemia; however, the association between glycative stress, in terms of glycated hemoglobin (HbA1c), and atherogenic dyslipidemia in hyperlipidemic patients with and without DM has rarely been reported. (2) Methods: We prospectively recruited 949 hyperlipidemic patients from the Lipid Clinic of the National Taiwan University Hospital. HbA1c and fasting serum lipids, including total cholesterol (TC), high- and low-density lipoprotein cholesterol (HDL-C and LDL-C), small dense LDL-C (sdLDL-C), very low-density lipoprotein cholesterol (VLDL-C), triglycerides, and advanced glycation end-products (AGEs), were measured. After fasting for 10-14 h, all subjects except those with DM underwent a standard oral glucose tolerance test (OGTT) with 75 g of glucose loading. All subjects were asked to discontinue the use of lipid-lowering agents for 8 weeks before recruitment. (3) Results: Patients with DM had a higher prevalence of hypertension and higher levels of triglyceride, TC/HDL-C ratio, AGEs, VLDL-C, and sdLDL-C. Among patients with higher HbA1c, the serum VLDL-C, AGEs, and TC/HDL-C ratio were significantly higher than those with lower HbA1c. After adjustment for covariates, multiple logistic regression analyses revealed different groups of dysglycemia with higher HbA1c had a higher odds ratio for TC/HDL-C ≥ 5, sdLDL-C ≥ 75th percentile, VLDL-C ≥ 75th percentile and AGEs ≥ 75th percentile. (4) Conclusions: A higher HbA1c was associated with a significant increase in the risk of atherogenic dyslipidemia and AGEs levels in patients with hyperlipidemia. The findings can be very promising in clinical application.


Asunto(s)
Aterosclerosis , Diabetes Mellitus , Dislipidemias , Hiperlipidemias , Humanos , Hemoglobina Glucada , LDL-Colesterol , Colesterol , Triglicéridos , HDL-Colesterol
5.
Antibiotics (Basel) ; 11(10)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36290070

RESUMEN

Staphylococcus aureus is a Gram-positive bacterium that plays a role in the pathogenesis of skin lesions in diabetes mellitus, atopic dermatitis, and psoriasis, all of which are associated with elevated non-enzymatic glycation biomarkers. The production of biofilm protects resident bacteria from host immune defenses and antibiotic interventions, prolonging pathogen survival, and risking recurrence after treatment. Glycated proteins formed from keratin and glucose induce biofilm formation in S. aureus, promoting dysbiosis and increasing pathogenicity. In this study, several glycation-inhibiting and advanced glycation endproduct (AGE) crosslink-breaking compounds were assayed for their ability to inhibit glycated keratin-induced biofilm formation as preliminary screening for clinical testing candidates. Ascorbic acid, astaxanthin, clove extract, n-phenacylthiazolium bromide, and rosemary extract were examined in an in vitro static biofilm model with S. aureus strain ATCC 12600. Near complete biofilm inhibition was achieved with astaxanthin (ED50 = 0.060 mg/mL), clove extract (ED50 = 0.0087 mg/mL), n-phenacylthiazolium bromide (ED50 = 5.3 mg/mL), and rosemary extract (ED50 = 1.5 mg/mL). The dosage necessary for biofilm inhibition was not significantly correlated with growth inhibition (R2 = 0.055. p = 0.49). Anti-glycation and AGE breaking compounds with biofilm inhibitory activity are ideal candidates for treatment of S. aureus dysbiosis and skin infection that is associated with elevated skin glycation.

6.
Antioxidants (Basel) ; 11(8)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36009293

RESUMEN

Ommochromes are pigments of invertebrates that exhibit oxidative stress protection. The aim of this study was to investigate ommochromes extracted from cephalopod's skin for their ability to inhibit age-related-macular degeneration (AMD)-related factors such as H2O2-induced and iron-dependent oxidative stress (ferroptosis and erastin), accumulation of advanced glycation end-products (AGEs), as well as vascular endothelial growth factor (VEGF), and inflammatory cytokines (interleukin 6 and interleukin 8) secretion. As cell systems, we used primary porcine retinal pigment epithelium (RPE), human retinal pigment epithelium cell line ARPE-19 and uveal melanoma cell line OMM-1. In vitro, ommochromes produced an antiglycation effect by the inhibition of fructosylation reaction. The ommochromes showed protective effects against erastin- induced cell death in ARPE-19. In addition, in long-term stimulation (7 days) ommochromes decreased constitutively secreted VEGF, as well as interleukin 6 and interleukin 8 induced by Poly I:C in primary RPE. No relevant effects were detected in OMM-1 cells. The effects are dependent on the cell system, time of exposition, and concentration. This substance is of interest for further research concerning age-related macular degeneration.

7.
Antioxidants (Basel) ; 11(6)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35740031

RESUMEN

In this study, we investigated whether cerium oxide nanoparticles (CeO2-NPs), a promising antioxidant nanomaterial, may contrast retinal vascular alterations induced by oxidative damage in vitro and in vivo. For the in vivo experiments, the light damage (LD) animal model of Age-Related Macular Degeneration (AMD) was used and the CeO2-NPs were intravitreally injected. CeO2-NPs significantly decreased vascular endothelial growth factor (VEGF) protein levels, reduced neovascularization in the deep retinal plexus, and inhibited choroidal sprouting into the photoreceptor layer. The in vitro experiments were performed on human retinal pigment epithelial (ARPE-19) cells challenged with H2O2; we demonstrated that CeO2-NPs reverted H2O2-induced oxidative stress-dependent effects on this cell model. We further investigated the RPE-endothelial cells interaction under oxidative stress conditions in the presence or absence of CeO2-NPs through two experimental paradigms: (i) treatment of human umbilical vein endothelial cells (HUVECs) with conditioned media from ARPE-19 cells, and (ii) coculture of ARPE-19 and HUVECs. In both experimental conditions, CeO2-NPs were able to revert the detrimental effect of H2O2 on angiogenesis in vitro by realigning the level of tubule formation to that of the control. Altogether, our results indicate, for the first time, that CeO2-NPs can counteract retinal neovascularization and may be a new therapeutic strategy for the treatment of wet AMD.

8.
Plants (Basel) ; 11(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35631785

RESUMEN

Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia, insulin insufficiency or insulin resistance, and many issues, including vascular complications, glycative stress and lipid metabolism dysregulation. Natural products from plants with antihyperglycemic, hypolipidemic, pancreatic protective, antioxidative, and insulin-like properties complement conventional treatments. Throughout this review, we summarize the current status of knowledge of plants from the Caribbean basin traditionally used to manage DM and treat its sequelae. Seven plants were chosen due to their use in Caribbean folk medicine. We summarize the antidiabetic properties of each species, exploring the pharmacological mechanisms related to their antidiabetic effect reported in vitro and in vivo. We propose the Caribbean flora as a source of innovative bioactive phytocompounds to treat and prevent DM and DM-associated complications.

9.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35216486

RESUMEN

The passage number of cells refers to the number of subculturing processes that the cells have undergone. The effect of passage number on morphological and phenotypical characteristics of cells is of great importance. Advanced glycation end products have also been associated with cell functionality and characteristics. Murine monocyte RAW 264.7 cells differentiate into osteoclasts upon receptor activation caused by nuclear factor-kappa-Β ligand (RANKL) treatment. This study aims to identify the role of passage number on intracellular advanced glycation end products (AGEs) formation and osteoclastogenic differentiation of RAW 264.7 cells. Western blotting was performed to check intracellular AGE formation along with fluorometric analysis using a microplate reader. Tartrate-resistant acid phosphatase (TRAP) staining was performed to check osteoclastogenic differentiation, and qPCR was realized to check the responsible mRNA expression. Immunofluorescence was used to check the morphological changes. Intracellular AGE formation was increased with passaging, and the higher passage number inhibited multinucleated osteoclastogenic differentiation. Osteoclastogenic gene expression also showed a reducing trend in higher passages, along with a significant reduction in F-actin ring size and number. Lower passages should be used to avoid the effects of cell subculturing in in vitro osteoclastogenesis study using RAW 264.7 cells.


Asunto(s)
Regulación hacia Abajo/fisiología , Productos Finales de Glicación Avanzada/metabolismo , Osteogénesis/fisiología , Ligando RANK/metabolismo , Actinas/metabolismo , Animales , Resorción Ósea/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Ratones , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Células RAW 264.7 , Transducción de Señal/fisiología , Fosfatasa Ácida Tartratorresistente/metabolismo
10.
Cells ; 10(8)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34440621

RESUMEN

The glyoxalase system is critical for the detoxification of advanced glycation end-products (AGEs). AGEs are toxic compounds resulting from the non-enzymatic modification of biomolecules by sugars or their metabolites through a process called glycation. AGEs have adverse effects on many tissues, playing a pathogenic role in the progression of molecular and cellular aging. Due to the age-related decline in different anti-AGE mechanisms, including detoxifying mechanisms and proteolytic capacities, glycated biomolecules are accumulated during normal aging in our body in a tissue-dependent manner. Viewed in this way, anti-AGE detoxifying systems are proposed as therapeutic targets to fight pathological dysfunction associated with AGE accumulation and cytotoxicity. Here, we summarize the current state of knowledge related to the protective mechanisms against glycative stress, with a special emphasis on the glyoxalase system as the primary mechanism for detoxifying the reactive intermediates of glycation. This review focuses on glyoxalase 1 (GLO1), the first enzyme of the glyoxalase system, and the rate-limiting enzyme of this catalytic process. Although GLO1 is ubiquitously expressed, protein levels and activities are regulated in a tissue-dependent manner. We provide a comparative analysis of GLO1 protein in different tissues. Our findings indicate a role for the glyoxalase system in homeostasis in the eye retina, a highly oxygenated tissue with rapid protein turnover. We also describe modulation of the glyoxalase system as a therapeutic target to delay the development of age-related diseases and summarize the literature that describes the current knowledge about nutritional compounds with properties to modulate the glyoxalase system.


Asunto(s)
Envejecimiento/metabolismo , Senescencia Celular , Productos Finales de Glicación Avanzada/metabolismo , Lactoilglutatión Liasa/metabolismo , Estrés Fisiológico , Factores de Edad , Envejecimiento/patología , Animales , Senescencia Celular/efectos de los fármacos , Dieta , Suplementos Dietéticos , Glicosilación , Humanos , Fitoquímicos/farmacología , Carbonilación Proteica , Proteolisis , Estrés Fisiológico/efectos de los fármacos , Especificidad por Sustrato
11.
Antioxidants (Basel) ; 10(5)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062923

RESUMEN

Methylglyoxal (MG) is a potent precursor of glycative stress (abnormal accumulation of advanced glycation end products, AGEs), a relevant condition underpinning the etiology of several diseases, including those of the oral cave. At present, synthetic agents able to trap MG are known; however, they have never been approved for clinical use because of their severe side effects. Hence, the search of bioactive natural scavengers remains a sector of strong research interest. Here, we investigated whether and how oleuropein (OP), the major bioactive component of olive leaf, was able to prevent MG-dependent glycative stress in human dental pulp stem cells (DPSCs). The cells were exposed to OP at 50 µM for 24 h prior to the administration of MG at 300 µM for additional 24 h. We found that OP prevented MG-induced glycative stress and DPSCs impairment by restoring the activity of Glyoxalase 1 (Glo1), the major detoxifying enzyme of MG, in a mechanism involving the redox-sensitive transcription factor Nrf2. Our results suggest that OP holds great promise for the development of preventive strategies for MG-derived AGEs-associated oral diseases and open new paths in research concerning additional studies on the protective potential of this secoiridoid.

12.
Aging Cell ; 19(11): e13257, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33146912

RESUMEN

Diabetes and metabolic syndrome are associated with the typical American high glycemia diet and result in accumulation of high levels of advanced glycation end products (AGEs), particularly upon aging. AGEs form when sugars or their metabolites react with proteins. Associated with a myriad of age-related diseases, AGEs accumulate in many tissues and are cytotoxic. To date, efforts to limit glycation pharmacologically have failed in human trials. Thus, it is crucial to identify systems that remove AGEs, but such research is scanty. Here, we determined if and how AGEs might be cleared by autophagy. Our in vivo mouse and C. elegans models, in which we altered proteolysis or glycative burden, as well as experiments in five types of cells, revealed more than six criteria indicating that p62-dependent autophagy is a conserved pathway that plays a critical role in the removal of AGEs. Activation of autophagic removal of AGEs requires p62, and blocking this pathway results in accumulation of AGEs and compromised viability. Deficiency of p62 accelerates accumulation of AGEs in soluble and insoluble fractions. p62 itself is subject to glycative inactivation and accumulates as high mass species. Accumulation of p62 in retinal pigment epithelium is reversed by switching to a lower glycemia diet. Since diminution of glycative damage is associated with reduced risk for age-related diseases, including age-related macular degeneration, cardiovascular disease, diabetes, Alzheimer's, and Parkinson's, discovery of methods to limit AGEs or enhance p62-dependent autophagy offers novel potential therapeutic targets to treat AGEs-related pathologies.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Autofagia/fisiología , Línea Celular , Supervivencia Celular/fisiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Riñón/citología , Riñón/metabolismo , Cristalino/citología , Cristalino/metabolismo , Lisosomas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas
13.
Antioxidants (Basel) ; 9(9)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942589

RESUMEN

Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with female infertility. Based on energy and antioxidant regulatory functions of carnitines, we investigated whether acyl-L-carnitines improve PCOS phenotype in a mouse model induced by dehydroepiandrosterone (DHEA). CD1 mice received DHEA for 20 days along with two different carnitine formulations: one containing L-carnitine (LC) and acetyl-L-carnitine (ALC), and the other one containing also propionyl-L-carnitine (PLC). We evaluated estrous cyclicity, testosterone level, ovarian follicle health, ovulation rate and oocyte quality, collagen deposition, lipid droplets, and 17ß-HSD IV (17 beta-hydroxysteroid dehydrogenase type IV) expression. Moreover, we analyzed protein expression of SIRT1, SIRT3, SOD2 (superoxide dismutase 2), mitochondrial transcriptional factor A (mtTFA), RAGE (receptor for AGEs), GLO2 (glyoxalase 2) and ovarian accumulation of MG-AGEs (advanced glycation end-products formed by methylglyoxal). Both carnitine formulations ameliorated ovarian PCOS phenotype and positively modulated antioxidant molecular pathways in the ovarian microenvironment. Addition of PLC to LC-ALC formulation mitigated intraovarian MG-AGE accumulation and increased mtTFA expression. In conclusion, our study supports the hypothesis that oral administration of acyl-L-carnitines alleviates ovarian dysfunctions associated with this syndrome and that co-administration of PLC provides better activity. Molecular mechanisms underlying these effects include anti-oxidant/glycative activity and potentiation of mitochondria.

14.
J Am Heart Assoc ; 9(4): e014691, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32067589

RESUMEN

Background DJ-1 is a ubiquitously expressed protein typically associated with the development of early onset Parkinson disease. Recent data suggest that it also plays a role in the cellular response to stress. Here, we sought to determine the role DJ-1 plays in the development of heart failure. Methods and Results Initial studies found that DJ-1 deficient mice (DJ-1 knockout; male; 8-10 weeks of age) exhibited more severe left ventricular cavity dilatation, cardiac dysfunction, hypertrophy, and fibrosis in the setting of ischemia-reperfusion-induced heart failure when compared with wild-type littermates. In contrast, the overexpression of the active form of DJ-1 using a viral vector approach resulted in significant improvements in the severity of heart failure when compared with mice treated with a control virus. Subsequent studies aimed at evaluating the underlying protective mechanisms found that cardiac DJ-1 reduces the accumulation of advanced glycation end products and activation of the receptor for advanced glycation end products-thus, reducing glycative stress. Conclusions These results indicate that DJ-1 is an endogenous cytoprotective protein that protects against the development of ischemia-reperfusion-induced heart failure by reducing glycative stress. Our findings also demonstrate the feasibility of using a gene therapy approach to deliver the active form of DJ-1 to the heart as a therapeutic strategy to protect against the consequences of ischemic injury, which is a major cause of death in western populations.


Asunto(s)
Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Estrés Oxidativo/fisiología , Proteína Desglicasa DJ-1/metabolismo , Proteína Desglicasa DJ-1/fisiología , Animales , Modelos Animales de Enfermedad , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Cells ; 9(1)2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947651

RESUMEN

Advanced glycation end-products (AGEs) are involved in the pathogenesis and consequences of polycystic ovary syndrome (PCOS), a complex metabolic disorder associated with female infertility. The most powerful AGE precursor is methylglyoxal (MG), a byproduct of glycolysis, that is detoxified by the glyoxalase system. By using a PCOS mouse model induced by administration of dehydroepiandrosterone (DHEA), we investigated whether MG-dependent glycative stress contributes to ovarian PCOS phenotype and explored changes in the Sirtuin 1 (SIRT1) functional network regulating mitochondrial functions and cell survival. In addition to anovulation and reduced oocyte quality, DHEA ovaries revealed altered collagen deposition, increased vascularization, lipid droplets accumulation and altered steroidogenesis. Here we observed increased intraovarian MG-AGE levels in association with enhanced expression of receptor for AGEs (RAGEs) and deregulation of the glyoxalase system, hallmarks of glycative stress. Moreover, DHEA mice exhibited enhanced ovarian expression of SIRT1 along with increased protein levels of SIRT3 and superoxide dismutase 2 (SOD2), and decreased peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC1α), mitochondrial transcriptional factor A (mtTFA) and translocase of outer mitochondrial membrane 20 (TOMM20). Finally, the presence of autophagy protein markers and increased AMP-activated protein kinase (AMPK) suggested the involvement of SIRT1/AMPK axis in autophagy activation. Overall, present findings demonstrate that MG-dependent glycative stress is involved in ovarian dysfunctions associated to PCOS and support the hypothesis of a SIRT1-dependent adaptive response.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Ovario/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Piruvaldehído/metabolismo , Sirtuina 1/metabolismo , Animales , Deshidroepiandrosterona/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Glicosilación , Ratones , Síndrome del Ovario Poliquístico/inducido químicamente
16.
Foods ; 8(10)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557885

RESUMEN

We investigated the protective effect of Brazilian propolis, a natural resinous substance produced by honeybees, against glycation stress in mouse skeletal muscles. Mice were divided into four groups: (1) Normal diet + drinking water, (2) Brazilian propolis (0.1%)-containing diet + drinking water, (3) normal diet + methylglyoxal (MGO) (0.1%)-containing drinking water, and (4) Brazilian propolis (0.1%)-containing diet + MGO (0.1%)-containing drinking water. MGO treatment for 20 weeks reduced the weight of the extensor digitorum longus (EDL) muscle and tended to be in the soleus muscle. Ingestion of Brazilian propolis showed no effect on this change in EDL muscles but tended to increase the weight of the soleus muscles regardless of MGO treatment. In EDL muscles, Brazilian propolis ingestion suppressed the accumulation of MGO-derived advanced glycation end products (AGEs) in MGO-treated mice. The activity of glyoxalase 1 was not affected by MGO, but was enhanced by Brazilian propolis in EDL muscles. MGO treatment increased mRNA expression of inflammation-related molecules, interleukin (IL)-1ß, IL-6, and toll-like receptor 4 (TLR4). Brazilian propolis ingestion suppressed these increases. MGO and/or propolis exerted no effect on the accumulation of AGEs, glyoxalase 1 activity, and inflammatory responses in soleus muscles. These results suggest that Brazilian propolis exerts a protective effect against glycation stress by inhibiting the accumulation of AGEs, promoting MGO detoxification, and reducing proinflammatory responses in the skeletal muscle. However, these anti-glycation effects does not lead to prevent glycation-induced muscle mass reduction.

17.
Antioxidants (Basel) ; 8(9)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480513

RESUMEN

Uncontrolled accumulation of methylglyoxal (MG) and reactive oxygen species (ROS) occurs in hyperglycemia-induced endothelial dysfunction associated with diabetes. Resveratrol (RSV) protects the endothelium upon high glucose (HG); however, the mechanisms underlying such protective effects are still debated. Here we identified key molecular players involved in the glycative/oxidative perturbations occurring in endothelial cells exposed to HG. In addition, we determined whether RSV essentially required SIRT1 to trigger adaptive responses in HG-challenged endothelial cells. We used primary human umbilical vein endothelial cells (HUVECs) undergoing a 24-h treatment with HG, with or without RSV and EX527 (i.e., SIRT1 inhibitor). We found that HG-induced glycative stress (GS) and oxidative stress (OS), by reducing SIRT1 activity, as well as by diminishing the efficiency of MG- and ROS-targeting protection. RSV totally abolished the HG-dependent cytotoxicity, and this was associated with SIRT1 upregulation, together with increased expression of GLO1, improved ROS-scavenging efficiency, and total suppression of HG-related GS and OS. Interestingly, RSV failed to induce effective response to HG cytotoxicity when EX527 was present, thus suggesting that the upregulation of SIRT1 is essential for RSV to activate the major antiglycative and antioxidative defense and avoid MG- and ROS-dependent molecular damages in HG environment.

18.
Int J Biol Macromol ; 115: 287-299, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29634967

RESUMEN

Glycation initiates with the non-enzymatic reaction of amino group of proteins and lipoproteins by carbonyl group of sugar moiety and intermediates of glycative stress such as methylglyoxal (MG). The initial glycation leads to the formation of early glycation products (Amadori products) which undergo rearrangement, cyclization and dehydration to form advanced glycation end products (AGEs). The main objective of the present study is to investigate the non-enzymatic glycation of low density lipoprotein (LDL) by MG at different concentration and at increasing incubation time period in vitro. This modification may increase the formation of Amadori products and AGEs which are physico-chemically characterized with respect to the extent of LDL modification. Additionally, immunogenicity of native and MG modified LDL (MG-LDL) was probed in female rabbits in vivo. Immunogenicity of MG-LDL was found to be highly immunogenic, eliciting high titer immunogen-specific antibodies while native form of LDL is less immunogenic. Furthermore, the histopathology and immune-fluorescence studies suggest that the kidney section of immunized rabbits exhibit the presence of immune complex (MG-LDL-IgG) deposition in the glomerular basement membrane (GBM).


Asunto(s)
Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Animales , Arginina/análisis , Femenino , Productos Finales de Glicación Avanzada , Humanos , Inmunoquímica , Lisina/análisis , Conejos
19.
Food Sci Nutr ; 6(1): 197-206, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29387379

RESUMEN

In this study, the effects on the maintenance of normal bloodstream by lipopolysaccharide (LPS) were investigated in the parallel-group randomized double-blind study using supplement containing Pantoea agglomerans LPS (201.5 µg/tablet as LPS). Screening was previously performed in the implementation of the study. Adult males and females with normal value to borderline (healthy subjects) in the hematologic parameters, for which reference values were given, were chosen in this study. The period of ingestion of the supplement was 3 months. As the result, a significant decrease in the rate of change (the ratio when the baseline was 1) of HbA1c, which is a glycative stress marker, was found in the group which ingested LPS supplement after 3 months. Also, a significant increase in the number of fingertip capillary vessels was found compared with the control group. From these results, the effects of the maintenance of bloodstream by ingestion of LPS were shown.

20.
Semin Cancer Biol ; 49: 9-19, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29113952

RESUMEN

Oxidative, carbonyl, and glycative stress have gained substantial attention recently for their alleged influence on cancer progression. Oxidative stress can trigger variable transcription factors, such as nuclear factor erythroid-2-related factor (Nrf2), nuclear factor kappa B (NF-κB), protein-53 (p-53), activating protein-1 (AP-1), hypoxia-inducible factor-1α (HIF-1α), ß-catenin/Wnt and peroxisome proliferator-activated receptor-γ (PPAR-γ). Activated transcription factors can lead to approximately 500 different alterations in gene expression, and can alter expression patterns of inflammatory cytokines, growth factors, regulatory cell cycle molecules, and anti-inflammatory molecules. These alterations of gene expression can induce a normal cell to become a tumor cell. Glycative stress resulting from advanced glycation end products (AGEs) and reactive dicarbonyls can significantly affect cancer progression. AGEs are fashioned from the multifaceted chemical reaction of reducing sugars with a compound containing an amino group. AGEs bind to and trigger the receptor for AGEs (RAGE) through AGE-RAGE interaction, which is a major modulator of inflammation allied tumors. Dicarbonyls like, GO (glyoxal), MG (methylglyoxal) and 3-DG (3-deoxyglucosone) fashioned throughout lipid peroxidation, glycolysis, and protein degradation are viewed as key precursors of AGEs. These dicarbonyls lead to the carbonyl stress in living organisms, possibly resulting in carbonyl impairment of proteins, carbohydrates, DNA, and lipoproteins. The damage caused by carbonyls results in numerous lesions, some of which are involved in cancer pathogenesis. In this review, the effects of oxidative, carbonyl and glycative stress on cancer initiation and progression are thoroughly discussed, including probable signaling pathways and the effects on tumorigenesis.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Neoplasias/metabolismo , Estrés Oxidativo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal , Animales , Glicosilación , Humanos , Inflamación/metabolismo , Masculino , Oxidación-Reducción , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA