Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36382659

RESUMEN

Omega 3 (ω3) fatty acids have been described since the 1980s as promising anti-inflammatory substances. Prostaglandin and leukotriene modulation were exhaustively explored as the main reason for ω3 beneficial outcomes. However, during the early 2000s, after the human genome decoding advent, the nutrigenomic approaches exhibited an impressive plethora of ω3 targets, now under the molecular point of view. Different G protein-coupled receptors (GPCRs) recognizing ω3 and its derivatives appear to be responsible for blocking inflammation and insulin-sensitizing effects. A new class of ω3-derived substances, such as maresins, resolvins, and protectins, increases ω3 actions. Inflammasome disruption, the presence of GPR120 on immune cell surfaces, and intracellular crosstalk signaling mediated by PPARγ compose the last discoveries regarding the multipoint anti-inflammatory targets for this nutrient. This review shows a detailed mechanistic proposal to understand ω3 fatty acid action over the inflammatory environment in the background of several chronic diseases.

2.
Trials ; 22(1): 927, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34922604

RESUMEN

The low-grade inflammation is pivotal in obesity and its comorbidities; however, the inflammatory proteins are out of target for traditional drug therapy. Omega-3 (ω3) fatty acids can modulate the downstream signaling of Toll-like receptor (TLR) and tumor necrosis factor-α receptor (TNFα) through GPR120, a G-protein-coupled receptor, a mechanism not yet elucidated in humans. This work aims to investigate if the ω3 supplementation, at a feasible level below the previously recommended level in the literature, is enough to disrupt the inflammation and endoplasmic reticulum stress (ER-stress), and also if in acute treatment (3 h) ω3 can activate the GPR120 in peripheral blood mononuclear cells (PBMC) and leukocytes from overweight non-alcoholic fatty liver disease (NAFLD) participants. The R270H variant of the Ffar4 (GPR120 gene) will also be explored about molecular responses and blood lipid profiles. A triple-blind, prospective clinical trial will be conducted in overweight men and women, aged 19-75 years, randomized into placebo or supplemented (2.2 g of ω3 [EPA+DHA]) groups for 28 days. For sample calculation, it was considered the variation of TNFα protein and a 40% dropout rate, obtaining 22 individuals in each group. Volunteers will be recruited among patients with NAFLD diagnosis. Anthropometric parameters, food intake, physical activity, total serum lipids, complete fatty acid blood profile, and glycemia will be evaluated pre- and post-supplementation. In the PBMC and neutrophils, the protein content and gene expression of markers related to inflammation (TNFα, MCP1, IL1ß, IL6, IL10, JNK, and TAK1), ER-stress (ATF1, ATF6, IRE1, XBP1, CHOP, eIF2α, eIF4, HSP), and ω3 pathway (GPR120, ß-arrestin2, Tab1/2, and TAK1) will be evaluated using Western blot and RT-qPCR. Participants will be genotyped for the R270H (rs116454156) variant using the TaqMan assay. It is hypothesized that attenuation of inflammation and ER-stress signaling pathways in overweight and NAFLD participants will be achieved through ω3 supplementation through binding to the GPR120 receptor. TRIAL REGISTRATION: ClinicalTrials.gov #RBR-7x8tbx. Registered on May 10, 2018, with the Brazilian Registry of Clinical Trials.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Estrés del Retículo Endoplásmico , Humanos , Inflamación , Leucocitos Mononucleares , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Sobrepeso , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Eur J Pharmacol ; 889: 173595, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32986985

RESUMEN

Human embryonic kidney (HEK) 293 cells were co-transfected with plasmids for the expression of mCherry fluorescent protein-tagged FFA4 receptors and the enhanced green fluorescent protein-tagged Rab proteins involved in retrograde transport and recycling, to study their possible interaction through Förster Resonance Energy Transfer (FRET), under the action of agents that induce FFA4 receptor phosphorylation and internalization through different processes, i.e., the agonist, docosahexaenoic acid, the protein kinase C activator phorbol myristate acetate, and insulin. Data indicate that FFA4 receptor internalization varied depending on the agent that induced the process. Agonist activation (docosahexaenoic acid) induced an association with early endosomes (as suggested by interaction with Rab5) and rapid recycling to the plasma membrane (as indicated by receptor interaction with Rab4). More prolonged agonist stimulation also appears to allow the FFA4 receptors to interact with late endosomes (interaction with Rab9), slow recycling (interaction with Rab 11), and target to degradation (Rab7). Phorbol myristate acetate, triggered a rapid association with early endosomes (Rab5), slow recycling to the plasma membrane (Rab11), and some receptor degradation (Rab7). Insulin-induced FFA4 receptor internalization appears to be associated with interaction with early endosomes (Rab5) and late endosomes (Rab9) and fast and slow recycling to the plasma membrane (Rab4, Rab11). Additionally, we observed that agonist- and PMA-induced FFA4 internalization was markedly reduced by paroxetine, which suggests a possible role of G protein-coupled receptor kinase 2.


Asunto(s)
Ácidos Docosahexaenoicos/metabolismo , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acetato de Tetradecanoilforbol/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Ácidos Docosahexaenoicos/farmacología , Células HEK293 , Humanos , Insulina/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Isoformas de Proteínas/metabolismo , Acetato de Tetradecanoilforbol/farmacología
4.
Am J Physiol Endocrinol Metab ; 319(5): E877-E892, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32893672

RESUMEN

Free fatty acid (FFA) receptors FFA1 and FFA4 are omega-3 molecular targets in metabolic diseases; however, their function in cancer cachexia remains unraveled. We assessed the role of FFA1 and FFA4 receptors in the mouse model of cachexia induced by Lewis lung carcinoma (LLC) cell implantation. Naturally occurring ligands such as α-linolenic acid (ALA) and docosahexaenoic acid (DHA), the synthetic FFA1/FFA4 agonists GW9508 and TUG891, or the selective FFA1 GW1100 or FFA4 AH7614 antagonists were tested. FFA1 and FFA4 expression and other cachexia-related parameters were evaluated. GW9508 and TUG891 decreased tumor weight in LLC-bearing mice. Regarding cachexia-related end points, ALA, DHA, and the preferential FFA1 agonist GW9508 rescued body weight loss. Skeletal muscle mass was reestablished by ALA treatment, but this was not reflected in the fiber cross-sectional areas (CSA) measurement. Otherwise, TUG891, GW1100, or AH7614 reduced the muscle fiber CSA. Treatments with ALA, GW9508, GW1100, or AH7614 restored white adipose tissue (WAT) depletion. As for inflammatory outcomes, ALA improved anemia, whereas GW9508 reduced splenomegaly. Concerning behavioral impairments, ALA and GW9508 rescued locomotor activity, whereas ALA improved motor coordination. Additionally, DHA improved grip strength. Notably, GW9508 restored abnormal brain glucose metabolism in different brain regions. The GW9508 treatment increased leptin levels, without altering uncoupling protein-1 downregulation in visceral fat. LLC-cachectic mice displayed FFA1 upregulation in subcutaneous fat, but not in visceral fat or gastrocnemius muscle, whereas FFA4 was unaltered. Overall, the present study shed new light on FFA1 and FFA4 receptors' role in metabolic disorders, indicating FFA1 receptor agonism as a promising strategy in mitigating cancer cachexia.


Asunto(s)
Peso Corporal/efectos de los fármacos , Caquexia/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Ácidos Docosahexaenoicos/uso terapéutico , Receptores Acoplados a Proteínas G/metabolismo , Ácido alfa-Linolénico/uso terapéutico , Animales , Benzoatos/farmacología , Compuestos de Bifenilo/farmacología , Caquexia/etiología , Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/complicaciones , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/farmacología , Metilaminas/farmacología , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Trasplante de Neoplasias , Fenilpropionatos/farmacología , Propionatos/farmacología , Pirimidinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Sulfonamidas/farmacología , Xantenos/farmacología , Ácido alfa-Linolénico/farmacología
5.
Eur J Pharmacol ; 855: 267-275, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31078517

RESUMEN

FFA4 (Free Fatty Acid receptor 4, previously known as GPR120) is a G protein-coupled receptor that acts as a sensor of long-chain fatty acids, modulates metabolism, and whose dysfunction participates in endocrine disturbances. FFA4 is known to be phosphorylated and internalized in response to agonists and protein kinase C activation. In this paper report the modulation of this fatty acid receptor by activation of receptor tyrosine kinases. Cell-activation with growth factors (insulin, epidermal growth factor, insulin-like growth factor-I, and platelet-derived growth factor) increases FFA4 phosphorylation in a time- and concentration-dependent fashion. This effect was blocked by inhibitors of protein kinase C and phosphoinositide 3-kinase, suggesting the involvement of these kinases in it. FFA4 phosphorylation did not alter agonist-induced FFA4 calcium signaling, but was associated with decreased ERK 1/2 phosphorylation. In addition, insulin, insulin-like growth factor-I, epidermal growth factor, and to a lesser extent, platelet-derived growth factor, induce receptor internalization. This action of insulin, insulin-like growth factor I, and epidermal growth factor was blocked by inhibitors of protein kinase C and phosphoinositide 3-kinase. Additionally, cell treatment with these growth factors induced FFA4-ß-arrestin coimmunoprecipitation. Our results evidenced cross-talk between receptor tyrosine kinases and FFA4 and suggest roles of protein kinase C and phosphoinositide 3-kinase in such a functional interaction.


Asunto(s)
Activadores de Enzimas/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Factores de Tiempo
6.
J Nutr Biochem ; 66: 52-62, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771734

RESUMEN

GPR120 and GPR40 were recently reported as omega-3 (ω3) receptors with anti-inflammatory properties. Physical exercise could increase the expression of these receptors in the liver, improving hepatic metabolism in obesity and type 2 diabetes. Our aim was to investigate GPR120/40 in the liver of lean and obese mice after acute or chronic physical exercise, with or without the supplementation of ω3 rich flaxseed oil (FS), as well as assess the impact of exercise and FS on insulin signaling and inflammation. Mice were fed a high-fat diet (HF) for 4 weeks to induce obesity and subsequently subjected to exercise with or without FS, or FS alone. Insulin signaling, inflammatory markers and GPR120/40 and related cascades were measured. Chronic, but not acute, exercise and FS increased GPR120, but not GPR40, activating ß-arrestin-2 and decreasing the inflammatory response, as well as reducing fat depots in liver and adipose tissue. Exercise or a source of ω3 led to a higher tolerance to fatigue and an increased running distance and speed. The combination of physical exercise and ω3 food sources could provide a new strategy against obesity through the modulation of hepatic GPR120 and an increase in exercise performance.


Asunto(s)
Ácidos Grasos Insaturados/farmacología , Aceite de Linaza/química , Hígado/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Tejido Adiposo , Animales , Antiinflamatorios no Esteroideos/farmacología , Dieta Alta en Grasa/efectos adversos , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Obesidad/dietoterapia , Obesidad/metabolismo , Condicionamiento Físico Animal
7.
J Recept Signal Transduct Res ; 38(1): 76-82, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29369009

RESUMEN

INTRODUCTION/AIMS: In recent years, it has been shown that free fatty acids receptors (FFAR) of whose function in the cell surface plays a significant role in the regulation of cell function and nutrition as well are activated by various endogenous ligands, but mainly by fatty acids. Within FFAR of our interest are GPR 41, 43 and 120. The functions of these receptors are varied and dependent on the tissue where they are. The activation and signaling of these receptors, FFAR, are involved in many physiological processes, and currently the target of many drugs in metabolic disorders like obesity, diabetes and atherosclerosis. MATERIAL AND METHODS: Obesity was induced with hypercaloric diet (HD) in male Wistar rats for 20 weeks (n = 10). At the end, adipose tissue (abdominal and subcutaneous) was taken to perform assays for relative quantification mRNA expression by end-point RT-PCR and protein level expression by Western blot. RESULTS: These present data have shown for the first time that total mRNA isolation and protein expression from both adipose tissues (abdominal and subcutaneous) of rat in obesity condition yield significative statistical difference among the control versus obese groups, showing that the diet high in carbohydrates modifies the total presence of mRNA and protein level expression of the receptors GPR41, 43 and 120. CONCLUSIONS: Further comparative methods are in process to clarify whether or not the obesity changes the functional receptors in these two tissues for new pharmacological approaches.


Asunto(s)
Obesidad/tratamiento farmacológico , Obesidad/genética , Receptores Acoplados a Proteínas G/genética , Tejido Adiposo/metabolismo , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Ácidos Grasos no Esterificados/genética , Ácidos Grasos no Esterificados/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Insulina/genética , Insulina/metabolismo , Obesidad/metabolismo , Obesidad/patología , Ratas , Receptores Acoplados a Proteínas G/metabolismo
8.
J Nutr Biochem ; 53: 9-19, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29175142

RESUMEN

The "first hit" to atherogenesis is driven by toll-like receptor 4, endoplasmic reticulum stress and ultimately metabolic dysfunction. In this study, we hypothesized that a flaxseed oil-enriched diet (FS) abolishes these inflammatory signaling pathway and restore metabolic homeostasis by activating the fatty acid receptor GPR120 in aorta of obese mice. Glucose homeostasis was assessed by GTT and ITT; lipidomics was performed using a Hybrid Ion Trap-Orbitrap Mass Spectrometer; serum lipids were measured using colorimetric assays; GPR120 and infiltrating macrophages were analyzed by immunofluorescence; protein immunoprecipitation and gene expression were evaluated by Western blot and RT-PCR, respectively. There were no differences in body weight and food intake between the groups from both strains (Swiss and LDLr-KO mice). GTT and cholesterol levels were improved by FS in both mice models. Lipidomics showed an increase in ω3 (C18:3) content, meanwhile stearic acid (C18:0) was not detected in endothelial tissue in response to FS. Moreover, FS markedly decreased pro-inflammatory (IL-1ß, TNF-α, pIκBα, pIKKß) and unfolded protein response markers (ATF6 and GRP78) in aorta. In Swiss mice, GPR120 was partially involved in the ω3-mediated anti-inflammatory actions, disrupting TLR4 pathway, but not in LDLr-KO mice. Partial replacement of dietary saturated by unsaturated ω3 fatty acids contributes to inhibition of cardiovascular risk markers, pro-inflammatory cytokines and ER stress sensors and effectors in the aorta. However, downregulation of inflammation is not mediated by arterial GPR120 activation.


Asunto(s)
Aortitis/prevención & control , Estrés del Retículo Endoplásmico/efectos de los fármacos , Aceite de Linaza/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Aortitis/metabolismo , Modelos Animales de Enfermedad , Dislipidemias/dietoterapia , Dislipidemias/fisiopatología , Chaperón BiP del Retículo Endoplásmico , Ácidos Grasos Omega-3/farmacología , Aceite de Linaza/química , Lípidos/sangre , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Noqueados , Obesidad/dietoterapia , Obesidad/fisiopatología , Sustancias Protectoras/farmacología , Receptores de LDL/genética
9.
J Neuroinflammation ; 14(1): 91, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28446241

RESUMEN

BACKGROUND: The consumption of large amounts of dietary fats is one of the most important environmental factors contributing to the development of obesity and metabolic disorders. GPR120 and GPR40 are polyunsaturated fatty acid receptors that exert a number of systemic effects that are beneficial for metabolic and inflammatory diseases. Here, we evaluate the expression and potential role of hypothalamic GPR120 and GPR40 as targets for the treatment of obesity. METHODS: Male Swiss (6-weeks old), were fed with a high fat diet (HFD, 60% of kcal from fat) for 4 weeks. Next, mice underwent stereotaxic surgery to place an indwelling cannula into the right lateral ventricle. intracerebroventricular (icv)-cannulated mice were treated twice a day for 6 days with 2.0 µL saline or GPR40 and GPR120 agonists: GW9508, TUG1197, or TUG905 (2.0 µL, 1.0 mM). Food intake and body mass were measured during the treatment period. At the end of the experiment, the hypothalamus was collected for real-time PCR analysis. RESULTS: We show that both receptors are expressed in the hypothalamus; GPR120 is primarily present in microglia, whereas GPR40 is expressed in neurons. Upon intracerebroventricular treatment, GW9508, a non-specific agonist for both receptors, reduced energy efficiency and the expression of inflammatory genes in the hypothalamus. Reducing GPR120 hypothalamic expression using a lentivirus-based approach resulted in the loss of the anti-inflammatory effect of GW9508 and increased energy efficiency. Intracerebroventricular treatment with the GPR120- and GPR40-specific agonists TUG1197 and TUG905, respectively, resulted in milder effects than those produced by GW9508. CONCLUSIONS: GPR120 and GPR40 act in concert in the hypothalamus to reduce energy efficiency and regulate the inflammation associated with obesity. The combined activation of both receptors in the hypothalamus results in better metabolic outcomes than the isolated activation of either receptor alone.


Asunto(s)
Metabolismo Energético/fisiología , Ácidos Grasos Insaturados/biosíntesis , Homeostasis/fisiología , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/biosíntesis , Animales , Línea Celular , Ácidos Grasos Insaturados/genética , Expresión Génica , Inflamación/genética , Inflamación/metabolismo , Masculino , Ratones , Microglía/metabolismo , Obesidad/genética , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-28237082

RESUMEN

Arachidonic acid increased intracellular calcium, in cells expressing green fluorescent protein-tagged human FFA4 receptors, with an EC50 of ~40µM. This action was not blocked by cyclooxygenase or lipoxigenase inhibitors but it was inhibited by AH7614, a FFA4 antagonist. Arachidonic acid induced ERK activation accompanied by EGF receptor transactivation. However, EGF transactivation was not the major mechanism through which the fatty acid induced ERK phosphorylation, as evidenced by the inability of AG1478 to block it. Arachidonic acid increased FFA4 receptor phosphorylation that reached its maximum within 15min with an EC50 of ~30µM; inhibitors of protein kinase C partially diminish this effect and AH7614 blocked it. Arachidonic acid induced rapid and sustained Akt/PKB phosphorylation and FFA4 - ß-arrestin interaction. Confocal microscopy evidenced that FFA4 receptor activation and phosphorylation were associated to internalization. In conclusion, arachidonic acid is a bona fide FFA4 receptor agonist.


Asunto(s)
Ácido Araquidónico/farmacología , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Calcio/metabolismo , Línea Celular , Células HEK293 , Humanos , Fosforilación , Quinazolinas/farmacología , Transducción de Señal/efectos de los fármacos , Tirfostinos/farmacología , beta-Arrestinas/metabolismo
11.
Int J Mol Sci ; 18(1)2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-28025563

RESUMEN

BACKGROUND: Upon natural agonist or pharmacological stimulation, G protein-coupled receptors (GPCRs) are subjected to posttranslational modifications, such as phosphorylation and ubiquitination. These posttranslational modifications allow protein-protein interactions that turn off and/or switch receptor signaling as well as trigger receptor internalization, recycling or degradation, among other responses. Characterization of these processes is essential to unravel the function and regulation of GPCR. METHODS: In silico analysis and methods such as mass spectrometry have emerged as novel powerful tools. Both approaches have allowed proteomic studies to detect not only GPCR posttranslational modifications and receptor association with other signaling macromolecules but also to assess receptor conformational dynamics after ligand (agonist/antagonist) association. RESULTS: this review aims to provide insights into some of these methodologies and to highlight how their use is enhancing our comprehension of GPCR function. We present an overview using data from different laboratories (including our own), particularly focusing on free fatty acid receptor 4 (FFA4) (previously known as GPR120) and α1A- and α1D-adrenergic receptors. From our perspective, these studies contribute to the understanding of GPCR regulation and will help to design better therapeutic agents.


Asunto(s)
Procesamiento Proteico-Postraduccional , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Espectrometría de Masas/métodos , Unión Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
12.
Biol Res Nurs ; 18(4): 411-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26747719

RESUMEN

BACKGROUND: The development of methods for improving skin wound healing may have an impact on the outcomes of a number of medical conditions. The topical use of polyunsaturated fatty acids (PUFAs) can accelerate skin wound healing through mechanisms that involve, at least in part, the modulation of inflammatory activity. PURPOSE: We evaluated whether G-protein-coupled receptor 120 (GPR120), a recently identified receptor for docosahexaenoic acid (DHA) with anti-inflammatory activity, is expressed in the skin and responds to topical DHA. METHOD: Male Wistar rats were submitted to an 8.0-mm wound on the back and were immediately administered a topical treatment of a solution containing 30 µM of DHA once a day. The healing process was photodocumented, and tissues were collected on Days 5, 9, and 15 for protein and RNA analyses and histological evaluation. RESULTS: GPR120 was expressed in the intact skin and in the wound. Keratinocytes expressed the most skin GPR120, while virtually no expression was detected in fibroblasts. Upon DHA topical treatment, wound healing was significantly accelerated and was accompanied by the molecular activation of GPR120, as determined by its association with ß-arrestin-2. In addition, DHA promoted a reduction in the expression of interleukin (IL) 1ß and an increase in the expression of IL-6. Furthermore, there was a significant increase in expression of transforming growth factor ß (TGF-ß) and the keratinocyte marker involucrin. DISCUSSION: Topical DHA improved skin wound healing. The activation of GPR120 is potentially involved in this process.


Asunto(s)
Antiinflamatorios/farmacología , Ácidos Docosahexaenoicos/farmacología , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Piel/efectos de los fármacos , Piel/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Administración Tópica , Animales , Antiinflamatorios/administración & dosificación , Ácidos Docosahexaenoicos/administración & dosificación , Masculino , Ratas , Ratas Wistar , Cicatrización de Heridas/fisiología
13.
Eur J Pharmacol ; 723: 368-74, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24239485

RESUMEN

GPR120, free fatty acid receptor 4, is a recently deorphanized G protein-coupled receptor that seems to play cardinal roles in the regulation of metabolism and in the pathophysiology of inflammatory and metabolic disorders. In the present work a GPR120-Venus fusion protein was expressed in HEK293 Flp-In T-REx cells and its function (increase in intracellular calcium) and phosphorylation were studied. It was observed that the fusion protein migrated in sodium dodecyl sulfate-polyacrylamide gels as a band with a mass of ≈70-75kDa, although other bands of higher apparent weight (>130kDa) were also detected. Cell stimulation with docosahexaenoic acid or α-linolenic acid induced concentration-dependent increases in intracellular calcium and GPR120 phosphorylation. Activation of protein kinase C with phorbol esters also induced a marked receptor phosphorylation but did not alter the ability of 1µM docosahexaenoic acid to increase the intracellular calcium concentration. Phorbol ester-induced GPR120 phosphorylation, but not that induced with docosahexaenoic acid, was blocked by protein kinase C inhibitors (bis-indolyl-maleimide I and Gö 6976) suggesting that conventional kinase isoforms mediate this action. The absence of effect of protein kinase C inhibitors on agonist-induced GPR120 phosphorylation indicates that this kinase does not play a major role in agonist-induced receptor phosphorylation. Docosahexaenoic acid action was associated with marked GPR120 internalization whereas that induced with phorbol esters was smaller at early times.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Proteína Quinasa C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido alfa-Linolénico/farmacología , Ácidos Grasos no Esterificados/farmacología , Células HEK293 , Humanos , Ésteres del Forbol/farmacología , Fosforilación , Proteínas Recombinantes de Fusión/metabolismo , Acetato de Tetradecanoilforbol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA