Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
2.
Sci Rep ; 14(1): 19503, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174637

RESUMEN

The present investigation reported that FYM application in different seasons influenced root, shoot, and seedling length, straw K, vigour index-I, nutrient uptake, grain, and stover yield of pearl millet significantly (P < 0.05) and followed the order: both seasons > kharif > rabi. Applying FYM in both seasons resulted in higher N, P, and K content in pearl millet grain (1.99%, 0.17%, and 0.37%, respectively) followed by kharif season application (1.93, 0.16, and 0.35%, respectively). Applying 15 t FYM ha-1 significantly increased the grain N (13.19%), P (63.16%), K (22.29%), protein (13.56%), stover N (32.76%), P (46.66%) and root length (29.83%) over FYM0. After 50 cropping cycles, continuous application of FYM15, FYM10, and FYM5 significantly improved vigour index-I by 52.85, 39.26, and 23.63% over no FYM, respectively. Applying 120 kg N ha-1 significantly increased N (6.38%), P (15.89%), and protein (6.03%) content, germination (5.91%), and vigour indexes (24.52 to 30.91%) of pearl millet grain over no fertilizer N. The treatment FYM15 × N120 increased the seedling length of pearl millet by 30.54 over N120 and 11.08% over FYM15 alone, respectively. Adding FYM either during both seasons or in the kharif season along with fertilizer N proved superior in improving the quality and yield of pearl millet.


Asunto(s)
Fertilizantes , Nitrógeno , Pennisetum , Triticum , Pennisetum/crecimiento & desarrollo , India , Nitrógeno/análisis , Nitrógeno/metabolismo , Triticum/crecimiento & desarrollo , Estaciones del Año , Plantones/crecimiento & desarrollo
3.
Front Plant Sci ; 15: 1433220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175489

RESUMEN

Straw return is regarded as a widely used field management strategy for improving soil health, but its comprehensive effect on crop grain yield and quality remains elusive. Herein, a meta-analysis containing 1822 pairs of observations from 78 studies was conducted to quantify the effect of straw return on grain yield and quality of three main crops (maize, rice, and wheat). On average, compared with no straw return, straw return significantly (p< 0.05) increased grain yield (+4.3%), protein content (+2.5%), total amino acids concentration (+1.2%), and grain phosphorus content (+3.6%), respectively. Meanwhile, straw return significantly (p< 0.05) decreased rice chalky grain rate (-14.4%), overall grain hardness (-1.9%), and water absorption of maize and wheat (-0.5%), respectively. Moreover, straw return effects on grain yield and quality traits were infected by cultivated crop types, straw return amounts, straw return methods, and straw return duration. Our findings illustrated that direct straw return increased three main crop grain yields and improved various quality traits among different agricultural production areas. Although improper straw return may increase plant disease risk and affect seed germination, our results suggest that full straw return with covered or plough mode is a more suitable way to enhance grain yield and quality. Our study also highlights that compared with direct straw return, straw burning or composting before application may also be beneficial to farmland productivity and sustainability, but comparative studies in this area are still lacking.

4.
Front Plant Sci ; 15: 1451897, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166250

RESUMEN

Plant spotted leaf (spl) mutants are useful to reveal the regulatory mechanisms of immune responses. Thus, in crop plants, their agronomic traits, especially the grain quality are usually ignored. Here, we characterized a rice spl mutant named spl-A (spotted leaf mutant from A814) that shows autoimmunity, broad-spectrum disease resistance and growth deterioration including decreased rice quality. A single nucleotide mutation of C1144T, which leads to change of the 382nd proline to serine, in the gene encoding the ATPases associated with diverse cellular activities (AAA)-type ATPase LRD6-6 is responsible for the phenotype of the spl-A mutant. Mechanistically, this mutation impairs LRD6-6 ATPase activity and disrupts its interaction with endosomal sorting complex required for transport (ESCRT)-III subunits OsSNF7.1/7.2/7.3. And thus, leading to compromise of multivesicular bodies (MVBs)-mediated vesicle trafficking and accumulation of ubiquitinated proteins in both leaves and seeds of spl-A. Therefore, the immune response of spl-A is activated, and the growth and grain quality are deteriorated. Our study identifies a new amino acid residue that important for LRD6-6 and provides new insight into our understanding of how MVBs-mediated vesicle trafficking regulates plant immunity and growth, including grain quality in rice.

5.
Rice (N Y) ; 17(1): 50, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136854

RESUMEN

Grain-filling of rice spikelets (particularly for the later flowering inferior spikelets) is an important characteristic that affects both quality and yield. Rice ratooning technology is used to cultivate a second crop from dormant buds that sprout from stubble left after the first harvest. This study used two rice varieties, the conventional indica rice 'Jinhui 809' and the hybrid indica-japonica rice 'Yongyou 1540', to assess the impact of rice ratooning on grain-filling. The results indicated that the grain-filling process in inferior spikelets of ratoon season rice (ISR) showed significant improvement compared to inferior spikelets of main crop (late season) rice (ISL). This improvement was evident in the earlier onset of rapid grain-filling, higher seed-setting percentage, and improved grain quality. A label-free quantitative proteomic analysis using mass spectrometry identified 1724 proteins with significant abundance changes, shedding light on the molecular mechanisms behind the improved grain-filling in ISR. The functional analysis of these proteins indicated that ratooning stimulated the metabolic processes of sucrose-starch, trehalose, and hormones in rice inferior spikelets, leading to enhanced enzyme activities related to starch synthesis, elevated concentrations of trehalose-6-phosphate (T6P), indole-3-acetic acid (IAA) and zeatin riboside (ZR) during the active grain-filling phase. This research highlighted the importance of the GF14f protein as a key regulator in the grain-filling process of ISR. It revealed that GF14f transcriptional and protein levels declined more rapidly in ISR compared to ISL during grain-filling. Additionally, the GF14f-RNAi plants specific to the endosperm exhibited improved quality in inferior spikelets. These findings suggest that the enhancement of starch synthesis, increased levels of IAA, ZR, and T6P, along with the rapid decrease in GF14f protein, play a role in enhancing grain-filling in ratoon season rice.

6.
Front Plant Sci ; 15: 1436998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39049859

RESUMEN

Cytoplasmic 6-phosphogluconate dehydrogenase (G6PGH) is a key enzyme in the pentose phosphate pathway that is involved in regulating various biological processes such as material metabolism, and growth and development in plants. However, it was unclear if OsG6PGH1 affected rice grain quality traits. We perform yeast one-hybrid experiments and reveal that OsG6PGH1 may interact with OsAAP6. Subsequently, yeast in vivo point-to-point experiments and local surface plasmon resonance experiments verified that OsG6PGH1 can bind to OsAAP6. OsG6PGH1 in rice is a constitutive expressed gene that may be localized in the cytoplasm. OsAAP6 and protein-synthesis metabolism-related genes are significantly upregulated in OsG6PGH1 overexpressing transgenic positive endosperm, corresponding to a significant increase in the number of protein bodies II, promoting accumulation of related storage proteins, a significant increase in grain protein content (GPC), and improved rice nutritional quality. OsG6PGH1 positively regulates amylose content, negatively regulates chalkiness rate and taste value, significantly affects grain quality traits such as appearance, cooking, and eating qualities of rice, and is involved in regulating the expression of salt stress related genes, thereby enhancing the salt-stress tolerance of rice. Therefore, OsG6PGH1 represents an important genetic resource to assist in the design of high-quality and multi-resistant rice varieties.

7.
J Sci Food Agric ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39072768

RESUMEN

BACKGROUND: This study aims to quantify the impacts of chilling at the grain filling stage on rice yield and grain quality. A factorial experiment with four levels of temperature and duration of chilling treatments at the early and late grain filling stages was conducted in 2017, 2018 and 2019. RESULTS: Per 10 °C·day increase in the accumulated cooling degree day at the early and late grain filling stages, the rice emergence-maturity duration was delayed by 0.8% (0.6%) and rice yield decreased by 2.2% (1.7%). Chilling at the early grain filling stage decreased the rice heading rate, while chilling at the late grain filling stage increased rice amylose but decreased protein content. For chilling treatment at the early grain filling stage, rice yield and grain quality were mainly correlated with seed-setting rate, whereas for chilling treatment at the late grain filling stage the rice yield and grain quality were mainly correlated with 1000-grain weight. CONCLUSION: This study improved the understanding of how chilling at the grain filling stages affects rice phenology, yield and grain quality, providing a theoretical basis for maintaining rice yield while ensuring grain quality. The results could be used to guide the rice-growing community in combating chilling at grain filling stages. © 2024 Society of Chemical Industry.

8.
Plants (Basel) ; 13(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39065463

RESUMEN

Our previous studies have shown physiological and yield intensification of selected crops with the application of nanoparticles (NPs). However, the impact on the quantitative, qualitative, and yield parameters of maize (Zea mays L.) in field conditions remains highly debated. This study aimed to evaluate the effects of zinc oxide (ZnO-NPs), gold NPs anchored to meso-biosilica (Au-NP-bioSi), and titanium dioxide (TiO2-NPs) as biological stimulants under field conditions during the vegetation season of 2021 in the Central European region. The study assessed the effects on the number of plants, yield, yield components, and nutritional quality, including mineral nutrients, starch, and crude protein levels. The potential translocation of these chemically-physically stable NPs, which could pose a hazard, was also investigated. The results indicate that Au-NP-bioSi and ZnO-NPs-treatments were the most beneficial for yield and yield components at a statistically significant level. Mineral nutrient outcomes were varied, with the NP-free variant performing the best for phosphorus-levels, while Au-NP-bioSi and ZnO-NPs were optimal for crude protein. Starch content was comparable across the TiO2-NPs, Au-NP-bioSi, and control variants. Importantly, we observed no hazardous translocation of NPs or negative impacts on maize grain quality. This supports the hypothesis that NPs can serve as an effective tool for precise and sustainable agriculture.

9.
J Fungi (Basel) ; 10(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057389

RESUMEN

This study aims to understand the influence of nitrogen accumulation, fungal endophyte, yield, nitrogen use efficiency, and grain nutritional quality parameters on the yield of quinoa in some areas of China. The endophytic microbial community in plants plays a crucial role in plant growth, development, and health, especially in quinoa plants under different nitrogen fertilizer levels. The results from the present study indicated that appropriate nitrogen application significantly enhanced the nitrogen accumulation and yield of quinoa grains during maturity, increasing by 34.54-42.18% and 14.59-30.71%, respectively. Concurrently, protein content, amylose, total starch, ash, and fat content also increased, with respective growth rates of 1.15-18.18%, 30.74-42.53%, 6.40-12.40%, 1.94-21.94%, and 5.32-22.22%. Our constructed interaction network of bacterial and fungal communities revealed that bacteria outnumbered fungi significantly, and most of them exhibited synergistic interactions. The moderate increase in N150 was beneficial for increasing quinoa yield, achieving nitrogen use efficiency (NUE) of over 20%. The N210 was increased, and both the yield and NUE significantly decreased. This study provides novel insights into the impact of nitrogen fertilizer on quinoa growth and microbial communities, which are crucial for achieving agricultural sustainable development.

11.
Plants (Basel) ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891248

RESUMEN

Conventional water and nitrogen (N) management practice in north China, comprising flood irrigation and N fertilizer broadcast (FB), limits sustainable wheat production. Drip fertigation (DF) has been widely adopted in wheat production in recent years and has effectively improved yields. However, the responses of the yield and quality to the N topdressing rate (NTR) under DF are still unclear. This study determined the responses of the wheat yield and quality to NTR under DF, as well as assessing whether DF could synergistically increase the yield and quality. A field experiment was conducted in north China for two seasons (2021-2023) using a split-plot design with three replicates. The main plot used the management practice (FB and DF) and the sub-plot had N treatment (no N applied, and NTRs of 0, 40, 80, 120, and 160 kg ha-1 with 150 kg N ha-1 as basal fertilizer, denoted as N0, T0, T40, T80, T120, and T160, respectively). Our results showed that high and saturated wheat yields (12.08 and 11.46 t ha-1) were obtained under DF at T80, and the highest yields were produced at T160 (11.71 and 11.30 t ha-1) under FB. Compared with FB, the greatest yield increase of 10.4-12.6% was achieved at T80 under DF. A higher spike number due to the increased effective stem percentage and a greater grain weight because of enhanced post-anthesis biomass production (BPpost) explained the improved yield under DF. The enhanced post-anthesis radiation use efficiency (RUE) led to the greater BPpost under DF. The enhanced specific leaf N, antioxidant capacity, and stomatal conductance under DF explained the higher light-saturated photosynthesis rate of flag leaves, which partly led to the increased post-anthesis RUE. NTR higher than 80 kg ha-1 did not enhance the yield, but it significantly improved the gliadin and glutelin contents, thereby leading to a higher total protein content, better gluten characteristics, and superior processing quality. Therefore, drip fertigation is a practical strategy for increasing both yield and quality with reduced water input and appropriate N input in irrigated winter wheat in north China. Applying 80 kg ha-1 of NTR under drip irrigation produces a high yield, but further gain in grain quality needs a higher NTR.

12.
BMC Genomics ; 25(1): 581, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858648

RESUMEN

BACKGROUND: Phospholipases constitute a diverse category of enzymes responsible for the breakdown of phospholipids. Their involvement in signal transduction with a pivotal role in plant development and stress responses is well documented. RESULTS: In the present investigation, a thorough genome-wide analysis revealed that the pearl millet genome contains at least 44 phospholipase genes distributed across its 7 chromosomes, with chromosome one harbouring the highest number of these genes. The synteny analysis suggested a close genetic relationship of pearl millet phospholipases with that of foxtail millet and sorghum. All identified genes were examined to unravel their gene structures, protein attributes, cis-regulatory elements, and expression patterns in two pearl millet genotypes contrasting for rancidity. All the phospholipases have a high alpha-helix content and distorted regions within the predicted secondary structures. Moreover, many of these enzymes possess binding sites for both metal and non-metal ligands. Additionally, the putative promoter regions associated with these genes exhibit multiple copies of cis-elements specifically responsive to biotic and abiotic stress factors and signaling molecules. The transcriptional profiling of 44 phospholipase genes in two genotypes contrasting for rancidity across six key tissues during pearl millet growth revealed a predominant expression in grains, followed by seed coat and endosperm. Specifically, the genes PgPLD-alpha1-1, PgPLD-alpha1-5, PgPLD-delta1-7a, PgPLA1-II-1a, and PgPLD-delta1-2a exhibited notable expression in grains of both the genotypes while showing negligible expression in the other five tissues. The sequence alignment of putative promoters revealed several variations including SNPs and InDels. These variations resulted in modifications to the corresponding cis-acting elements, forming distinct transcription factor binding sites suggesting the transcriptional-level regulation for these five genes in pearl millet. CONCLUSIONS: The current study utilized a genome-wide computational analysis to characterize the phospholipase gene family in pearl millet. A comprehensive expression profile of 44 phospholipases led to the identification of five grain-specific candidates. This underscores a potential role for at least these five genes in grain quality traits including the regulation of rancidity in pearl millet. Therefore, this study marks the first exploration highlighting the possible impact of phospholipases towards enhancing agronomic traits in pearl millet.


Asunto(s)
Grano Comestible , Familia de Multigenes , Pennisetum , Fosfolipasas , Pennisetum/genética , Pennisetum/metabolismo , Fosfolipasas/genética , Fosfolipasas/metabolismo , Fosfolipasas/química , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sintenía , Perfilación de la Expresión Génica , Genotipo , Mapeo Cromosómico
13.
J Hazard Mater ; 474: 134816, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850928

RESUMEN

Polyethylene microplastics (PE MPs) are the main MPs in agricultural soils and undergo oxidation upon environmental exposure. However, the influence of MP oxidation on phytotoxicity (especially for crop fruit) is still limited. This study aimed to explore the effect of PE MP oxidation on crop toxicity. Herein, a combination of plant phenotyping, metabolomic, and transcriptomic approaches was used to evaluate the effects of low-oxidation PE (LOPE) and high-oxidation PE (HOPE) on wheat growth, grain quality, and related molecular mechanisms using pot experiments. The results showed that HOPE induced a stronger inhibition of wheat growth and reduction in protein content and mineral elements than LOPE. This was accompanied by root ultrastructural damage and downregulation of carbohydrate metabolism, translation, nutrient reservoir activity, and metal ion binding gene expression. Compared with HOPE, LOPE activated a stronger plant defense response by reducing the starch content by 22.87 %, increasing soluble sugar content by 44.93 %, and upregulating antioxidant enzyme genes and crucial metabolic pathways (e.g., starch and sucrose, linoleic acid, and phenylalanine metabolism). The presence of PE MPs in the environment exacerbates crop growth inhibition and fruit quality deterioration, highlighting the need to consider the environmental and food safety implications of MPs in agricultural soils.


Asunto(s)
Microplásticos , Oxidación-Reducción , Polietileno , Triticum , Triticum/efectos de los fármacos , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Polietileno/toxicidad , Microplásticos/toxicidad , Contaminantes del Suelo/toxicidad , Grano Comestible/metabolismo , Grano Comestible/efectos de los fármacos , Grano Comestible/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
14.
BMC Plant Biol ; 24(1): 491, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825702

RESUMEN

BACKGROUND: Vegetable soybean is an important vegetable crop in world. Seed size and soluble sugar content are considered crucial indicators of quality in vegetable soybean, and there is a lack of clarity on the molecular basis of grain quality in vegetable soybean. RESULTS: In this context, we performed a comprehensive comparative transcriptome analysis of seeds between a high-sucrose content and large-grain variety (Zhenong 6, ZN6) and a low-sucrose content and small-grain variety (Williams 82, W82) at three developmental stages, i.e. stage R5 (Beginning Seed), stage R6 (Full Seed), and stage R7 (Beginning Maturity). The transcriptome analysis showed that 17,107 and 13,571 differentially expressed genes (DEGs) were identified in ZN6 at R6 (vs. R5) and R7 (vs. R6), respectively, whereas 16,203 and 16,032 were detected in W82. Gene expression pattern and DEGs functional enrichment proposed genotype-specific biological processes during seed development. The genes participating in soluble sugar biosynthesis such as FKGP were overexpressed in ZN6, whereas those responsible for lipid and protein metabolism such as ALDH3 were more enhanced in W82, exhibiting different dry material accumulation between two genotypes. Furthermore, hormone-associated transcriptional factors involved in seed size regulation such as BEH4 were overrepresented in ZN6, exhibiting different seed size regulation processes between two genotypes. CONCLUSIONS: Herein, we not only discovered the differential expression of genes encoding metabolic enzymes involved in seed composition, but also identified a type of hormone-associated transcriptional factors overexpressed in ZN6, which may regulate seed size and soluble content. This study provides new insights into the underlying causes of differences in the soybean metabolites and appearance, and suggests that genetic data can be used to improve its appearance and textural quality.


Asunto(s)
Perfilación de la Expresión Génica , Glycine max , Semillas , Glycine max/genética , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/metabolismo , Transcriptoma , Genes de Plantas , Regulación de la Expresión Génica de las Plantas , Genotipo , Sacarosa/metabolismo
15.
Sci Rep ; 14(1): 12897, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839939

RESUMEN

An ample amount of water and soil nutrients is required for economic wheat production to meet the current food demands. Nitrogen (N) and zinc (Zn) fertigation in soils can produce a substantial wheat yield for a rapidly increasing population and bring a limelight to researchers. The present study was designed to ascertain N and Zn's synergistic role in wheat growth, yield, and physio-biochemical traits. A pot experiment was laid out under a complete randomized design with four N levels (N1-0, N2-60, N3- 120, and N4-180 kg ha-1), Zn (T1-0, T2-5, T3-10, and T4-15 kg ha-1) with four replications. After the emergence of the plants, N and Zn fertigation was applied in the soil. The growth traits were considerably increased by combined applications as compared to the sole applications of the N and Zn. The photosynthetic pigments were found maximum due to combined applications of N and Zn, which were positively associated with biomass, growth, yield, and wheat grain quality. The combined application also substantially enhances the antioxidant enzyme activities to scavenge the ROS as H2O2 and reduce lipid peroxidation to protect the permeability of the biologic membranes. The combined higher applications of N and Zn were more responsive to ionic balance in a shoot by maintaining the Na+ for osmotic adjustments, accumulating more Ca2+ for cellular signaling; but, combined applications resulted in K+ reduction. Our present results suggest that appropriate sole or combined applications of N and Zn improve wheat's growth, yield, and antioxidant mechanisms. Previous studies lack sufficient information on N and Zn combined fertigation. We intend to investigate both the sole and combined roles of N and Zn to exploit their potential synergistic effects on wheat.


Asunto(s)
Antioxidantes , Nitrógeno , Triticum , Zinc , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Zinc/metabolismo , Nitrógeno/metabolismo , Antioxidantes/metabolismo , Suelo/química , Fotosíntesis , Biomasa
16.
ACS Appl Mater Interfaces ; 16(23): 30355-30370, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38805353

RESUMEN

The rational application of fertilizers is crucial for achieving high crop yields and ensuring global food security. The use of biopolymers for slow-release fertilizers (SRFs) development has emerged as a game-changer and environmentally sustainable pathway to enhance crop yields by optimizing plant growth phases. Herein, with a renewed focus on circular bioeconomy, a novel functionalized lignin-based coating material (FLGe) was developed for the sustained release of nutrients. This innovative approach involved the extraction and sustainable functionalization of lignin through a solvent-free esterification reaction with humic acid─an organic compound widely recognized for its biostimulant properties in agriculture. The primary objective was to fortify the hydration barrier of lignin by reducing the number of its free hydroxyl groups, thereby enhancing release control, while simultaneously harnessing the agronomic benefits offered by humic acid. After confirming the synthesis of functionalized lignin (FLGe) through 13C NMR analysis, it was integrated at varying proportions into either a cellulosic or starch matrix. This resulted in the creation of five distinct formulations, which were then utilized as coatings for diammonium phosphate (DAP) fertilizer. Experimental findings revealed an improved morphology and hardness (almost 3-fold) of DAP fertilizer granules after coating along with a positive impact on the soil's water retention capacity (7%). Nutrient leaching in soil was monitored for 100 days and a substantial reduction of nutrients leaching up to 80% was successfully achieved using coated DAP fertilizer. Furthermore, to get a fuller picture of their efficiency, a pot trial was performed using two different soil textures and demonstrated that the application of FLGe-based SRFs significantly enhanced the physiological and agronomic parameters of wheat, including leaf evolution and root architecture, resulting in an almost 50% increase in grain yield and improved quality. The results proved the potential of lignin functionalization to advance agricultural sustainability and foster a robust bioeconomy aligning with the premise "from the soil to the soil".


Asunto(s)
Fertilizantes , Sustancias Húmicas , Lignina , Triticum , Lignina/química , Triticum/crecimiento & desarrollo , Triticum/química , Triticum/efectos de los fármacos , Triticum/metabolismo , Fosfatos/química , Suelo/química , Grano Comestible/química , Grano Comestible/crecimiento & desarrollo
17.
Plants (Basel) ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38674490

RESUMEN

Genome-wide association studies (GWAS) are among the genetic tools for the mining of genomic loci associated with useful agronomic traits. The study enabled us to find new genetic markers associated with grain yield as well as quality. The sample under study consisted of spring wheat cultivars developed in different decades of the last century. A panel of 186 accessions was evaluated at VIR's experiment station in Pushkin across a 3-year period of field trials. In total, 24 SNPs associated with six productivity characteristics were revealed. Along with detecting significant markers for each year of the field study, meta-analyses were conducted. Loci associated with useful yield-related agronomic characteristics were detected on chromosomes 4A, 5A, 6A, 6B, and 7B. In addition to previously described regions, novel loci associated with grain yield and quality were identified during the study. We presume that the utilization of contrast cultivars which originated in different breeding periods allowed us to identify new markers associated with useful agronomic characteristics.

18.
Plants (Basel) ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38674493

RESUMEN

Genetic enhancement of grain production and quality is a priority in wheat breeding projects. In this study, we assessed two key agronomic traits-grain protein content (GPC) and thousand kernel weight (TKW)-across 179 Bulgarian contemporary and historic varieties and landraces across three growing seasons. Significant phenotypic variation existed for both traits among genotypes and seasons, and no discernible difference was evident between the old and modern accessions. To understand the genetic basis of the traits, we conducted a genome-wide association study with MLM using phenotypic data from the crop seasons, best linear unbiased estimators, and genotypic data from the 25K Infinium iSelect array. As a result, we detected 16 quantitative trait nucleotides (QTNs) associated with GPC and 15 associated with TKW, all of which passed the false discovery rate threshold. Seven loci favorably influenced GPC, resulting in an increase of 1.4% to 8.1%, while four loci had a positive impact on TKW with increases ranging from 1.9% to 8.4%. While some loci confirmed previously published associations, four QTNs linked to GPC on chromosomes 2A, 7A, and 7B, as well as two QTNs related to TKW on chromosomes 1B and 6A, may represent novel associations. Annotations for proteins involved in the senescence-associated nutrient remobilization and in the following buildup of resources required for seed germination have been found for selected putative candidate genes. These include genes coding for storage proteins, cysteine proteases, cellulose-synthase, alpha-amylase, transcriptional regulators, and F-box and RWP-RK family proteins. Our findings highlight promising genomic regions for targeted breeding programs aimed at improving grain yield and protein content.

19.
AoB Plants ; 16(2): plae013, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38601215

RESUMEN

Plants function in symbiosis with numerous microorganisms, which might contribute to their adaptation and performance. In this study, we tested whether fungal strains in symbiotic interaction with roots of Celtica gigantea, a wild grass adapted to nutrient-poor soils in semiarid habitats, could improve the field performance of the agricultural cereal tritordeum (Triticum durum × Hordeum chilense). Seedlings of tritordeum were inoculated with 12 different fungal strains isolated from roots of Celtica gigantea that were first proved to promote the growth of tritordeum plants under greenhouse conditions. The inoculated seedlings were transplanted to field plots at two locations belonging to different climatic zones in terms of mean temperatures and precipitation in the Iberian Peninsula. Only one strain, Diaporthe iberica T6, had a significant effect on plant height, number of tillers and grain yield in one location. This result showed a substantial divergence between the results of greenhouse and field tests. In terms of grain nutritional quality, several parameters were differentially affected at both locations: Diaporthe T6, Pleosporales T7, Zygomycota T29 and Zygomycota T80 increased the content of total carotenoids, mainly lutein, in the colder location; whereas gluten proteins increased with several treatments in the warmer location. In conclusion, early inoculation of tritordeum plants with fungal symbionts had substantial beneficial effects on subsequent plant growth and development in the field. Regarding grain nutritional quality, the effect of inoculation was affected by the agroclimatic differences between both field locations.

20.
J Sci Food Agric ; 104(11): 6831-6843, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38597889

RESUMEN

BACKGROUND: The continuous cultivation of rice-wheat in the same field is a key element of double-cropping systems in the Indo-Gangetic plains. Yields of such cropping systems are increasingly challenged as climate change drives increases in temperature, terminal stress and uneven rainfall, delaying rice harvesting and subsequently delaying sowing of wheat. In this paper, we evaluate the optimum sowing dates to achieve high grain yield and quality of wheat cultivars in northwest India. Three cultivars of wheat, HD-2967, HD-3086 and PBW-723, were sown on three different dates at the research farm of ICAR-IARI, New Delhi, to generate different weather conditions at different phenological stages. Different biophysical attributes, photosynthetic rate, stomatal conductance and transpiration rate, were measured at different phenological stages. Yield and grain quality parameters such as protein, starch, amylopectin, amylose and gluten were measured in different cultivars sown on different dates. RESULTS: Biophysical parameters were found to be higher in timely sown crops followed by late-sown and very late-sown crops. Further, the different sowing dates had a significant (P < 0.05) impact on the grain quality parameters such as protein, starch, amylopectin, amylose and gluten content. Percentage increases in the value of starch and amylose content under timely sown were ~7% and 11.6%, ~5% and 8.4%, compared to the very late-sown treatment. In contrast, protein and amylopectin contents were found to increase by ~9.7% and 7.5%, ~13.8% and 16.6% under very late-sown treatment. CONCLUSION: High-temperature stress during the grain-filling periods significantly decreased the grain yield. Reduction in the grain yield was associated with a reduction in starch and amylose content in the grains. The protein content in the grains is less affected by terminal heat stress. Cultivar HD-3086 had higher growth, yield as well as quality parameters, compared to HD-2967 and PBW-723 in all treatments, hence could be adopted by farmers in northwest India. © 2024 Society of Chemical Industry.


Asunto(s)
Producción de Cultivos , Triticum , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Triticum/química , Triticum/clasificación , India , Producción de Cultivos/métodos , Grano Comestible/química , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Almidón/metabolismo , Almidón/análisis , Almidón/química , Amilosa/metabolismo , Amilosa/análisis , Estaciones del Año , Fotosíntesis , Amilopectina/metabolismo , Amilopectina/química , Proteínas de Plantas/metabolismo , Semillas/química , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Agricultura/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA