Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 262: 116547, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38968775

RESUMEN

5-formylcytosine (5 fC) and 5-carboxylcytosine (5caC) serve as key intermediates in DNA demethylation process with significant implications for gene regulation and disease progression. In this study, we introduce a novel electrochemical sensing platform specifically designed for the sensitive and selective detection of 5 fC and 5caC in DNA. Protein A-modified magnetic beads (ProtA-MBs) coupled with specific antibodies facilitate the immunorecognition and enrichment of these modified bases. Signal amplification is achieved through several chemical reactions involving the interaction between N3-kethonaxl and guanine, copper-free click chemistry for the attachment of dibenzocyclooctyne (DBCO)-Biotin, and the subsequent recognition by streptavidin-conjugated horseradish peroxidase (SA-HRP). The assay's readout is performed on a disposable laser-induced graphene (LIG) electrode, modified with the bead-antibody-DNA complex in a magnetic field, and analyzed using differential pulse voltammetry in a system employing hydroquinone (HQ) as the redox mediator and H2O2 as the substrate. This immunosensor displayed excellent sensitivity, with detection limits of 14.8 fM for 5 fC across a 0.1-1000 pM linear range and 87.4 fM for 5caC across a 0.5-5000 pM linear range, and maintained high selectivity even in the presence of interferences from other DNA modifications. Successful application in quantifying 5 fC and 5caC in genomic DNA from cell extracts, with recovery rates between 97.7% to 102.9%, underscores its potential for clinical diagnostics. N3-kethoxal was used for the first time in an electrochemical sensor. This work not only broadens the toolkit for detecting DNA modifications but also provides a fresh impetus for the development of point-of-care testing (POCT) technologies.


Asunto(s)
Técnicas Biosensibles , Citosina , ADN , Técnicas Electroquímicas , Límite de Detección , ADN/química , Técnicas Electroquímicas/métodos , Citosina/química , Citosina/análogos & derivados , Humanos , Inmunoensayo/métodos , Inmunoensayo/instrumentación , Grafito/química
2.
Talanta ; 278: 126446, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38936107

RESUMEN

The simultaneous synthesis of gold nanoparticles (AuNPs) and graphene by laser ablation was demonstrated. The in-situ synthesis was performed by laser ablation of a polymer substrate covered with a gold precursor dispersion. The gold precursor was prepared in a copolymer solution of pyrrole (Py) and chitosan (Chi) to improve the nucleation of gold embedded on the laser-induced graphene electrode (LIGE). The morphology of AuNPs-pPy-Chi/LIGE was studied by scanning electron microscopy and characterized electrochemically by cyclic voltammetry. A comprehensive investigation of the electrochemical and physical features of the AuNPs-pPy-Chi/LIGE was carried out. The parameters of differential pulse voltammetry were adjusted to enhance the response to ascorbic acid (AA). The AuNPs-pPy-Chi/LIGE produced two linear ranges: from 0.25 to 5.00 and 5.00-25.00 mmol L-1. The limit of detection was 0.22 mmol L-1. Hundreds of electrodes were tested to demonstrate the excellent reproducibility of the AuNPs-pPy-Chi/LIGE fabrication. Overall, the proposed electrode allows the successful detection of AA in orange juice products with acceptable accuracy (recoveries = 97 ± 2 to 109.1 ± 0.7). The preparation strategy of the proposed AuNPs-pPy-Chi/LIGE could be adapted to detect other compounds or biomarkers.

3.
Molecules ; 28(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37513359

RESUMEN

Epinephrine (EP, also called adrenaline) is a compound belonging to the catecholamine neurotransmitter family. It can cause neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This work describes an amperometric sensor for the electroanalytical detection of EP by using an inkjet-printed graphene electrode (IPGE) that has been chemically modified by a thin layer of a laponite (La) clay mineral. The ion exchange properties and permeability of the chemically modified electrode (denoted La/IPGE) were evaluated using multi-sweep cyclic voltammetry, while its charge transfer resistance was determined by electrochemical impedance spectroscopy. The results showed that La/IPGE exhibited higher sensitivity to EP compared to the bare IPGE. The developed sensor was directly applied for the determination of EP in aqueous solution using differential pulse voltammetry. Under optimized conditions, a linear calibration graph was obtained in the concentration range between 0.8 µM and 10 µM. The anodic peak current of EP was directly proportional to its concentration, leading to detection limits of 0.34 µM and 0.26 µM with bare IPGE and La/IPGE, respectively. The sensor was successfully applied for the determination of EP in pharmaceutical preparations. Recovery rates and the effects of interfering species on the detection of EP were evaluated to highlight the selectivity of the elaborated sensor.


Asunto(s)
Grafito , Grafito/química , Carbono/química , Arcilla , Técnicas Electroquímicas/métodos , Epinefrina/química , Electrodos , Preparaciones Farmacéuticas
4.
Ultrason Sonochem ; 93: 106293, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36638650

RESUMEN

A sonochemical based green synthesis method playa powerful role in nanomaterials and composite development. In this work, we developed a perovskite type of strontium titanate via sonochemical process. SrTiO3 particles were incorporated with nitrogen doped graphene oxide through simple ultrasonic irradiation method. The SrTiO3/NGO was characterized by various analytical methods. The nanocomposite of SrTiO3/NGO was modified with laser-induced graphene electrode (LIGE). The SrTiO3/NGO/LIGE was applied for electrochemical sensor towards chemotherapeutic drug detection (nilutamide). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have been used to examine the electrochemical performance of nilutamide (anti-cancer drug). DPV was found to be more sensitive and found to exhibit a sensitivity 8.627 µA µM-1 cm-2 for SrTiO3/NGO/LIGE with a wide linear range (0.02-892 µM) and low Limit of detection (LOD: 1.16 µM). SrTiO3/NGO/LIGE has been examined for the detection of nilutamide in blood serum and urine samples and obtained a good recovery in the range of 97.2-99.72 %. The enhanced stability and selectivity and practical application results indicates the suitability of SrTiO3/NGO/LIGE towards the detection of nilutamide drug in pharmaceutical industries.


Asunto(s)
Antineoplásicos , Grafito , Grafito/química , Técnicas Electroquímicas/métodos , Electrodos
5.
Talanta ; 253: 123929, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108517

RESUMEN

1-Hydroxypyrene (1-OHP), a metabolite of polycyclic aromatic hydrocarbons (PAHs), is a frequently used biomarker for assessing human exposure to PAHs. Therefore, the technology that provides a quick, simple, cost-effective, portable, accurate, precise, and reliable test is still in great demand. To the best of our knowledge, the creation of an electrochemical device based on poly(l-glutamic acid)-modified a screen-printed graphene electrode (poly(L-GA)/SPGE) for 1-OHP detection was described for the first time. The developed sensor was simply and rapidly manufactured via only a single step of electropolymerization. All the concerned parameters and electroanalytical conditions were studied to obtain the best performance of the methodology. Under optimal conditions, the 1-OHP sensing provided a linear range of 1-1000 nM with the limits of detection and quantification of 0.95 and 3.16 nM, respectively. Moreover, this developed sensor was successfully utilized by determining 1-OHP in human urine samples. In comparison with conventional methods, this newly proposed electrochemical methodology might be tremendously valuable for 1-OHP evaluation in environmental and occupational applications, leading to the early detection of illness risk linked to PAHs in the human body.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Humanos , Ácido Glutámico
6.
Sci Total Environ ; 862: 160873, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521612

RESUMEN

The widespread occurrence of microplastics (MPs) in aquatic ecosystems that caused environmental pollution has attracted worldwide attention. Herein, graphene electrode was initially derived from petroleum waste. Then the electrochemical responses of the electrode were evaluated using electrochemical impedance spectroscopy (EIS) toward polystyrene (PS) under various optimum conditions. For the quantitative measurement of PS concentration, principal component analysis (PCA) score images displayed that the data points offered the best discrimination of the classes, and singular value decomposition (SVD) showed that a good linearity was achieved between Z"u(1) and lgCps in the concentration range of 0.01-25 mg L-1. Especially for PS with particle size of 1 µm, the highest correlation coefficient (R2 = 0.9914) was obtained. The sensor ability to determine the polystyrene concentration in real samples was evaluated with the recovery of 98.4-113.3 % and reliable reproducibility (RSD < 9.72 %). For the quantitative measurement of the particle size of PS, SVD images exhibited that a linearity was obtained between Z'u(1)and lgDps in the particle size range of 0.08-20 µm. A good linearity with R2 = 0.9877 was obtained when the concentration was 1 mg L-1. The recovery was in the range of 100.8-118.0 % with the RSD < 6.38 %. Therefore, a novel method is established for the rapid detection of PS MPs.


Asunto(s)
Grafito , Grafito/química , Microplásticos , Plásticos , Poliestirenos , Espectroscopía Dieléctrica , Reproducibilidad de los Resultados , Ecosistema , Técnicas Electroquímicas/métodos , Electrodos
7.
Mikrochim Acta ; 189(9): 339, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35982360

RESUMEN

Pt nanoparticles deposited on single-walled carbon nanotubes (PtSWCNTs), synthesized via the deposition precipitation (DP) method, were introduced as a substrate for immobilizing antibodies on an electrode surface and then enhancing the electrochemical sensitivity. A PtSWCNT-modified paper-based screen-printed graphene electrode was successfully developed to diagnose hepatitis C virus (HCV) infection. The hepatitis C virus core antigen (HCV-cAg) level was determined by differential pulse voltammetry (DPV) using [Fe(CN)6]3-/4- as a redox solution. In the presence of HCV-cAg, the DPV current response decreased with increasing HCV-cAg concentration. Under the optimal conditions, the change in current response provides a good linear correlation with the logarithm of HCV-cAg concentration in the range 0.05 to 1000 pg mL-1 (RSD < 5%), and the limit of detection was 0.015 pg mL-1 (or 0.71 fmol L-1). Furthermore, the proposed immunosensor has been utilized to quantify HCV-cAg in human serum samples with reliable results compared with standard immunoassays (% relative error < 10%). This sensor offers a simple, sensitive, selective, disposable, and inexpensive means for determination of HCV-cAg in human serum samples. The paper-based label-free immunosensor is versatile and feasible for clinical diagnosis.


Asunto(s)
Hepacivirus , Hepatitis C , Inmunoensayo , Nanotubos de Carbono , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electrodos , Hepatitis C/diagnóstico , Humanos , Inmunoensayo/métodos
8.
Appl Surf Sci ; 598: 153867, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35669218

RESUMEN

Herein, we report an electrochemical membrane-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the nanoporous anodic aluminium oxide membrane (NPAOM) was first fabricated electrochemically. The NPAOM was then functionalized with 3-mercaptopropyl trimethoxysilane (NPAOM-Si-SH). After that, the NPAOM-Si-SH was decorated with gold nanoparticles by using gold ion and sodium borohydride. The NPAOM-Si-S-Aunano was then attached to the surface of the working electrode of a laser-engraved graphene electrode (LEGE). Subsequently, the LEGE/NPAOM-Si-S-Aunano was fixed inside a flow cell that was made by using a three-dimensional (3D) printer, and then thiolated aptamer was transferred into the flow cell using a pump. The electrochemical behavior of the LEGE/NPAOM-Si-S-Aunano-Aptamer was studied using square wave voltammetry (SWV) in the presence of potassium ferrocyanide as a redox probe. The response of the LEGE/NPAOM-Si-S-Aunano-Aptamer to the different concentrations of the SARS-CoV-2-RBD in human saliva sample was investigated in the concentration range of 2.5-40.0 ng/mL. The limit of the detection was found to be 0.8 ng/mL. The LEGE/NPAOM-Si-S-Aunano-Aptamer showed good selectivity to 5.0 ng/mL of SARS-CoV-2-RBD in the presence of five times of the interfering agents like hemagglutinin and neuraminidase as the influenza A virus major surface glycoproteins.

9.
Micromachines (Basel) ; 13(2)2022 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35208390

RESUMEN

Based on the electrical conductivity model built for graphene oxide, the thermal crosstalk effects of resistive random access memory (RRAM) with graphene electrode and Pt electrode are simulated and compared. The thermal crosstalk effects of Pt-RRAM with different metal oxides of TiOx, NiOx, HfOx, and ZrOx are further simulated and compared to guide its compatibility design. In the Pt-RRAM array, the distributions of oxygen vacancy density and temperature are obtained, and the minimum spacing between adjacent conduction filaments to avoid device operation failure is discussed. The abovementioned four metal oxides have different physical parameters such as diffusivity, electrical conductivity, and thermal conductivity, from which the characters of the RRAMs based on one of the oxides are analyzed. Numerical results reveal that thermal crosstalk effects are severe as the spacing between adjacent conduction filaments is small, even leading to the change of logic state and device failure.

10.
Polymers (Basel) ; 15(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36616438

RESUMEN

We propose a mode switch based on hybrid-core vertical directional couplers with an embedded graphene electrode to realize the switching function with low power consumption. We designed the device with Norland Optical Adhesive (NOA) material as the guide wave cores and epoxy polymer material as cladding to achieve a thermo-optic switching for the E11, E21 and E12 modes, where monolayer graphene served as electrode heaters. The device, with a length of 21 mm, had extinction ratios (ERs) of 20.5 dB, 10.4 dB and 15.7 dB for the E21, E12 and E11 modes, respectively, over the C-band. The power consumptions of three electric heaters were reduced to only 3.19 mW, 3.09 mW and 2.97 mW, respectively, and the response times were less than 495 µs, 486 µs and 498 µs. Additionally, we applied such a device into a mode division multiplexing (MDM) transmission system to achieve an application of gain equalization of few-mode amplification among guided modes. The differential modal gain (DMG) could be optimized from 5.39 dB to 0.92 dB over the C-band, together with the characteristic of polarization insensitivity. The proposed mode switch can be further developed to switch or manipulate the attenuation of the arbitrary guided mode arising in the few-mode waveguide.

11.
Biosens Bioelectron ; 185: 113247, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33962157

RESUMEN

17ß-Estradiol (E2), the strongest of the three major physiological estrogens in females, is an important factor in the female reproductive system. The abnormal level of E2 causes health issues, such as weak bones, urinary tract infections and even depression. Here, we present a novel, sensitive and selective, electrochemical aptasensor for detection of 17ß-estradiol (E2). The E2 recognition aptamer was split into two fragments: the first fragment, functionalised with adamantane, is attached to poly(ß-cyclodextrin) (poly(ß-CD))-modified electrode surface through host-guest interactions between the adamantane and poly(ß-CD). The second fragment, labelled with gold nanoparticles, forms the stem-loop structure with the first fragment only in the presence of E2. That specific recognition process triggers the change in the electrochemical signal (a change in the peak current from reduction of AuNPs), recorded by means of differential pulse voltammetry (DPV). The feasibility of the sensing design was firstly investigated on the commercially available glass carbon electrodes (GCE), with achieved a linear detection range of 1.0 × 10-13 to 1.0 × 10-8 M and a limit of detection (LoD) 0.7 fM. The sensing methodology was then translated onto single-use, disposable, laser-scribed graphene electrodes (LSGE) on a plastic substrate. The dynamic sensing range of E2 on LSGE was found to be 1.0 × 10-13 to 1.0 × 10-9 M, with a LoD of 63.1 fM, comparable to these of GCE. The successful translation of the developed E2 aptasensor from GCE to low-cost, disposable LSGE highlights a potential of this sensing platform in commercial, portable sensing detection systems for E2 and similar targets of biological interest.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Técnicas Electroquímicas , Electrodos , Estradiol , Femenino , Oro , Rayos Láser , Límite de Detección
12.
ACS Appl Mater Interfaces ; 13(14): 16454-16468, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33789423

RESUMEN

Zn-ion energy storage devices employing hydrogel electrolytes are considered as promising candidates for flexible and wearable electronics applications. This is because of their safe nature, low cost, and good mechanical characteristics. However, conventional hydrogel electrolytes face limitation at subzero temperatures. Herein, we report an antifreezing, safe, and nontoxic gel electrolyte based on the poly(vinyl alcohol) (PVA)/Zn/ethylene glycol system. The optimal gel electrolyte membrane exhibits a high ionic conductivity (15.03 mS cm-1 at room temperature) and promising antifreezing performance (9.05 mS cm-1 at -20 °C and 3.53 mS cm-1 at -40 °C). Moreover, the antifreezing gel electrolyte can suppress the growth of Zn dendrites to display a uniform Zn plating/stripping behavior. Also, a flexible antifreezing Zn-ion hybrid supercapacitor fabricated with the optimum antifreezing gel electrolyte membrane exhibits excellent electrochemical properties. The supercapacitor possesses a high specific capacity of 247.7 F g-1 at room temperature under a high working voltage of 2 V. It also displays an outstanding cyclic stability at room temperature. Moreover, the supercapacitor shows an extraordinary electrochemical behavior and cyclic stability over up to 30 000 cycles at -20 °C under a current load of 5 A g-1, demonstrating its outstanding low-temperature electrochemical performance. Besides, the antifreezing supercapacitor device also offers high flexibility under different deformation conditions. Therefore, it is believed that this work provides a simplistic method of realizing the application of flexible antifreezing Zn-ion energy storage devices in a subzero-temperature environment.

13.
Mikrochim Acta ; 188(3): 97, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33620589

RESUMEN

A nature-inspired special structure of bismuth is newly presented as Zn ion sensing layer for high-performance electrochemical heavy metal detection sensor applications. The rime ice-like bismuth (RIBi) has been synthesized using an easy ex situ electrodeposition method on the surface of a flexible graphene-based electrode. The flexible graphene-based electrode was fabricated via simple laser-writing and substrate-transfer techniques. The Zn ion sensing performance of the proposed heavy metal sensor was evaluated by square wave anodic stripping voltammetry after investigating the effects of several parameters, such as preconcentration potential, preconcentration time, and pH of acetate buffer. The proposed RIBi-based heavy metal sensor demonstrated a good linear relationship between concentration and current in the range 100-1600 ppb Zn ions with an acceptable sensitivity of 106 nA/ppb·cm2. The result met the requirements in terms of common human perspiration levels (the average Zn ion concentration in perspiration is 800 ppb). In addition, the heavy metal sensor response to Zn ions was successfully performed in human perspiration samples as well, and the results were consistent with those measured by atomic absorption spectroscopy. Besides, the fabricated Zn ion sensor exhibited excellent selectivity, repeatability, and flexibility. Finally, a PANI-LIG-based pH sensor (measurement range: pH 4-7) was also integrated with the Zn ion sensor to form a single chip hybrid sensor. These results may provide a great possibility for the use of the proposed flexible sensor to realize wearable perspiration-based healthcare systems. Graphical abstract.


Asunto(s)
Bismuto/química , Técnicas Electroquímicas/métodos , Sudor/química , Zinc/análisis , Técnicas Electroquímicas/instrumentación , Electrodos , Grafito/química , Humanos , Límite de Detección
14.
Mikrochim Acta ; 188(2): 41, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452651

RESUMEN

A non-invasive aptamer-based electrochemical biosensor using disposable screen-printed graphene electrodes (SPGEs) was developed for simple, rapid, and sensitive determination of cortisol levels. Selective detection of cortisol based on a label-free electrochemical assay was achieved by specific recognition of the cortisol DNA aptamer (CApt). The CApt was modified with streptavidin magnetic beads (MBs) before simple immobilization onto the electrode surface using a neodymium magnet. The electrochemical behavior of the aptamer-based biosensor was assessed by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) (vs Ag/AgCl). The specific binding between cortisol and CApt resulted in a decrease in charge transfer resistance (Rct) from EIS using [Fe(CN)6]3-/4- with increasing cortisol concentration. Under optimal conditions, a linear range from 0.10 to 100 ng/mL with a low detection limit (3SD/slope) of 2.1 pg/mL was obtained. Furthermore, the proposed biosensing system exhibited a satisfactory recovery in the range 97.4-109.2% with 5.7-6.6% RSD in spiked artificial human sweat. Regarding the applications of this tool, the aptamer-based biosensor has potential to be a versatile and point-of-care (POC) device for simple, sensitive, selective, disposable, and low-cost cortisol detection.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Hidrocortisona/análisis , Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/instrumentación , Electrodos , Ferricianuros/química , Humanos , Hidrocortisona/química , Ácidos Nucleicos Inmovilizados/química , Límite de Detección , Fenómenos Magnéticos , Reproducibilidad de los Resultados , Sudor/química
15.
Sensors (Basel) ; 21(2)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430220

RESUMEN

Sleep is an essential element to human life, restoring the brain and body from accumulated fatigue from daily activities. Quantitative monitoring of daily sleep quality can provide critical feedback to evaluate human health and life patterns. However, the existing sleep assessment system using polysomnography is not available for a home sleep evaluation, while it requires multiple sensors, tabletop electronics, and sleep specialists. More importantly, the mandatory sleep in a designated lab facility disrupts a subject's regular sleep pattern, which does not capture one's everyday sleep behaviors. Recent studies report that galvanic skin response (GSR) measured on the skin can be one indicator to evaluate the sleep quality daily at home. However, the available GSR detection devices require rigid sensors wrapped on fingers along with separate electronic components for data acquisition, which can interrupt the normal sleep conditions. Here, we report a new class of materials, sensors, electronics, and packaging technologies to develop a wireless, soft electronic system that can measure GSR on the wrist. The single device platform that avoids wires, rigid sensors, and straps offers the maximum comfort to wear on the skin and minimize disruption of a subject's sleep. A nanomaterial GSR sensor, printed on a soft elastomeric membrane, can have intimate contact with the skin to reduce motion artifact during sleep. A multi-layered flexible circuit mounted on top of the sensor provides a wireless, continuous, real-time recording of GSR to classify sleep stages, validated by the direct comparison with the standard method that measures other physiological signals. Collectively, the soft bioelectronic system shows great potential to be working as a portable, at-home sensor system for assessing sleep quality before a hospital visit.


Asunto(s)
Dispositivos Electrónicos Vestibles , Electrónica , Respuesta Galvánica de la Piel , Humanos , Polisomnografía , Fases del Sueño
16.
Mikrochim Acta ; 188(2): 36, 2021 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-33420843

RESUMEN

An amperometric sensor based on an inkjet-printed graphene electrode (IPGE) modified with amine-functionalized montmorillonite (Mt-NH2) for the electroanalysis and quantification of gentisic acid (GA) has been developed. The organoclay used as IPGE modifier was prepared and characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, CHN elemental analysis, and thermogravimetry. The electrochemical features of the Mt-NH2/IPGE sensor were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The sensor exhibited charge selectivity ability which was exploited for the electrochemical oxidation of GA. The GA amperometric response was high in acidic medium (Brinton-Robinson buffer, pH 2) due to favorable interactions between the protonated amine groups and the negatively charged GA. Kinetic studies were also performed by cyclic voltammetry, and the obtained electron transfer rate constant of 11.3 s-1 indicated a fast direct electron transfer rate of GA to the electrode. An approach using differential pulse voltammetry was then developed for the determination of GA (at + 0.233 V vs. a pseudo Ag/Ag+ reference electrode), and under optimized conditions, the sensor showed high sensitivity, a wide working linear range from 1 to 21 µM (R2 = 0.999), and a low detection limit of 0.33 µM (0.051 ± 0.01 mg L-1). The proposed sensor was applied to quantify GA in a commercial red wine sample. The simple and rapid method developed using a cheap clay material could be employed for the determination of various phenolic acids.


Asunto(s)
Bentonita/química , Gentisatos/análisis , Grafito/química , Técnicas Electroquímicas/métodos , Electrodos , Gentisatos/química , Límite de Detección , Oxidación-Reducción , Impresión , Vino/análisis
17.
ACS Appl Mater Interfaces ; 12(50): 56650-56657, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33327058

RESUMEN

Electrical double layers play a key role in a variety of electrochemical systems. The mean free path of secondary electrons in aqueous solutions is on the order of a nanometer, making them suitable for probing ultrathin electrical double layers at solid-liquid electrolyte interfaces. Employing graphene as an electron-transparent electrode in a two-electrode electrochemical system, we show that the secondary electron yield of the graphene-liquid interface depends on the ionic strength and concentration of the electrolyte and the applied bias at the remote counter electrode. These observations have been related to polarization-induced changes in the potential distribution within the electrical double layer and demonstrate the feasibility of using scanning electron microscopy to examine and map electrified liquid-solid interfaces.

18.
Nanomaterials (Basel) ; 10(11)2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139670

RESUMEN

In this work, we investigate the effect of the cation structure on the structure and dynamics of the electrode-electrolyte interface using molecular dynamics simulations. A constant potential method is used to capture the behaviour of 1-ethyl-3-methylimidazolium bis (trifluoromethane)sulfonimide ([C2mim][NTf2]) and butyltrimethylammonium bis(trifluoromethane) sulfonimide ([N4,1,1,1][NTf2]) ionic liquids at varying potential differences applied across the supercapacitor. We find that the details of the structure in the electric double layer and the dynamics differ significantly, yet the charge profile and capacitance do not vary greatly. For the systems considered, charging results in the rearrangement and reorientation of ions within ∼1 nm of the electrode rather than the diffusion of ions to/from the bulk region. This occurs on timescales of O(10 ns) for the ionic liquids considered, and depends on the viscosity of the fluid.

19.
ACS Appl Mater Interfaces ; 11(38): 35068-35078, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31469537

RESUMEN

3D printing technologies have been considered an important technology due to the ease manufacturing of objects, freedom of design, waste minimization, and fast prototyping. In chemistry, this technology potentializes the fabrication of conductive electrodes in large scale for sensing applications. Herein, we reported the modification of a 3D printed graphene electrode with Prussian blue. The modified electrode (3DGrE/PB) was characterized by microscopy (SEM and AFM) and spectroscopic techniques, and its electrochemical properties were compared to the traditional electrodes: glassy carbon, gold, and platinum. The 3DGrE/PB was used in the sensing of hydrogen peroxide in real-world samples of milk and mouthwash, and the results obtained according to the technique of batch-injection analysis were satisfactory for the concentration range typically found in such samples. Thus, 3DGrE/PB can be used as a new platform for sensing of molecular targets.

20.
Biosens Bioelectron ; 142: 111539, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31376713

RESUMEN

Leptospirosis is a critical human health problem in the tropical area, thus, a precise technique that can be used for point-of-care analysis is greatly required. This is the first report on electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for rapid, simple and sensitive determination of LipL32. The sensor consisted of two LipL32-specific antibodies: an unlabeled capture primary antibody (Anti-1°Ab) and an electrochemically detectable gold-conjugated secondary antibody (Au-2°Ab). The Anti-1°Ab was immobilized onto the modified screen-printed graphene electrode (SPGE) to form the anti-LipL32 surface. The electrochemical signal response was determined by differential pulse voltammetry (DPV). In the presence of LipL32, the sensor displayed a significant increase in current response in a concentration-dependent manner, but no observable signal was detected in the absence of LipL32. The linearity between LipL32 concentration and the measured current was found in a range of 1-100 ng/mL, and the limit of detection (LOD) (3SDblank/Slope) and limit of quantitation (LOQ) (10SDblank/Slope) were found to be 0.28 and 0.93 ng/mL, respectively. This sensor was successfully applied to detect pathogenic Leptospira whole cell lysates samples with the satisfactory results. The promissing results suggested that this immunosensor might be an alternative tool for diagnosis of leptospirosis.


Asunto(s)
Anticuerpos Inmovilizados/química , Proteínas de la Membrana Bacteriana Externa/análisis , Técnicas Biosensibles/métodos , Oro/química , Leptospira/aislamiento & purificación , Anticuerpos Monoclonales/química , Técnicas Electroquímicas/métodos , Grafito/química , Humanos , Inmunoensayo/métodos , Leptospirosis/diagnóstico , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA