Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(12): 2684-2692.e6, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38848713

RESUMEN

Migratory insects may move in large numbers, even surpassing migratory vertebrates in biomass. Long-distance migratory insects complete annual cycles through multiple generations, with each generation's reproductive success linked to the resources available at different breeding grounds. Climatic anomalies in these grounds are presumed to trigger rapid population outbreaks. Here, we infer the origin and track the multigenerational path of a remarkable outbreak of painted lady (Vanessa cardui) butterflies that took place at an intercontinental scale in Europe, the Middle East, and Africa from March 2019 to November 2019. Using metabarcoding, we identified pollen transported by 264 butterflies captured in 10 countries over 7 months and modeled the distribution of the 398 plants detected. The analysis showed that swarms collected in Eastern Europe in early spring originated in Arabia and the Middle East, coinciding with a positive anomaly in vegetation growth in the region from November 2018 to April 2019. From there, the swarms advanced to Northern Europe during late spring, followed by an early reversal toward southwestern Europe in summer. The pollen-based evidence matched spatiotemporal abundance peaks revealed by citizen science, which also suggested an echo effect of the outbreak in West Africa during September-November. Our results show that population outbreaks in a part of species' migratory ranges may disseminate demographic effects across multiple generations in a wide geographic area. This study represents an unprecedented effort to track a continuous multigenerational insect migration on an intercontinental scale.


Asunto(s)
Migración Animal , Mariposas Diurnas , Código de Barras del ADN Taxonómico , Polen , Animales , Mariposas Diurnas/fisiología , Europa (Continente)/epidemiología , Medio Oriente/epidemiología , África/epidemiología , Estaciones del Año
2.
Plant Biol (Stuttg) ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940818

RESUMEN

As climate change thrives, and the frequency of intense droughts is affecting many forested regions, a mechanistic understanding of the factors conferring drought tolerance in trees is increasingly important. However, studies linking the observed growth reduction to mechanistic traits are still rare. We compared the median growth anomalies of 16 native tree species, gathered across a network of study plots in Bavaria, with the mean species-specific turgor loss point (πtlp) measured at five locations in Central Europe πtlp explained 37% of the growth anomalies observed in response to the intense droughts between 2018 and 2020 compared to the pre-drought period between 2006 and 2017 across sites. πtlp constitutes an important leaf drought tolerance trait and influences the growth response of native tree species during extraordinary dry periods. As climate change-induced droughts intensify, tree species with drought-tolerant leaves will be less vulnerable to growth reductions. πtlp provides a useful indicator for selecting tree species to adapt forest management systems to climate change.

3.
Glob Chang Biol ; 30(1): e16998, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37899690

RESUMEN

Identifying droughts and accurately evaluating drought impacts on vegetation growth are crucial to understanding the terrestrial carbon balance across China. However, few studies have identified the critical drought thresholds that impact China's vegetation growth, leading to large uncertainty in assessing the ecological consequences of droughts. In this study, we utilize gridded surface soil moisture data and satellite-observed normalized difference vegetation index (NDVI) to assess vegetation response to droughts in China during 2001-2018. Based on the nonlinear relationship between changing drought stress and the coincident anomalies of NDVI during the growing season, we derive the spatial patterns of satellite-based drought thresholds (T SM ) that impact vegetation growth in China via a framework for detecting drought thresholds combining the methods of feature extraction, coincidence analysis, and piecewise linear regression. The T SM values represent percentile-based drought threshold levels, with smaller T SM values corresponding to more negative anomalies of soil moisture. On average, T SM is at the 8.7th percentile and detectable in 64.4% of China's vegetated lands, with lower values in North China and Jianghan Plain and higher values in the Inner Mongolia Plateau. Furthermore, T SM for forests is commonly lower than that for grasslands. We also find that agricultural irrigation modifies the drought thresholds for croplands in the Sichuan Basin. For future projections, Earth System Models predict that more regions in China will face an increasing risk for ecological drought, and the Hexi Corridor-Hetao Plain and Shandong Peninsula will become hotspots of ecological drought. This study has important implications for accurately evaluating the impacts of drought on vegetation growth in China and provides a scientific reference for the effective ecomanagement of China's terrestrial ecosystems.


Asunto(s)
Sequías , Ecosistema , Bosques , Suelo , China
4.
Trends Microbiol ; 30(12): 1160-1173, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35718641

RESUMEN

One of the most widespread coral diseases linked to anthropogenic activities and recorded on reefs worldwide is characterized by anomalous growth formations in stony corals, referred to as coral growth anomalies (GAs). The biological functions of GA tissue include limited reproduction, reduced access to resources, and weakened ability to defend against predators. Transcriptomic analyses have revealed that, in some cases, disease progression can involve host genes related to oncogenesis, suggesting that the GA tissues may be malignant neoplasms such as those developed by vertebrates. The number of studies reporting the presence of GAs in common reef-forming species highlights the urgency of a thorough understanding of the pathology and causative factors of this disease and its parallels to higher organism malignant tissue growth. Here, we review the current state of knowledge on the etiology and holobiont features of GAs in reef-building corals.


Asunto(s)
Antozoos , Neoplasias , Animales , Perfilación de la Expresión Génica , Arrecifes de Coral
5.
J Cell Physiol ; 236(7): 4913-4925, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33305387

RESUMEN

Zika virus (ZIKV) re-emerged after circulating almost undetected for many years and the last spread in 2015 was the major outbreak reported. ZIKV infection was associated with congenital fetal growth anomalies such as microcephaly, brain calcifications, and low birth weight related to fetal growth restriction. In this study, we investigated the effect of ZIKV infection on first trimester trophoblast cell function and metabolism. We also studied the interaction of trophoblast cells with decidual immune populations. Results presented here demonstrate that ZIKV infection triggered a strong antiviral response in first trimester cytotrophoblast-derived cells, impaired cell migration, increased glucose uptake and GLUT3 expression, and reduced brain derived neurotrophic factor (BDNF) expression. ZIKV infection also conditioned trophoblast cells to favor a tolerogenic response since an increased recruitment of CD14+ monocytes bearing an anti-inflammatory profile, increased CD4+ T cells and NK CD56Dim and NK CD56Bright populations and an increment in the population CD4+ FOXP3+ IL-10+ cells was observed. Interestingly, when ZIKV infection of trophoblast cells occurred in the presence of the vasoactive intestinal peptide (VIP) there was lower detection of viral RNA and reduced toll-like receptor-3 and viperin messenger RNA expression, along with reduced CD56Dim cells trafficking to trophoblast conditioned media. The effects of ZIKV infection on trophoblast cell function and immune-trophoblast interaction shown here could contribute to defective placentation and ZIKV persistence at the fetal-maternal interface. The inhibitory effect of VIP on ZIKV infection of trophoblast cells highlights its potential as a candidate molecule to interfere ZIKV infection during early pregnancy.


Asunto(s)
Placenta/virología , Placentación/fisiología , Trofoblastos/inmunología , Trofoblastos/virología , Infección por el Virus Zika/patología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Linfocitos T CD4-Positivos/inmunología , Movimiento Celular/fisiología , Células Cultivadas , Anomalías Congénitas/virología , Metabolismo Energético/fisiología , Femenino , Feto/anomalías , Feto/virología , Glucosa/metabolismo , Transportador de Glucosa de Tipo 3/biosíntesis , Humanos , Placenta/citología , Embarazo , Primer Trimestre del Embarazo , Péptido Intestinal Vasoactivo/metabolismo , Virus Zika/inmunología
6.
Dis Aquat Organ ; 138: 155-169, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32162614

RESUMEN

An accurate approach to coral disease study is critical for understanding the global decline of coral populations. Such an approach should involve the proper use of medical concepts and terminology to avoid confusion and promote clarity in the coral disease literature. Inflammatory and neoplastic disorders have been frequently confused in corals. They are both reported as 'growth anomalies' because of their possible gross similarity, but in fact they are very different types of lesions and pathologic phenomena. In this work, we assessed the distribution and prevalence of growth anomalies, externally visible as nodular-like lesions, in the soft corals Eunicella cavolinii and E. singularis in 2008-2009 in 3 different areas along the Campanian coastline of Italy. Histopathology revealed them as chronic inflammatory lesions, resembling chronic inflammatory lesions of vertebrates, encapsulating an unidentified pathogen. Congo red and Masson Fontana histochemistry highlighted an amoebocyte infiltration with the presence of new apposition of melanin coupled with amyloid sheets intended as part of the defensive response, as reported in other invertebrates. A parallel molecular analysis of 16S rRNA of the lesions suggested that the causative agent is an endolithic cyanobacterium belonging to the order Nostocales. This is the first study assessing the presence of amyloid fibrils in corals.


Asunto(s)
Antozoos , Cianobacterias , Animales , Italia , ARN Ribosómico 16S
7.
J Agric Food Chem ; 67(26): 7223-7231, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31180671

RESUMEN

The aim of this study was to investigate the effect of 3-chloro-5-trifluoromethylpyridine-2-carboxylic acid (PCA), a metabolite of the fungicide fluopyram, on grapevine. During spring and summer 2015, grapevine growth disorders were observed in several countries in Europe. An unprecedented herbicide-like damage was diagnosed on leaves and flowers, causing significant loss of harvest. This study proposes PCA as the causing agent of the observed growth disorders. PCA was shown to cause leaf epinasty, impaired berry development that leads to crop loss, and root growth anomalies in Vitis vinifera similar to auxin herbicides in a dose-dependent manner. Using both field trials and greenhouse experiments, the present study provides first evidence for a link between the application of fluopyram in vineyards 2014, the formation of PCA, and the emergence of growth anomalies in 2015. Our data could be useful to optimize dosage, application time point, and other conditions for an application of fluopyram without phytotoxic effects.


Asunto(s)
Benzamidas/metabolismo , Ácidos Carboxílicos/efectos adversos , Fungicidas Industriales/efectos adversos , Piridinas/efectos adversos , Piridinas/metabolismo , Vitis/efectos de los fármacos , Vitis/crecimiento & desarrollo , Benzamidas/efectos adversos , Ácidos Carboxílicos/metabolismo , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Flores/metabolismo , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Fungicidas Industriales/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Vitis/metabolismo
8.
Front Microbiol ; 6: 1142, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26539174

RESUMEN

Corals are rapidly declining globally due to coral diseases. Skeletal growth anomalies (SGA) or "coral tumors" are a group of coral diseases that affect coral reefs worldwide, including Hong Kong waters in the Indo-Pacific region. To better understand how bacterial communities may vary in corals with SGA, for the first time, we examined the bacterial composition associated with the apparently healthy and the diseased tissues of SGA-affected Platgyra carnosus using 16S ribosomal rRNA gene pyrosequencing. Taxonomic analysis revealed Proteobacteria, Bacteroidetes, Cyanobacteria, and Actinobacteria as the main phyla in both the apparently healthy and the diseased tissues. A significant difference in the bacterial community composition was observed between the two conditions at the OTU level. Diseased tissues were associated with higher abundances of Acidobacteria and Gemmatimonadetes, and a lower abundance of Spirochaetes. Several OTUs belonging to Rhodobacteraceae, Rhizobiales, Gammaproteobacteria, and Cytophaga-Flavobacterium-Bacteroidetes (CFB) were strongly associated with the diseased tissues. These groups of bacteria may contain potential pathogens involved with the development of SGA or opportunistic secondary or tertiary colonizers that proliferated upon the health-compromised coral host. We suggest that these bacterial groups to be further studied based on inoculation experiments and testing of Koch's postulates in efforts to understand the etiology and progression of SGA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA