Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Cureus ; 16(8): e66808, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39280427

RESUMEN

The gut microbiome has been studied in recent years due to its association with various pathological pathways involved in different diseases, caused by its structure, function, and diversity alteration. The knowledge of this mechanism has generated interest in the investigation of its relationship with ophthalmologic diseases. Recent studies infer the existence of a gut-eye microbiota axis, influenced by the intestinal barrier, the blood-retina barrier, and the immune privilege of the eye. A common denominator among ophthalmologic diseases that have been related to this axis is inflammation, which is perpetuated by dysbiosis, causing an alteration of the intestinal barrier leading to increased permeability and, in turn, the release of components such as lipopolysaccharides (LPS), trimethylamine oxide (TMAO), and bacterial translocation. Some theories explain that depending on how the microbiome is composed, a different type of T cells will be activated, while others say that some bacteria can pre-activate T cells that mimic ocular structures and intestinal permeability that allow leakage of metabolites into the circulation. In addition, therapies such as probiotics, diet, and fecal microbiota transplantation (FMT) have been shown to favor the presence of a balanced population of microorganisms that limit inflammation and, in turn, generate a beneficial effect in these eye pathologies. This review aims to analyze how the intestinal microbiome influences various ocular pathologies based on microbial composition and pathological mechanisms, which may provide a better understanding of the diseases and their therapeutic potential.

2.
mSystems ; 9(9): e0079424, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39166878

RESUMEN

Budd-Chiari syndrome (B-CS) is a rare and lethal condition characterized by hepatic venous outflow tract blockage. Gut microbiota has been linked to numerous hepatic disorders, but its significance in B-CS pathogenesis is uncertain. First, we performed a case-control study (Ncase = 140, Ncontrol = 63) to compare the fecal microbiota of B-CS and healthy individuals by metagenomics sequencing. B-CS patients' gut microbial composition and activity changed significantly, with a different metagenomic makeup, increased potentially pathogenic bacteria, including Prevotella, and disease-linked microbial function. Imbalanced cytokines in patients were demonstrated to be associated with gut dysbiosis, which led us to suspect that B-CS is associated with gut microbiota and immune dysregulation. Next, 16S ribosomal DNA sequencing on fecal microbiota transplantation (FMT) mice models examined the link between gut dysbiosis and B-CS. FMT models showed damaged liver tissues, posterior inferior vena cava, and increased Prevotella in the disturbed gut microbiota of FMT mice. Notably, B-CS-FMT impaired the morphological structure of colonic tissues and increased intestinal permeability. Furthermore, a significant increase of the same cytokines (IL-5, IL-6, IL-9, IL-10, IL-17A, IL-17F, and IL-13) and endotoxin levels in B-CS-FMT mice were observed. Our study suggested that gut microbial dysbiosis may cause B-CS through immunological dysregulation. IMPORTANCE: This study revealed that gut microbial dysbiosis may cause Budd-Chiari syndrome (B-CS). Gut dysbiosis enhanced intestinal permeability, and toxic metabolites and imbalanced cytokines activated the immune system. Consequently, the escalation of causative factors led to their concentration in the portal vein, thereby compromising both the liver parenchyma and outflow tract. Therefore, we proposed that gut microbial dysbiosis induced immune imbalance by chronic systemic inflammation, which contributed to the B-CS development. Furthermore, Prevotella may mediate inflammation development and immune imbalance, showing potential in B-CS pathogenesis.


Asunto(s)
Síndrome de Budd-Chiari , Citocinas , Disbiosis , Microbioma Gastrointestinal , Disbiosis/microbiología , Disbiosis/inmunología , Microbioma Gastrointestinal/fisiología , Síndrome de Budd-Chiari/inmunología , Síndrome de Budd-Chiari/microbiología , Síndrome de Budd-Chiari/patología , Humanos , Animales , Ratones , Masculino , Estudios de Casos y Controles , Femenino , Citocinas/metabolismo , Citocinas/inmunología , Citocinas/genética , Adulto , Trasplante de Microbiota Fecal , Persona de Mediana Edad
3.
Cureus ; 16(7): e64738, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39156410

RESUMEN

Obesity significantly impacts gut microbial composition, exacerbating metabolic dysfunction and weight gain. Traditional treatment methods often fall short, underscoring the need for innovative approaches. Glucagon-like peptide-1 (GLP-1) agonists have emerged as promising agents in obesity management, demonstrating significant potential in modulating gut microbiota. These agents promote beneficial bacterial populations, such as Bacteroides, Lactobacillus, and Bifidobacterium, while reducing harmful species like Enterobacteriaceae. By influencing gut microbiota composition, GLP-1 agonists enhance gut barrier integrity, reducing permeability and systemic inflammation, which are hallmarks of metabolic dysfunction in obesity. Additionally, GLP-1 agonists improve metabolic functions by increasing the production of short-chain fatty acids like butyrate, propionate, and acetate, which serve as energy sources for colonocytes, modulate immune responses, and enhance the production of gut hormones that regulate appetite and glucose homeostasis. By increasing microbial diversity, GLP-1 agonists create a more resilient gut microbiome capable of resisting pathogenic invasions and maintaining metabolic balance. Thus, by shifting the gut microbiota toward a healthier profile, GLP-1 agonists help disrupt the vicious cycle of obesity-induced gut dysbiosis and inflammation. This review highlights the intricate relationship between obesity, gut microbiota, and GLP-1 agonists, providing valuable insights into their combined role in effective obesity treatment and metabolic health enhancement.

4.
Heliyon ; 10(15): e35239, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39161838

RESUMEN

Heart failure (HF) is an increasingly prevalent disease in humans; it induces multiple symptoms and damages health. The animal gut microbiota has critical roles in host health, which might be related to HF symptoms. Currently, several options are used to treat HF, including non-invasive ventilation (NIV). However, studies on gut microbiota responses to acute HF and associated treatments effects on gut communities in patients are scarce. Here, short-term (1 week after treatments) and long-term (3 months after treatment) variations in gut microbiota variations in rats with acute HF treated were examined NIV through high-throughput sequencing of the bacterial 16S rRNA gene. Through comparison of gut microbiota alpha diversity, it was observed lower gut microbiota richness and diversity in animals with acute HF than in normal animals. Additionally, beta-diversity analysis revealed significant alterations in the gut microbiota composition induced by acute HF, as reflected by increased Firmicutes/Bacteroidetes (F/B) ratios and Proteobacteria enrichment. When network analysis results were combined with the null model, decreased stability and elevated deterministic gut microbiota assemblies were observed in animals with acute HF. Importantly, in both short- and long-term periods, NIV was found to restore gut microbiota dysbiosis to normal states in acute HF rats. Finally, it was shown that considerable gut microbiota variations existed in rats with acute HF, that underlying microbiota mechanisms regulated these changes, and confirmed that NIV is suitable for HF treatment. In future studies, these findings should be validated with different model systems or clinical samples.

5.
Int J Biol Macromol ; 278(Pt 3): 134917, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173794

RESUMEN

Hyperlipidemia is associated with intestinal barrier dysfunction and gut microbiota dysbiosis. Here, we aimed at investigating whether epicatechin (EC) and ß-glucan (BG) from whole highland barley grain alleviated hyperlipidemia associated with ameliorating intestinal barrier dysfunction and modulating gut microbiota dysbiosis in high-fat-diet-induced mice. It was observed that EC and BG significantly improved serum lipid disorders and up-regulated expression of PPARα protein and genes. Supplementation of EC and BG attenuated intestinal barrier dysfunction via promoting goblet cells proliferation and tight junctions. Supplementation of EC and BG prevented high fat diet-induced gut microbiota dysbiosis via modulating the relative abundance of Ruminococcaceae, Lactobacillus, Desulfovibrio, Lactococcus, Allobaculum and Akkermansia, and the improving of short chain fatty acid contents. Notably, combination of EC and BG showed synergistic effect on activating PPARα expression, improving colonic physical barrier dysfunction and the relative abundance of Lactobacillus and Desulfovibrio, which may help explain the effect of whole grain highland barley on alleviating hyperlipidemia.


Asunto(s)
Catequina , Dieta Alta en Grasa , Microbioma Gastrointestinal , Hordeum , Hiperlipidemias , beta-Glucanos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Hordeum/química , beta-Glucanos/farmacología , beta-Glucanos/química , Hiperlipidemias/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Ratones , Catequina/farmacología , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Disbiosis/tratamiento farmacológico , PPAR alfa/metabolismo , PPAR alfa/genética , Granos Enteros/química , Ratones Endogámicos C57BL
6.
Biochem Biophys Res Commun ; 729: 150344, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38976946

RESUMEN

Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic ß-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.


Asunto(s)
Antocianinas , Glucósidos , Obesidad , Humanos , Antocianinas/farmacología , Antocianinas/uso terapéutico , Obesidad/metabolismo , Obesidad/prevención & control , Animales , Glucósidos/uso terapéutico , Glucósidos/farmacología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/prevención & control , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos
7.
Sci Total Environ ; 949: 174923, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047823

RESUMEN

Hyperuricemia is prevalent globally and potentially linked to environmental pollution. As a typical persistent organic pollutant, phenanthrene (Phe) poses threats to human health through biomagnification. Although studies have reported Phe-induced toxicities to multiple organs, its impact on uric acid (UA) metabolism remains unclear. In this study, data mining on NHANES 2001-2016 indicated a positive correlation between Phe exposure and the occurrence of hyperuricemia in population. Subsequently, adolescent Balb/c male mice were orally exposed to Phe at a dosage of 10 mg/kg bw every second day for 7 weeks, resulting in dysfunction of intestinal UA excretion and disruption of the intestinal barrier. Utilizing intestinal organoids, 16S rRNA sequencing of gut microbiota, and targeted metabolomic analysis, we further revealed that an imbalance in bile acid metabolism derived from gut microbiota might mediate the intestinal barrier damage. Additionally, the tea extract theabrownin (TB) effectively improved Phe-induced hyperuricemia and intestinal dysfunction at a dose of 320 mg/kg bw per day. In conclusion, this study demonstrates that Phe exposure is positively associated with hyperuricemia and intestinal damage, which provides new insights into the toxic effects induced by Phe. Furthermore, the present study proposes that supplementation with TB would be a healthy and effective improvement strategy for patients with hyperuricemia and intestinal injury caused by environmental factors.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Hiperuricemia , Ratones Endogámicos BALB C , Fenantrenos , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Animales , Hiperuricemia/inducido químicamente , Ácidos y Sales Biliares/metabolismo , Masculino , Humanos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38829564

RESUMEN

Gut microbiota dysbiosis and consequent impairment of gut barrier function, culminating in elevated levels of uremic toxins, are prevalent in chronic kidney disease (CKD) patients. These toxins, notably indoxyl sulphate (IS), indole-3-acetic acid (IAA), and trimethylamine oxide (TMAO), are implicated in a spectrum of CKD-related complications, including cardiovascular disease, bone and mineral disorders, and inflammation. The specific impacts of various probiotics on these CKD manifestations remain unexplored. This study delved into the potential of dietary probiotic interventions, particularly Bifidobacterium longum subsp. longum BL21, to modulate gut microbiota and mitigate metabolic disorders in a CKD rat model. Over a six-week period, we administered a dietary regimen of BL21 and conducted comprehensive analyses, including serum uremic toxin quantification and 16S rRNA gene sequencing, to systematically profile gut microbial alterations at the phylogenetic level. Our findings reveal that BL21 intervention significantly ameliorated CKD-induced disruptions in gut microbial populations, enhancing both microbial richness and the relative abundance of key taxa. Importantly, BL21 appeared to exert its beneficial effects by modulating the abundance of crucial species such as Barnesiella and Helicobacter. Functionally, the intervention markedly normalized serum levels of IS, IAA, and TMAO, while potentially attenuating p-cresol sulphate (PCS) and p-cresol glucuronide (PCG) concentrations. Consequently, BL21 demonstrated efficacy in regulating gut microbiota and curtailing the accumulation of uremic toxins. Our results advocate for the utilization of BL21 as a dietary intervention to diminish serum uremic toxins and re-establish gut microbiota equilibrium at the phylogenetic level, underscoring the promise of probiotic strategies in the management of CKD.

9.
Foods ; 13(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928784

RESUMEN

A whole-grain highland barley (WHB) diet has been recognized to exhibit the potential for alleviating hyperlipidemia, which is mainly characterized by lipids accumulation in the serum and liver. Previously, procyanidin B1 (PB) and coumaric acid (CA) from WHB were found to alleviate serum lipid accumulation in impaired glucose tolerance mice, while the effect on modulating the hepatic lipid metabolism remains unknown. In this study, the results showed the supplementation of PB and CA activated the expression of peroxisome proliferator-activated receptor α (PPARα) and the target genes of cholesterol 7-α hydroxylase (CYP7A1) and carnitine palmitoyl transferase I (Cpt1) in the liver cells of high-fat-diet (HFD)-induced diabetic C57BL/6J mice, resulting in decreases in the serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL-C) contents, and an increase in the high-density lipoprotein (HDL-C) content. High-throughput sequencing of 16S rRNA indicated that supplementation with PB and CA ameliorated the gut microbiota dysbiosis, which was associated with a reduction in the relative abundance of Ruminococcaceae and an increase in the relative abundance of Lactobacillus, Desulfovibrio, and Akkermansia. Spearman's correlation analysis revealed that these genera were closely related to obesity-related indices. In summary, the activation of PPARα expression by PB and CA from WHB was important for the alleviation of hyperlipidemia and the structural adjustment of the gut microbiota.

10.
Chemosphere ; 362: 142685, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909862

RESUMEN

Carbon nanomaterials rarely exist in isolation in the natural environment, and their combined effects cannot be ignored. Multi-walled carbon nanotubes (MWCNTs) have shown tremendous potential applications in diverse fields, including pollution remediation, biomedicine, energy, and smart agriculture. However, the combined toxicities of MWCNTs and pesticides on non-target organisms, particularly amphibians, are often overlooked. Fluxapyroxad (FLX), a significant succinate dehydrogenase inhibitor fungicide, has been extensively utilized for the protection of food and cash crops and control of fungi. This raises the possibility of coexistence of MWCNTs and FLX. The objective of this study was to explore the individual and combined toxic effects of FLX and MWCNTs on the early life stages of Xenopus laevis. Embryos were exposed to varying concentrations of FLX (0, 5, and 50 µg/L) either alone or in combination with MWCNTs (100 µg/L) for a duration of 17 days. The findings indicated that co-exposure to FLX and MWCNTs worsened the inhibition of growth, liver damage, and dysregulation of enzymatic activity in tadpoles. Liver transcriptomic analysis further revealed that the presence of MWCNTs exacerbated the disturbances in glucose and lipid metabolism caused by FLX. Additionally, the combined exposure groups exhibited amplified alterations in the composition and function of the gut microflora. Our study suggests that it is imperative to pay greater attention to the agricultural applications, management and ecological risks of MWCNTs in the future, considering MWCNTs may significantly enhance the toxicity of FLX.


Asunto(s)
Larva , Nanotubos de Carbono , Xenopus laevis , Animales , Nanotubos de Carbono/toxicidad , Larva/efectos de los fármacos , Fungicidas Industriales/toxicidad , Contaminantes Químicos del Agua/toxicidad , Hígado/efectos de los fármacos
11.
Gut Microbes ; 16(1): 2361490, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860456

RESUMEN

The role of gut microbiota in host defense against nontuberculous mycobacterial lung disease (NTM-LD) was poorly understood. Here, we showed significant gut microbiota dysbiosis in patients with NTM-LD. Reduced abundance of Prevotella copri was significantly associated with NTM-LD and its disease severity. Compromised TLR2 activation activity in feces and plasma in the NTM-LD patients was highlighted. In the antibiotics-treated mice as a study model, gut microbiota dysbiosis with reduction of TLR2 activation activity in feces, sera, and lung tissue occurred. Transcriptomic analysis demonstrated immunocompromised in lung which were closely associated with increased NTM-LD susceptibility. Oral administration of P. copri or its capsular polysaccharides enhanced TLR2 signaling, restored immune response, and ameliorated NTM-LD susceptibility. Our data highlighted the association of gut microbiota dysbiosis, systematically compromised immunity and NTM-LD development. TLR2 activation by P. copri or its capsular polysaccharides might help prevent NTM-LD.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Infecciones por Mycobacterium no Tuberculosas , Receptor Toll-Like 2 , Disbiosis/microbiología , Animales , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Humanos , Ratones , Masculino , Femenino , Infecciones por Mycobacterium no Tuberculosas/microbiología , Persona de Mediana Edad , Heces/microbiología , Anciano , Prevotella , Enfermedades Pulmonares/microbiología , Micobacterias no Tuberculosas , Susceptibilidad a Enfermedades , Ratones Endogámicos C57BL , Pulmón/microbiología
12.
Cureus ; 16(4): e57512, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38707123

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple systems of the body. Recent research on the gut microbiota dysbiosis associated with SLE patients has gained traction and warranted further exploration. It has not been determined whether the change in the gut microbiota is a cause of SLE or a symptom of SLE. However, based on the physiological and pathophysiological role of the bacteria in the gut microbiome, as levels of the bacteria rise or fall, symptomatology in SLE patients could be affected. This review analyzes the recent studies that examined the changes in the gut microbiota of SLE patients and highlights the correlations between gut dysbiosis and the clinical manifestations of SLE. A systematic search strategy was developed by combining the terms "SLE," "systemic lupus erythematosus," and "gut microbiome." Biomedical Reference Collection, CINAHL, Medline ProQuest, and PubMed Central databases were searched by combining the appropriate keywords with "AND." Only full-text, English-language articles were searched. The articles were restricted from 2013 to 2023. Only peer-reviewed controlled studies with both human and animal trials were included in this scoping review. Review articles, non-English articles, editorials, case studies, and duplicate articles from the four databases were excluded. Various species of bacteria were found to be positively or negatively associated with SLE gut microbiomes. Among the bacterial species increased were Clostridium, Lactobacilli, Streptococcus, Enterobacter, and Klebsiella. The bacterial species that decreased were Bifidobacteria, Prevotella, and the Firmicutes/Bacteroidetes ratio. Literature shows that Clostridium is one of several bacteria found in abundance, from pre-disease to the diseased state of SLE. Lachnospiraceae and Ruminococcaceae are both part of the family of butyrate-producing anaerobes that are known for their role in strengthening the skin barrier function and, therefore, may explain the cutaneous manifestations of SLE patients. Studies have also shown that the Firmicutes/Bacteroidetes ratio is significantly depressed, which may lead to appetite changes and weight loss seen in SLE patients. Based on the established role of these bacteria within the gut microbiome, the disruption in the gut ecosystem could explain the symptomatology common in SLE patients. By addressing these changes, our scoping review encourages further research to establish a true causal relationship between the bacterial changes in SLE patients as well as furthering the scope of microbiota changes in other systems and autoimmune diseases.

13.
Exp Gerontol ; 191: 112444, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38679353

RESUMEN

OBJECTIVE: The objective of the study was to systematically investigate the association between gut microbiota (GM) abundance and Parkinson's disease (PD). METHODS: PubMed, Medline, Cochrane Library and other literature datebase platforms were searched for eligible studies in the English-language from conception to March 1, 2024. Studies evaluating the association between GM and PD were included. The results of the included studies were analyzed using a random effects model with calculation of the mean difference (MD) with the 95 % confidence interval to quantify the incidence of differences in abundance of various bacterial families in PD patients. Continuous models were used to analyze the extracted data. RESULTS: A total of 14 studies with 1045 PD cases and 821 healthy controls were included for data extraction and meta-analysis. All the included studies exhibited reasonable quality. The included studies reported the data on the ratios of 10 families of GM. Of these 10 microbiota families, Bifidobacteriaceae, Ruminococcaceae, Rikenellaceae, Lactobacillaceae, Verrucomicrobiaceae and Christensenellaceae were found to have increased ratios according to the pooled ratios, while Prevotellaceae, Lachnospiraceae, Erysipelotrichaceae and Faecalibacterium were decreased in PD cases. CONCLUSION: Patients in the PD cohort exhibited distinctive microbiota compositions compared to healthy individuals, with unique differential patterns in gut microbiome abundance at the phylum, family, and genus levels that may be associated wtih PD pathogenesis.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Enfermedad de Parkinson/microbiología , Humanos , Bacterias/clasificación , Bacterias/aislamiento & purificación
14.
Int J Neurosci ; : 1-7, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38606533

RESUMEN

OBJECTIVE: To investigate the impact of gut microbiota dysbiosis on neurodevelopment in children. METHODS: This study included 338 children aged 0-3 years admitted to our hospital from January to December 2022, The children were divided into a normal neurodevelopment group (169 cases) and a poor neurodevelopment group (169 cases). Basic personal information and clinical data were collected through a detailed questionnaire, and the microbial composition in fecal samples was analyzed using 16S rRNA gene sequencing. RESULTS: Children in the poor neurodevelopment group showed a significant decrease in gut microbiota diversity compared to those in the normal neurodevelopment group (Shannon index, p < 0.05). The abundance of Bifidobacterium and Veillonella genera significantly decreased (p < 0.05), while the abundance of Streptococcus genus increased significantly (p < 0.05). CONCLUSION: There is an association between gut microbiota dysbiosis and poor neurodevelopment in children. The increased abundance of Streptococcus genus and decreased abundance of Bifidobacterium and Veillonella genera in the gut microbiota may be potential risk factors for poor neurodevelopment in preterm infants. Future research should further explore the potential beneficial effects of gut microbiota modulation on neurodevelopment in children.

15.
Adv Sci (Weinh) ; 11(22): e2310110, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526201

RESUMEN

Diseases like obesity and intestinal inflammation diseases are accompanied by dysbiosis of the gut microbiota (DSGM), which leads to various complications, including systemic metabolic disorders. DSGM reportedly impairs the fertility of male mice; however, the regulatory mechanism is unclear. Exosomes are molecular mediators of intercellular communication, but the regulation of spermatogenesis by non-reproductive tissue-originated exosomes remains unknown. The present study shows that DSGM altered the miRNA expression profile of mouse circulating exosomes and impaired spermatogenesis. Moreover, the single-cell sequencing results indicate that circulating exosomes from mice with DSGM impaired spermatogenesis, while circulating exosomes from wild mice improved spermatogenesis by promoting meiosis. Further study demonstrates that DSGM leads to abnormal upregulation of miR-211-5p in gut-derived circulating exosomes, which inhibited the expression of meiosis-specific with coiled-coil domain (Meioc) in the testes and impaired spermatogenesis by disturbing meiosis process. In summary, this study defines the important role of gut-derived exosomes in connecting the "gut-testis" axis.


Asunto(s)
Disbiosis , Exosomas , Microbioma Gastrointestinal , Espermatogénesis , Animales , Exosomas/metabolismo , Exosomas/genética , Ratones , Disbiosis/metabolismo , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Testículo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
16.
Microorganisms ; 12(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38543653

RESUMEN

Salmonella infection causes serious economic losses, threatens food safety, and is one of the most important diseases threatening meat duck farming. The gut microbiome is critical in providing resistance against colonization by exogenous microorganisms. Studying the relationship between Salmonella and gut microbiota can help us better understand the threat of the pathogenic mechanism of Salmonella and provide a more scientific theoretical basis for its prevention and treatment. This study uses Salmonella Typhimurium as the research object and Cherry Valley meat duck as the model with which to study the impact of Salmonella infection on ducks. In this field trial, 2 × 108 CFUs Salmonella Typhimurium were administered to 3-day-old ducks. After infection, duck viscera were collected to detect the colonization of Salmonella, and cecal contents were collected to analyze the changes in gut microbiota. The results show that Salmonella Typhimurium can colonize ducks three days after infection and alter the gut microbiota composition, mainly by increasing the abundance of Ruminococcaceae and Lachnospiraceae. In conclusion, Salmonella Typhimurium infection significantly alters the intestinal microbiota of ducks and poses a serious public health risk.

17.
Am J Chin Med ; 52(2): 513-539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533568

RESUMEN

Aging can cause degenerative changes in multiple tissues and organs. Gastrointestinal diseases and dysfunctions are common in the elderly population. In this study, we investigated the effects of Astragalus membranaceus polysaccharide (APS) and Astragalus membranaceus ethanol extract (AEE) on age-related intestinal dysfunction and gut microbiota dysbiosis in naturally aging mice. The energy expenditure and physical activity of 23-month-old C57BL6/J mice were recorded using a metabolic cage system. Pathological changes in the intestine were evaluated using Alcian blue staining. The protein levels of leucine-rich repeats containing G protein-coupled receptor 5 (Lgr5) and Stat3 in the small intestine were determined using immunohistochemistry. The intestinal cell migration distance was assessed using bromodeoxyuridine (BrdU) immunofluorescence staining. The gene transcription levels of intestinal stem cell (ISC) markers and ISC-related signaling pathways were detected using quantitative real-time PCR (qRT-PCR). Microbiota analysis based on 16S rDNA was performed to evaluate the composition of the gut microbiota. APS and AEE improved a series of aging phenotypes in female but not in male aging mice. APS and AEE ameliorate intestinal dysfunction and histopathological changes in aging mice. APS had a more significant anti-aging effect than AEE, particularly on intestinal dysfunction. APS promotes ISC regeneration by activating the IL-22 signaling pathway. Cohousing (CH) experiments further confirmed that APS induced the IL-22 signaling pathway by increasing the abundance of Lactobacillus, thereby promoting the regeneration of ISCs. Our results show that APS may serve as a promising agent for improving age-related intestinal dysfunction.


Asunto(s)
Astragalus propinquus , Interleucina-22 , Anciano , Humanos , Ratones , Masculino , Femenino , Animales , Lactante , Preescolar , Astragalus propinquus/química , Intestinos , Transducción de Señal , Intestino Delgado , Células Madre , Polisacáridos/farmacología , Envejecimiento , Regeneración
18.
Curr Cancer Drug Targets ; 24(6): 612-628, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213140

RESUMEN

Gastrointestinal (GI) cancer is a major health concern due to its prevalence, impact on well-being, high mortality rate, economic burden, and potential for prevention and early detection. GI cancer research has made remarkable strides in understanding biology, risk factors, and treatment options. An emerging area of research is the gut microbiome's role in GI cancer development and treatment response. The gut microbiome, vital for digestion, metabolism, and immune function, is increasingly linked to GI cancers. Dysbiosis and alterations in gut microbe composition may contribute to cancer development. Scientists study how specific bacteria or microbial metabolites influence cancer progression and treatment response. Modulating the gut microbiota shows promise in enhancing treatment efficacy and preventing GI cancers. Gut microbiota dysbiosis can impact GI cancer through inflammation, metabolite production, genotoxicity, and immune modulation. Microbes produce metabolites like short-chain fatty acids, bile acids, and secondary metabolites. These affect host cells, influencing processes like cell proliferation, apoptosis, DNA damage, and immune regulation, all implicated in cancer development. This review explores the latest research on gut microbiota metabolites and their molecular mechanisms in GI cancers. The hope is that this attempt will help in conducting other relevant research to unravel the precise mechanism involved, identify microbial signatures associated with GI cancer, and develop targets.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Neoplasias Gastrointestinales , Humanos , Microbioma Gastrointestinal/fisiología , Neoplasias Gastrointestinales/microbiología , Neoplasias Gastrointestinales/metabolismo , Disbiosis/microbiología , Disbiosis/metabolismo , Animales
19.
Sci China Life Sci ; 67(5): 854-864, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38265598

RESUMEN

Tobacco smoking is a prevalent and detrimental habit practiced worldwide, increasing the risk of various diseases, including chronic obstructive pulmonary disease (COPD), cardiovascular disease, liver disease, and cancer. Although previous research has explored the detrimental health effects of tobacco smoking, recent studies suggest that gut microbiota dysbiosis may play a critical role in these outcomes. Numerous tobacco smoke components, such as nicotine, are found in the gastrointestinal tract and interact with gut microbiota, leading to lasting impacts on host health and diseases. This review delves into the ways tobacco smoking and its various constituents influence gut microbiota composition and functionality. We also summarize recent advancements in understanding how tobacco smoking-induced gut microbiota dysbiosis affects host health. Furthermore, this review introduces a novel perspective on how changes in gut microbiota following smoking cessation may contribute to withdrawal syndrome and the degree of health improvements in smokers.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Fumar Tabaco , Humanos , Fumar Tabaco/efectos adversos , Disbiosis/microbiología , Nicotina/efectos adversos , Nicotina/metabolismo , Animales , Tracto Gastrointestinal/microbiología , Cese del Hábito de Fumar , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Enfermedad Pulmonar Obstructiva Crónica/etiología
20.
Environ Pollut ; 343: 123232, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171427

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known for its environmental endocrine-disrupting properties, posing potential risks to various organs. However, the precise impact of DEHP on intestinal health and its contribution to the initiation of intestinal inflammation remains elucidated. This study aims to investigate the underlying mechanisms of DEHP-induced intestinal inflammation in mice, specifically focusing on the complex interplay between the gut microbiota-metabolite axis and associated pathophysiological alterations. Our findings showed that DEHP-induced damage of multiple organs systemically, as indicated by abnormal liver and kidney biochemical markers, along with a disrupted ileum morphology. Additionally, DEHP exposure disrupted gut barrier function, causing intestinal inflammation characterized by bacterial translocation and alterations in defense and inflammation-related gene expressions. Moreover, 16S rRNA analysis suggested that DEHP-induced gut microbial remodeling is characterized by an upregulation of detrimental bacteria (Erysipelotrichaceae) and a downregulation of beneficial bacteria (Muribaculaceae, Ruminococcaceae, and Lachnospiraceae). Metabolomics analysis revealed DEHP perturbed gut metabolic homeostasis, particularly affecting the degradation of aromatic compounds, which generated an aberrant activation of the AhR and NF-κB, subsequently causing intestinal inflammation. Consequently, our results elucidate the mechanistic link between disrupted gut microbiota and metabolome and the initiation of DEHP-induced intestinal inflammation, mediated through the AhR/NF-κB signaling pathway.


Asunto(s)
Dietilhexil Ftalato , Microbioma Gastrointestinal , Ácidos Ftálicos , Ratones , Animales , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/metabolismo , FN-kappa B/metabolismo , ARN Ribosómico 16S , Inflamación/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA