Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros











Intervalo de año de publicación
1.
Heliyon ; 10(17): e36582, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286217

RESUMEN

The small-diameter high-speed submersible permanent magnet synchronous motor (SHS-PMSM) is essential equipment for rodless oil and gas extraction in slimhole wells and high-water content oil wells. The SHS-PMSM typically operates for extended periods of time underground in high temperatures. Because of its compact size, the heat is difficult to dissipate, which increases the risk of motor overheating and damage. In order to accurately predict temperature, the method of magnetic-heat-flow multiphysics bidirectional coupling is studied in this paper. A SHS-PMSM with an outer diameter of ø89mm is taken as the object, and its copper loss, friction loss and convective heat transfer coefficient are studied by analytical derivation. The relationship between them and temperature are expressed by functions which can be compiled into User-Defined Functions (UDFs) as variable during the calculation process of finite volume method. Both coupling calculations and experiments are conducted. The temperature calculated by magnetic-heat-flow bidirectional connection is higher than that produced by the conventional method and more in line with experimental results after the results of both simulations and experiments are carried out and compared. The accuracy of the magnetic-heat-flow bidirectional coupling method is verified and the design basis of temperature for SHS-PMSM can be provided.

2.
Heliyon ; 10(13): e33625, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040395

RESUMEN

The presence of voids in a solder layer affects the thermal reliability of an insulated-gate bipolar transistor (IGBT). In this work, the effects of the size and fraction of solder layer voids and the power losses of chips on heat flow distribution, junction temperature and thermal resistance were investigated. It was found that it was difficult for the heat to flow through the voids due to the high thermal resistance of air. Therefore, the heat above the voids could only flow horizontally, and then avoid the voids and move downward in the solder layer and the following layers, leading to a temperature difference in the surface chip layer. An improved junction temperature model based on the heat flow distribution (HD) considering the solder layer voids was established, the horizontal thermal resistance and horizontal heat capacity are introduced to characterize the effect of the solder layer voids, and the parameter extraction method was proposed. The temperature difference on the surface of the module increased with the increase of the void fraction, and when the void fraction increased from 0 % to 40 %, the surface temperature difference increased from 9.591 °C to 109.86 °C. The results showed that the proposed model not only had a higher accuracy in the estimation of the junction temperature compared with the traditional Cauer model and the improved Cauer model, but also monitored the horizontal temperature differences in the chip layer precisely.

3.
Materials (Basel) ; 17(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063891

RESUMEN

The purpose of this work is to study the kinetics of the heat flow heating the substrate, which is generated by a two-layer sandwich magnetron target when sputtered in argon. Its novelty resides in the application of the COMSOL Multiphysics to study the kinetics of thermal processes during sputtering of a target of the new type. The analysis was performed for a sandwich target with internal copper and external titanium plates when the discharge power varied in the range of 400-1200 W. The heating of the external target plate is described by a two-dimensional homogeneous Fourier equation. The solution to the equation reveals how the kinetics of the external plate's surface temperature distribution depends on the discharge power. To study the heat flow heating the substrate, the external plate is presented in the form of an additive set of small-sized surface heat sources. Previously unknown features of the thermal process are established. It is shown that numerical modeling adequately describes the experimental results.

4.
Entropy (Basel) ; 25(9)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37761590

RESUMEN

Complex living systems, such as the human organism, are characterized by their self-organized and dissipative behaviors, where irreversible processes continuously produce entropy internally and export it to the environment; however, a means by which to measure human entropy production and entropy flow over time is not well-studied. In this article, we leverage prior experimental data to introduce an experimental approach for the continuous measurement of external entropy flow (released to the environment) and internal entropy production (within the body), using direct and indirect calorimetry, respectively, for humans exercising under heat stress. Direct calorimetry, performed with a whole-body modified Snellen calorimeter, was used to measure the external heat dissipation from the change in temperature and relative humidity between the air outflow and inflow, from which was derived the rates of entropy flow of the body. Indirect calorimetry, which measures oxygen consumption and carbon dioxide production from inspired and expired gases, was used to monitor internal entropy production. A two-compartment entropy flow model was used to calculate the rates of internal entropy production and external entropy flow for 11 middle-aged men during a schedule of alternating exercise and resting bouts at a fixed metabolic heat production rate. We measured a resting internal entropy production rate of (0.18 ± 0.01) W/(K·m2) during heat stress only, which is in agreement with published measurements. This research introduces an approach for the real-time monitoring of entropy production and entropy flow in humans, and aims for an improved understanding of human health and illness based on non-equilibrium thermodynamics.

5.
Nano Lett ; 23(19): 8860-8867, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37732878

RESUMEN

Tailoring heat flow in solids has profound implications for the innovation of functional thermal devices. However, the current methods face technological challenges related to system complexity, material stability, and operating temperature. In this study, we demonstrated efficient heat flow modulation in a single material without a phase transition, using a simple and entirely material-independent strategy, kinked nanostructure patterning, at near-ambient temperature. By carefully controlling the kink arm length and kink angle of the Si nanoribbons, we achieved a thermal conductivity modulation of up to ∼20%. Our theoretical modeling showed that this modulation results from the competing roles of phonon backscattering and open view channels on heat transport. We also build a regime map based on the existence of an open view channel and provide concrete design guidelines for thermal conductivity modulation considering the kink angle and arm length. This study opens up new opportunities for efficient heat flow manipulation through nanostructure patterning.

6.
Materials (Basel) ; 16(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37445179

RESUMEN

The structure of metallic materials has a significant impact on their properties. One of the most popular methods to form the properties of metal alloys is heat treatment, which uses thermally activated transformations that take place in metals to achieve the required mechanical or physicochemical properties. The phase transformation in steel results from the fact that one state becomes less durable than the other due to a change in conditions, for example, temperature. Phase transformations are an extensive field of research that is developing very dynamically both in the sphere of experimental and model research. The objective of this paper is the development of a 3D heat flow model to model heat transfer during diffusional phase transformations in carbon steels. This model considers the two main factors that influence the transformation: the temperature and the enthalpy of transformation. The proposed model is based on the lattice Boltzmann method (LBM) and uses CUDA parallel computations. The developed heat flow model is directly related to the microstructure evolution model, which is based on frontal cellular automata (FCA). This paper briefly presents information on the FCA, LBM, CUDA, and diffusional phase transformation in carbon steels. The structures of the 3D model of heat flow and their connection with the microstructure evolution model as well as the algorithm for simulation of heat transfer with consideration of the enthalpy of transformation are shown. Examples of simulation results of the growth of the new phase that are determined by the overheating/overcooling and different model parameters in the selected planes of the 3D calculation domain are also presented.

7.
Micromachines (Basel) ; 14(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37512769

RESUMEN

Aiming at the shortcomings of the traditional engineering experience in designing thin-film heat flow meters, such as low precision and long iteration time, the finite element analysis model of thin-film heat flow meters is established based on finite element simulation methods, and a double-type thin-film heat flow sensor based on a copper/concentrate thermopile is made. The influence of the position of the thermal resistance layer, heat flux density and thickness of the thermal resistance layer on the temperature gradient of the hot and cold ends of the heat flow sensor were comprehensively analyzed by using a simulation method. When the applied heat flux density is 50 kW/m2 and the thermal resistance layer is located above and below the thermopile, respectively, the temperature difference between the hot junction and the cold junction is basically the same, but comparing the two, the thermal resistance layer located above is more suitable for rapid measurements of heat flux at high temperatures. In addition, the temperature difference between the hot and cold contacts of the thin-film heat flux sensor increases linearly with the thickness of the thermal resistance layer. Finally, we experimentally tested the response-recovery characteristics of the sensors, with a noise of 2.1 µV and a maximum voltage output of 15 µV in a room temperature environment, respectively, with a response time of about 2 s and a recovery time of about 3 s. Therefore, the device we designed has the characteristic of double-sided use, which can greatly expand the scope of use and service life of the device and promote the development of a new type of heat flow meter, which will provide a new method for the measurement of heat flow density in the complex environment on the surface of the aero-engine.

8.
Micromachines (Basel) ; 14(6)2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37374817

RESUMEN

More and more researchers are studying the heat transfer performance of aeronautical materials at high temperatures. In this paper, we use a quartz lamp to irradiate fused quartz ceramic materials, and the sample surface temperature and heat flux distribution were obtained at a heating power of 45~150 kW. Furthermore, the heat transfer properties of the material were analyzed using a finite element method and the effect of surface heat flow on the internal temperature field was investigated. The results show that the fiber skeleton structure has a significant effect on the thermal insulation performance of fiber-reinforced fused quartz ceramics and the longitudinal heat transfer along the rod fiber skeleton is slower. As time passes, the surface temperature distribution tends to stability and reaches an equilibrium state. The surface temperature of fused quartz ceramic increases with the increase in the radiant heat flux of the quartz lamp array. When the input power is 5 kW, the maximum surface temperature of the sample can reach 1153 °C. However, the non-uniformity of the sample surface temperature also increases, reaching a maximum uncertainty of 12.28%. The research in this paper provides important theoretical guidance for the heat insulation design of ultra-high acoustic velocity aircraft.

9.
Sci Total Environ ; 895: 165206, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37391137

RESUMEN

Coal spontaneous combustion (CSC) wastes valuable resources and does great damage to the environment. To study the oxidation and exothermic properties of CSC under solid-liquid-gas coexistence conditions, a C600 microcalorimeter was used to analyze the heat released by the oxidation of raw coal (RC) and water immersion coal (WIC) under different air leakage (AL) conditions. The experimental results showed that the AL was negatively correlated with the heat release intensity (HRI) in the initial stages of coal oxidation, but as the oxidation proceeded, the AL and the HRI gradually showed positive correlations. The HRI of the WIC was lower than that of the RC under the same AL conditions. However, since water participated in the generation and transfer of free radicals in the coal oxidation reaction and promoted the development of coal pores, the HRI growth rate of the WIC was higher than that of the RC during the rapid oxidation period, and the self-heating risk was higher. The heat flow curves for the RC and WIC in the rapid oxidation exothermic stage could be fitted with quadratic functions. The experimental results provide an important theoretical basis for the prevention of CSC.

10.
Materials (Basel) ; 16(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36836992

RESUMEN

To investigate the high-temperature heat flow's destructive effect of solid slow-release energetic materials on a steel target, we prepared a sample of solid slow-release energetic materials, eruption devices, and a complete test system to conduct the destruction of high-temperature heat flow on the steel target. In addition, we proposed the energy density to characterise the high-temperature heat flow performance and numerically simulated the destructive effect of the high-temperature heat flow on the steel target. The numerical simulation results were in good agreement with the test results, and the error between them was under 8.5%. Based on the test and simulation results, the steady-state melting model of the steel target was established under the action of high-temperature heat flow. Moreover, a time-varying model of the melting hole shape was found. The results showed that the model of destroying the steel target with the high-temperature heat flow of solid slow-release energetic materials was highly accurate. Therefore, the model could provide theoretical guidance for designing and applying solid slow-release energetic materials in ammunition destruction, metal cutting, the simulation of the laser thermal effect, etc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA