Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 282: 116708, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39018736

RESUMEN

Previous studies reported that hemoprotein CYP450 catalyzed triclosan coupling is an "uncommon" metabolic pathway that may enhance toxicity, raising concerns about its environmental and health impacts. Hemoglobin, a notable hemoprotein, can catalyze endogenous phenolic amino acid tyrosine coupling reactions. Our study explored the feasibility of these coupling reactions for exogenous phenolic pollutants in plasma. Both hemoglobin and hemin were found to catalyze triclosan coupling in the presence of H2O2. This resulted in the formation of five diTCS-2 H, two diTCS-Cl-3 H, and twelve triTCS-4 H in phosphate buffer, with a total of nineteen triclosan coupling products monitored using LC-QTOF. In plasma, five diTCS-2 H, two diTCS-Cl-3 H, and two triTCS-4 H were detected in hemoglobin-catalyzed reactions. Hemin showed a weaker catalytic effect on triclosan transformation compared to hemoglobin, likely due to hemin dimerization and oxidative degradation by H2O2, which limits its catalytic efficiency. Triclosan transformation in the human plasma-like medium still occurs with high H2O2, despite the presence of antioxidant proteins that typically inhibit such transformations. In plasma, free H2O2 was depleted within 40 minutes when 800 µM H2O2 was added, suggesting a rapid consumption of H2O2 in these reactions. Antioxidative species, or hemoglobin/hemin scavengers such as bovine serum albumin, may inhibit but not completely terminate the triclosan coupling reactions. Previous studies reported that diTCS-2 H showed higher hydrophobicity and greater endocrine-disrupting effects compared to triclosan, which further underscores the potential health risks. This study indicates that hemoglobin and heme in human plasma might significantly contribute to phenolic coupling reactions, potentially increasing health risks.


Asunto(s)
Hemina , Hemoglobinas , Peróxido de Hidrógeno , Oxidación-Reducción , Triclosán , Triclosán/toxicidad , Hemoglobinas/química , Humanos , Peróxido de Hidrógeno/química , Catálisis , Contaminantes Ambientales , Fenoles
2.
Free Radic Biol Med ; 217: 68-115, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508405

RESUMEN

The objective of the current review is to summarize the current state of optical methods in redox biology. It consists of two parts, the first is dedicated to genetically encoded fluorescent indicators and the second to Raman spectroscopy. In the first part, we provide a detailed classification of the currently available redox biosensors based on their target analytes. We thoroughly discuss the main architecture types of these proteins, the underlying engineering strategies for their development, the biochemical properties of existing tools and their advantages and disadvantages from a practical point of view. Particular attention is paid to fluorescence lifetime imaging microscopy as a possible readout technique, since it is less prone to certain artifacts than traditional intensiometric measurements. In the second part, the characteristic Raman peaks of the most important redox intermediates are listed, and examples of how this knowledge can be implemented in biological studies are given. This part covers such fields as estimation of the redox states and concentrations of Fe-S clusters, cytochromes, other heme-containing proteins, oxidative derivatives of thiols, lipids, and nucleotides. Finally, we touch on the issue of multiparameter imaging, in which biosensors are combined with other visualization methods for simultaneous assessment of several cellular parameters.


Asunto(s)
Técnicas Biosensibles , Espectrometría Raman , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/metabolismo , Técnicas Biosensibles/métodos , Oxidación-Reducción , Biología
3.
Bioprocess Biosyst Eng ; 47(4): 549-556, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499686

RESUMEN

Heme, found in hemoproteins, is a valuable source of iron, an essential mineral. The need for an alternative hemoprotein source has emerged due to the inherent risks of large-scale livestock farming and animal proteins. Corynebacterium glutamicum, regarded for Qualified Presumption of Safety or Generally Recognized as Safe, can biosynthesize hemoproteins. C. glutamicum single-cell protein (SCP) can be a valuable alternative hemoprotein for supplying heme iron without adversely affecting blood fat levels. We constructed the chemostat culture system to increase hemoprotein content in C. glutamicum SCP. Through adaptive evolution, hemoprotein levels could be naturally increased to address oxidative stress resulting from enhanced growth rate. In addition, we used several specific plasmids containing growth-accelerating genes and the hemA promoter to expedite the evolutionary process. Following chemostat culture for 15 days, the plasmid in selected descendants was cured. The evolved strains showed improved specific growth rates from 0.59 h-1 to 0.62 h-1, 20% enhanced resistance to oxidative stress, and increased heme concentration from 12.95 µg/g-DCW to 14.22-15.24 µg/g-DCW. Notably, the putative peptidyl-tRNA hydrolase-based evolved strain manifested the most significant increase (30%) of hemoproteins. This is the first report presenting the potential of a growth-acceleration-targeted evolution (GATE) strategy for developing non-GMO industrial strains with increased bio-product productivity.


Asunto(s)
Corynebacterium glutamicum , Animales , Plásmidos , Hierro/metabolismo , Hemo/metabolismo , Aceleración , Ingeniería Metabólica
4.
Crit Rev Biotechnol ; : 1-17, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228501

RESUMEN

Heme, an iron-containing tetrapyrrole in hemoproteins, including: hemoglobin, myoglobin, catalase, cytochrome c, and cytochrome P450, plays critical physiological roles in different organisms. Heme-derived chemicals, such as biliverdin, bilirubin, and phycocyanobilin, are known for their antioxidant and anti-inflammatory properties and have shown great potential in fighting viruses and diseases. Therefore, more and more attention has been paid to the biosynthesis of hemoproteins and heme derivatives, which depends on the adequate heme supply in various microbial cell factories. The enhancement of endogenous biosynthesis and exogenous uptake can improve the intracellular heme supply, but the excess free heme is toxic to the cells. Therefore, based on the heme-responsive regulators, several sensitive biosensors were developed to fine-tune the intracellular levels of heme. In this review, recent advances in the: biosynthesis, acquisition, regulation, and upcycling of heme were summarized to provide a solid foundation for the efficient production and application of high-value-added hemoproteins and heme derivatives.

5.
J Comput Chem ; 45(9): 574-588, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38041830

RESUMEN

We investigated the intrinsic strength of distal and proximal FeN bonds for both ferric and ferrous oxidation states of bishistidyl hemoproteins from bacteria, animals, human, and plants, including two cytoglobins, ten hemoglobins, two myoglobins, six neuroglobins, and six phytoglobins. As a qualified measure of bond strength, we used local vibrational force constants k a (FeN) based on local mode theory developed in our group. All calculations were performed with a hybrid QM/MM ansatz. Starting geometries were taken from available x-ray structures. k a (FeN) values were correlated with FeN bond lengths and covalent bond character. We also investigated the stiffness of the axial NFeN bond angle. Our results highlight that protein effects are sensitively reflected in k a (FeN), allowing one to compare trends in diverse protein groups. Moreover, k a (NFeN) is a perfect tool to monitor changes in the axial heme framework caused by different protein environments as well as different Fe oxidation states.


Asunto(s)
Histidina , Hierro , Animales , Humanos , Hierro/química , Hemo/química , Hemoglobinas , Oxidación-Reducción
6.
Int J Biol Macromol ; 254(Pt 3): 128069, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967600

RESUMEN

Perfluorooctane sulfonate (PFOS), a representative of perfluorinated compounds in industrial and commercial products, has posed a great threat to animals and humans via environmental exposure and dietary consumption. Herein, we investigated the effects of PFOS binding on the redox state and stability of two hemoproteins (hemoglobin (Hb) and myoglobin (Mb)). Fluorescence spectroscopy, circular dichroism and UV-vis absorption spectroscopy demonstrated that PFOS could induce the conformational changes of proteins along with the exposure of heme cavity and generation of hemichrome, which resulted in the increased release of free hemin. After that, free hemin liberated from hemoproteins led to reactive oxygen species formation, lipid peroxidation, cell membrane damage and loss of cell viability in vascular endothelial cells, while neither Hb nor Mb did show cytotoxicity. Chemical inhibitors of ferroptosis effectively mitigated hemin-caused toxicity, identifying the hemin-dependent ferroptotic cell death mechanisms. These data demonstrated that PFOS posed a potential threat of toxicity through a mechanism which involved its binding to hemoproteins, decreased oxygen transporting capacity, and increased hemin release. Altogether, our findings elucidate the binding mechanisms of PFOS with two hemoproteins, as well as possible risks on vascular endothelial cells, which would have important implications for the human and environmental toxicity of PFOS.


Asunto(s)
Células Endoteliales , Hemina , Animales , Humanos , Hemina/metabolismo , Células Endoteliales/metabolismo , Oxidación-Reducción , Hemoglobinas/química , Dicroismo Circular , Mioglobina/metabolismo
7.
Microbiol Spectr ; 12(1): e0291223, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38084982

RESUMEN

IMPORTANCE: Streptococcus pneumoniae (Spn) colonizes the lungs, killing millions every year. During its metabolism, Spn produces abundant amounts of hydrogen peroxide. When produced in the lung parenchyma, Spn-hydrogen peroxide (H2O2) causes the death of lung cells, and details of the mechanism are studied here. We found that Spn-H2O2 targets intracellular proteins, resulting in the contraction of the cell cytoskeleton and disruption of mitochondrial function, ultimately contributing to cell death. Intracellular proteins targeted by Spn-H2O2 included cytochrome c and, surprisingly, a protein of the cell cytoskeleton, beta-tubulin. To study the details of oxidative reactions, we used, as a surrogate model, the oxidation of another hemoprotein, hemoglobin. Using the surrogate model, we specifically identified a highly reactive radical whose creation was catalyzed by Spn-H2O2. In sum, we demonstrated that the oxidation of intracellular targets by Spn-H2O2 plays an important role in the cytotoxicity caused by Spn, thus providing new targets for interventions.


Asunto(s)
Peróxido de Hidrógeno , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/metabolismo , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Pulmón/metabolismo , Mitocondrias/metabolismo , Respiración , Citoesqueleto/metabolismo
8.
Adv Sci (Weinh) ; 10(30): e2302826, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37649147

RESUMEN

Microbial synthesis of valuable hemoproteins has become a popular research topic, and Pichia pastoris is a versatile platform for the industrial production of recombinant proteins. However, the inadequate supply of heme limits the synthesis of high-active hemoproteins. Here a strategy for enhancing intracellular heme biosynthesis to improve the titers and functional activities of hemoproteins is reported. After selecting a suitable expressional strategy for globins, the efficient heme-supply P. pastoris chassis is established by removing the spatial segregation during heme biosynthesis, optimizing precursor synthesis, assembling rate-limiting enzymes using protein scaffolds, and inhibiting heme degradation. This robust chassis produces several highly active hemoproteins, including porcine myoglobin, soy hemoglobin, Vitreoscilla hemoglobin, and P450-BM3, which can be used in the development of artificial meat, high-cell-density fermentation, and whole-cell catalytic synthesis of high-value-added compounds. Furthermore, the engineered chassis strain has great potential for producing and applying other hemoproteins with high activities in various fields.


Asunto(s)
Hemo , Pichia , Animales , Porcinos , Hemo/metabolismo , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fermentación
9.
Angew Chem Int Ed Engl ; 62(31): e202303764, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37278513

RESUMEN

Affinity purification of recombinant proteins is an essential technique in biotechnology. However, current affinity purification methods are very cost-intensive, and this imposes limits on versatile use of affinity purification for obtaining purified proteins for a variety of applications. To overcome this problem, we developed a new affinity purification system which we call CSAP (chitin- and streptavidin-mediated affinity purification) for low-cost purification of Strep-tag II fusion proteins. The CSAP system is designed to utilize commercially available chitin powder as a chromatography matrix, thereby significantly improving the cost-efficiency of protein affinity purification. We investigated the CSAP system for protein screening in 96-well format as a demonstration. Through the screening of 96 types of purified hemoproteins, several proteins capable of the catalytic diastereodivergent synthesis of cyclopropanes were identified as candidates for an abiotic carbene transfer reaction.


Asunto(s)
Quitina , Escherichia coli , Estreptavidina/química , Quitina/química , Escherichia coli/metabolismo , Proteínas Recombinantes/química , Cromatografía de Afinidad/métodos , Proteínas Recombinantes de Fusión/química
10.
Biomolecules ; 13(4)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37189430

RESUMEN

Hemoproteins include several heme-binding proteins with distinct structure and function. The presence of the heme group confers specific reactivity and spectroscopic properties to hemoproteins. In this review, we provide an overview of five families of hemoproteins in terms of dynamics and reactivity. First, we describe how ligands modulate cooperativity and reactivity in globins, such as myoglobin and hemoglobin. Second, we move on to another family of hemoproteins devoted to electron transport, such as cytochromes. Later, we consider heme-based reactivity in hemopexin, the main heme-scavenging protein. Then, we focus on heme-albumin, a chronosteric hemoprotein with peculiar spectroscopic and enzymatic properties. Eventually, we analyze the reactivity and dynamics of the most recently discovered family of hemoproteins, i.e., nitrobindins.


Asunto(s)
Hemoproteínas , Hemo/metabolismo , Ligandos , Hemoproteínas/química , Hemoproteínas/metabolismo
11.
Life (Basel) ; 12(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430993

RESUMEN

Rare diseases, especially monogenic diseases, which usually affect a single target protein, have attracted growing interest in drug research by encouraging pharmaceutical companies to design and develop therapeutic products to be tested in the clinical arena. Acute intermittent porphyria (AIP) is one of these rare diseases. AIP is characterized by haploinsufficiency in the third enzyme of the heme biosynthesis pathway. Identification of the liver as the target organ and a detailed molecular characterization have enabled the development and approval of several therapies to manage this disease, such as glucose infusions, heme replenishment, and, more recently, an siRNA strategy that aims to down-regulate the key limiting enzyme of heme synthesis. Given the involvement of hepatic hemoproteins in essential metabolic functions, important questions regarding energy supply, antioxidant and detoxifying responses, and glucose homeostasis remain to be elucidated. This review reports recent insights into the pathogenesis of acute attacks and provides an update on emerging treatments aimed at increasing the activity of the deficient enzyme in the liver and restoring the physiological regulation of the pathway. While further studies are needed to optimize gene therapy vectors or large-scale production of liver-targeted PBGD proteins, effective protection of PBGD mRNA against the acute attacks has already been successfully confirmed in mice and large animals, and mRNA transfer technology is being tested in several clinical trials for metabolic diseases.

12.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36142682

RESUMEN

Nitric oxide (NO) is an active and critical nitrogen oxide in the microbe-driven nitrogen biogeochemical cycle, and is of great interest to medicine and the biological sciences. As a gas molecule prior to oxygen, NO respiration represents an early form of energy generation via various reactions in prokaryotes. Major enzymes for endogenous NO formation known to date include two types of nitrite reductases in denitrification, hydroxylamine oxidoreductase in ammonia oxidation, and NO synthases (NOSs). While the former two play critical roles in shaping electron transport pathways in bacteria, NOSs are intracellular enzymes catalyzing metabolism of certain amino acids and have been extensively studied in mammals. NO interacts with numerous cellular targets, most of which are redox-active proteins. Doing so, NO plays harmful and beneficial roles by affecting diverse biological processes within bacterial physiology. Here, we discuss recent advances in the field, including NO-forming enzymes, the molecular mechanisms by which these enzymes function, physiological roles of bacterial NOSs, and regulation of NO homeostasis in bacteria.


Asunto(s)
Amoníaco , Óxido Nítrico , Aminoácidos/metabolismo , Amoníaco/metabolismo , Animales , Bacterias/metabolismo , Mamíferos/metabolismo , Óxido Nítrico/metabolismo , Nitrito Reductasas/metabolismo , Nitrógeno/metabolismo , Óxidos de Nitrógeno/metabolismo , Oxígeno/metabolismo
13.
Biol Chem ; 403(11-12): 1031-1042, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36165459

RESUMEN

Heme is a vital cofactor of proteins with roles in oxygen transport (e.g. hemoglobin), storage (e.g. myoglobin), and activation (e.g. P450) as well as electron transfer (e.g. cytochromes) and many other functions. However, its structural and functional role in oxygen sensing proteins differs markedly from that in most other enzymes, where it serves as a catalytic or functional center. This minireview discusses the mechanism of signal transduction in two heme-based oxygen sensors: the histidine kinase AfGcHK and the diguanylate cyclase YddV (EcDosC), both of which feature a heme-binding domain containing a globin fold resembling that of hemoglobin and myoglobin.


Asunto(s)
Hemo , Mioglobina , Histidina Quinasa/química , Histidina Quinasa/metabolismo , Hemo/química , Mioglobina/metabolismo , Oxígeno/metabolismo , Transducción de Señal , Hemoglobinas
14.
Cancers (Basel) ; 13(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34439295

RESUMEN

Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-ß-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.

15.
Adv Biol (Weinh) ; 5(9): e2100773, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34310085

RESUMEN

Nitrite and nitric oxide (NO) are two active nitrogen oxides that display similar biochemical properties, especially when interacting with redox-sensitive proteins (i.e., hemoproteins), an observation serving as the foundation of the notion that the antibacterial effect of nitrite is largely attributed to NO formation. However, a growing body of evidence suggests that they are largely treated as distinct molecules by bacterial cells. Although both nitrite and NO are formed and decomposed by enzymes participating in the transformation of these nitrogen species, NO can also be generated via amino acid metabolism by bacterial NO synthetase and scavenged by flavohemoglobin. NO seemingly interacts with all hemoproteins indiscriminately, whereas nitrite shows high specificity to heme-copper oxidases. Consequently, the homeostasis of redox-sensitive proteins may be responsible for the substantial difference in NO-targets identified to date among different bacteria. In addition, most protective systems against NO damage have no significant role in alleviating inhibitory effects of nitrite. Furthermore, when functioning as signal molecules, nitrite and NO are perceived by completely different sensing systems, through which they are linked to different biological processes.


Asunto(s)
Óxido Nítrico , Nitritos , Bacterias , Óxido Nítrico Sintasa , Óxidos de Nitrógeno
16.
J Appl Physiol (1985) ; 131(1): 64-71, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34013749

RESUMEN

The major goal of this article was to quantify relationships of the carboxyhemoglobin % saturation, a calculated tissue PCO, and tissue hypoxia to the binding of carbon monoxide (CO) to canine skeletal and heart ventricular muscle extravascular (EV) tissue under normal conditions and during CO poisoning scenarios. These data are relevant to CO poisoning because CO bound to EV cellular hemoproteins evoke metabolic changes that produce toxic effects. Skeletal and heart muscle EV CO contents were calculated from data obtained from biopsies performed on living anesthetized dogs reported in previous publications (Coburn RF, Mayers LB. Am J Physiol 220: 66-74, 1971; Coburn RF, Ploegmakers F, Gondrie P, Abboud R. Am J Physiol 224: 870-876, 1973). Results include normal values of EV CO contents of resting skeletal muscle and heart ventricular muscle, effects of increasing COHb% saturation and a calculated mean tissue PCO on skeletal muscle EV CO binding, and effects of tissue hypoxia evoked by arterial hypoxemia on EV CO binding in both of these tissues. This study is the first that shows that tissue hypoxia-induced CO shifts out of blood resulting in increased EV CO binding are a mechanism that causes CO toxicity. Projections of results to tissue PCO levels occurring during different severe CO toxicity scenarios predict that skeletal muscle EV CO contents could increase as much as 100 to 300 fold.NEW & NEWSWORTHY This article provides quantification of some physiological parameters that determine carbon monoxide (CO) binding to skeletal and heart muscle extravascular tissue hemoproteins during normal and CO poisoning conditions. This is important information because toxicity occurring during CO poisoning is determined in part by CO binding to these proteins that results in detrimental changes in cellular metabolism.


Asunto(s)
Intoxicación por Monóxido de Carbono , Carboxihemoglobina , Animales , Monóxido de Carbono , Perros , Hipoxia , Miocardio
17.
Trends Plant Sci ; 26(9): 885-897, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33867269

RESUMEN

Nitric oxide (NO) sensing is an ancient trait enabled by hemoproteins harboring a highly conserved Heme-Nitric oxide/OXygen (H-NOX) domain that operates throughout bacteria, fungi, and animal kingdoms including in humans, but that has long thought to be absent in plants. Recently, H-NOX-containing plant hemoproteins mediating crucial NO-dependent responses such as stomatal closure and pollen tube guidance have been reported. There are indications that the detection method that led to these discoveries will uncover many more heme-based NO sensors that operate as regulatory sites in complex proteins. Their characterizations will in turn offer a much more complete picture of plant NO responses at both the molecular and systems level.


Asunto(s)
Hemoproteínas , Óxido Nítrico , Fenómenos Fisiológicos de las Plantas , Hemo , Oxígeno
18.
J Inorg Biochem ; 214: 111267, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33099233

RESUMEN

Nitric oxide (NO), carbon monoxide (CO), and oxygen (O2) are important physiological messengers whose concentrations vary in a remarkable range, [NO] typically from nM to several µM while [O2] reaching to hundreds of µM. One of the machineries evolved in living organisms for gas sensing is sensor hemoproteins whose conformational change upon gas binding triggers downstream response cascades. The recently proposed "sliding scale rule" hypothesis provides a general interpretation for gaseous ligand selectivity of hemoproteins, identifying five factors that govern gaseous ligand selectivity. Hemoproteins have intrinsic selectivity for the three gases due to a neutral proximal histidine ligand while proximal strain of heme and distal steric hindrance indiscriminately adjust the affinity of these three gases for heme. On the other hand, multiple-step NO binding and distal hydrogen bond donor(s) specifically enhance affinity for NO and O2, respectively. The "sliding scale rule" hypothesis provides clear interpretation for dramatic selectivity for NO over O2 in soluble guanylate cyclase (sGC) which is an important example of sensor hemoproteins and plays vital roles in a wide range of physiological functions. The "sliding scale rule" hypothesis has so far been validated by all experimental data and it may guide future designs for heme-based gas sensors.


Asunto(s)
Monóxido de Carbono/metabolismo , Hemoproteínas/metabolismo , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Monóxido de Carbono/química , Hemoproteínas/química , Óxido Nítrico/química , Oxígeno/química , Guanilil Ciclasa Soluble/química
19.
Proc Natl Acad Sci U S A ; 117(36): 21914-21920, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848065

RESUMEN

The structure-function relationship is at the heart of biology, and major protein deformations are correlated to specific functions. For ferrous heme proteins, doming is associated with the respiratory function in hemoglobin and myoglobins. Cytochrome c (Cyt c) has evolved to become an important electron-transfer protein in humans. In its ferrous form, it undergoes ligand release and doming upon photoexcitation, but its ferric form does not release the distal ligand, while the return to the ground state has been attributed to thermal relaxation. Here, by combining femtosecond Fe Kα and Kß X-ray emission spectroscopy (XES) with Fe K-edge X-ray absorption near-edge structure (XANES), we demonstrate that the photocycle of ferric Cyt c is entirely due to a cascade among excited spin states of the iron ion, causing the ferric heme to undergo doming, which we identify. We also argue that this pattern is common to a wide diversity of ferric heme proteins, raising the question of the biological relevance of doming in such proteins.


Asunto(s)
Citocromos c/química , Citocromos c/metabolismo , Humanos , Hierro/química , Hierro/metabolismo , Cinética , Dominios Proteicos , Espectrometría por Rayos X , Espectroscopía de Absorción de Rayos X
20.
Curr Genet ; 66(4): 703-711, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32185489

RESUMEN

Iron is essential for nearly all aerobic organisms. One source of iron in nature is in the form of heme. Due to its critical physiological importance as a cofactor for several enzymes, organisms have evolved various means to secure heme for their needs. In the case of heme prototrophs, these organisms possess a highly conserved eight-step biosynthetic pathway. Another means used by many organisms is to acquire heme from external sources. As opposed to the knowledge of enzymes responsible for heme biosynthesis, the nature of the players and mechanisms involved in the acquisition of exogenous heme is limited. This review focuses on a description of newly discovered proteins that have novel functions in heme assimilation in the model organism Schizosaccharomyces pombe. This tractable model allows the use of the power of genetics to selectively block heme biosynthesis, setting conditions to investigate the mechanisms by which external heme is taken up by the cells. Studies have revealed that S. pombe possesses two independent heme uptake systems that require Shu1 and Str3, respectively. Heme-bound iron is captured by Shu1 at the cell surface, triggering its internalization to the vacuole with the aid of ubiquitinated proteins and the ESCRT machinery. In the case of the plasma membrane transporter Str3, it promotes cellular heme import in cells lacking Shu1. The discovery of these two pathways may contribute to gain novel insights into the mechanisms whereby fungi assimilate heme, which is an essentially biological process for their ability to invade and colonize new niches.


Asunto(s)
Hemo/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Animales , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Hongos/metabolismo , Hemo/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA