Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Food Res Int ; 195: 114948, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277226

RESUMEN

Oleosomes are natural lipid droplets that can be extracted intact from oil seeds, forming oil/water emulsions. Their lipid cores, surrounded by a monolayer of phospholipids and proteins, make oleosomes suitable as carriers of hydrophobic bioactive compounds like cannabidiol (CBD). As CBD is crystalline at room temperature, it first has to be liquified to allow better encapsulation. This was done by heating (80 °C for 4 h) or by pre-solubilizing CBD in ethanol and then the liquified CBD was mixed with oleosome dispersions for the encapsulation. Both methods exhibit good encapsulation efficiency, but the results were significantly influenced by the ratio of CBD to lipid contents, regardless of the encapsulation method applied. At higher concentrations of CBD relative to that of the lipid in the oleosomes, the encapsulation efficiency decreased as saturation was attained. Moreover, the in vitro digestion analysis was conducted to investigate the potential of oleosomes as carriers to transport CBD. The relatively slow and steady release of CBD from oleosomes indicates that oleosomes are a slow-release carrier for hydrophobic functional ingredients. An important finding is that the encapsulation and in vitro digestive properties of the oleosomes remain unaffected by the presence of CBD, heating treatment or ethanol, which could bring more opportunities for the applications of oleosomes as carriers in various fields.


Asunto(s)
Cannabidiol , Cannabis , Emulsiones , Semillas , Cannabidiol/química , Cannabis/química , Semillas/química , Emulsiones/química , Gotas Lipídicas/química , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Calor , Etanol/química
2.
J Food Sci ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183680

RESUMEN

Hemp seed oil (HSO) is an edible oil low in saturated fat and rich in polyunsaturated fatty acids (PUFAs) such as omega-6 and omega-3 fatty acids. When they are in contact with oxygen in the air, PUFAs are easily oxidized even at room temperature due to the multiple double bonds that facilitate the formation of reactive radicals when exposed to air. This study aimed to evaluate the oxidation of HSO under different conditions and to examine the encapsulation of HSO with zein as a new method to prevent its oxidation. Peak time of weight gain monitored with thermogravimetric analysis and oxidation products detected with high-performance liquid chromatography were used to determine the oxidation of fatty acids and HSO. It was found that the thermal decomposition of fatty acids prevailed over autoxidation beyond a certain temperature (at about 100-140°C). Encapsulating HSO into zein microcapsules, which isolates oil droplets from contact with oxygen in the air, effectively prevented its oxidation. The induction period of HSO oxidation was delayed by 7.3-9.3 times with the zein-to-HSO ratio of 0.5-1.25. In contrast, 0.5% (w/w) α-tocopherol could prolong the induction period up to 2.5 times indicating that the encapsulation method was much more effective than α-tocopherol in preventing the oxidation of HSO. This method may also be applied for other oils susceptible to oxidation such as omega-3 oils. PRACTICAL APPLICATION: This research compares the effects of three schemes that stabilize hemp seed oil from oxidation: (1) lowering temperature to slow down the oxidation reaction, (2) adding antioxidant to deactivate the initiation of oxidation reaction, and (3) encapsulating oil droplets into protein microcapsules to keep the oil from contact with oxygen. The experimental result showed the encapsulation of oils in protein microcapsules is more effective than the other two. The stabilization approaches applied to hemp seed oil can also be applied to other edible oils that are unstable.

3.
Foods ; 13(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39200511

RESUMEN

Recently, products of plant origin have been utilized to extend the shelf life of meat products. This study examined the impact of hemp seed oil as a replacement for animal fat and sodium nitrite on the nutritional, physicochemical, technological, and sensory traits of fermented salamis. Five treatments were prepared: S0 (100 mg/kg NaNO2), S1 (2% hemp oil and 50 mg/kg NaNO2), S2 (4% hemp oil and 50 mg/kg NaNO2), S3 (2% hemp oil), and S4 (4% hemp oil). The addition of hemp seed oil did not affect proximate composition but improved fatty acid composition and lipid quality nutritional indices. Microbial growth was consistent across all treatments. Active acidity (pH) and water activity (aw) were influenced by hemp seed oil and/or sodium nitrite. Salamis containing only hemp seed oil exhibited lower redness and chroma values during storage. Hemp seed oil led to higher lipid peroxidation, mitigated by sodium nitrite. The addition of hemp seed oil and varying levels of sodium nitrite significantly impacted salami texture. Sensory evaluation showed consumer acceptance of hemp seed oil-enhanced salamis. In conclusion, hemp seed oil can be used as a functional ingredient to improve the nutritional value and healthiness of fermented meat products when combined with reduced sodium nitrite content.

4.
Sci Rep ; 14(1): 16588, 2024 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-39025925

RESUMEN

Invasive fungal infections (IFI) pose a significant health burden, leading to high morbidity, mortality, and treatment costs. This study aims to develop and characterize nanomicelles for the codelivery of posaconazole and hemp seed oil for IFI via the oral route. The nanomicelles were prepared using a nanoprecipitation method and optimized through the Box Behnken design. The optimized nanomicelles resulted in satisfactory results for zeta potential, size, PDI, entrapment efficiency, TEM, and stability studies. FTIR and DSC results confirm the compatibility and amorphous state of the prepared nanomicelles. Confocal laser scanning microscopy showed that the optimized nanomicelles penetrated the tissue more deeply (44.9µm) than the suspension (25µm). The drug-loaded nanomicelles exhibited sustained cumulative drug release of 95.48 ± 3.27% for 24 h. The nanomicelles showed significant inhibition against Aspergillus niger and Candida albicans (22.4 ± 0.21 and 32.2 ± 0.46 mm, respectively). The pharmacokinetic study on Wistar rats exhibited a 1.8-fold increase in relative bioavailability for the nanomicelles compared to the suspension. These results confirm their therapeutic efficacy and lay the groundwork for future research and clinical applications, providing a promising synergistic antifungal nanomicelles approach for treating IFIs.


Asunto(s)
Antifúngicos , Aceites de Plantas , Animales , Antifúngicos/administración & dosificación , Antifúngicos/farmacocinética , Antifúngicos/farmacología , Antifúngicos/química , Ratas , Aceites de Plantas/química , Aceites de Plantas/farmacología , Aceites de Plantas/administración & dosificación , Triazoles/administración & dosificación , Triazoles/farmacocinética , Triazoles/química , Triazoles/farmacología , Nanopartículas/química , Ratas Wistar , Candida albicans/efectos de los fármacos , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Aspergillus niger/efectos de los fármacos , Micelas , Semillas/química , Liberación de Fármacos , Masculino , Portadores de Fármacos/química
5.
Polymers (Basel) ; 16(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38891530

RESUMEN

Over the past few decades, polymer composites have received significant interest and become protagonists due to their enhanced properties and wide range of applications. Herein, we examined the impact of filler and flame retardants in hemp seed oil-based rigid polyurethane foam (RPUF) composites' performance. Firstly, the hemp seed oil (HSO) was converted to a corresponding epoxy analog, followed by a ring-opening reaction to synthesize hemp bio-polyols. The hemp polyol was then reacted with diisocyanate in the presence of commercial polyols and other foaming components to produce RPUF in a single step. In addition, different fillers like microcrystalline cellulose, alkaline lignin, titanium dioxide, and melamine (as a flame retardant) were used in different wt.% ratios to fabricate composite foam. The mechanical characteristics, thermal degradation behavior, cellular morphology, apparent density, flammability, and closed-cell contents of the generated composite foams were examined. An initial screening of different fillers revealed that microcrystalline cellulose significantly improves the mechanical strength up to 318 kPa. The effect of melamine as a flame retardant in composite foam was also examined, which shows the highest compression strength of 447 kPa. Significantly better anti-flaming qualities than those of neat foam based on HSO have been reflected using 22.15 wt.% of melamine, with the lowest burning time of 4.1 s and weight loss of 1.88 wt.%. All the composite foams showed about 90% closed-cell content. The present work illustrates the assembly of a filler-based polyurethane foam composite with anti-flaming properties from bio-based feedstocks with high-performance applications.

6.
Gels ; 10(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38920943

RESUMEN

The objective of this study was to develop candelilla wax oleogels with hemp seed oil and olive oil and use them as a fat source in the development of new plant-based ice cream assortments. Oleogels were structured with 3 and 9% candelilla wax and characterized by oil-binding capacity, peroxide value and color parameters. The oil-binding capacities of 9% wax oleogels were significantly higher than those of 3% wax oleogels, while peroxide values of oleogels decrease with increasing wax dosage. All oleogel samples are yellow-green due to the pigments present in the oils and candelilla wax. Physicochemical (pH, titratable acidity, soluble solids, fat, protein) and rheological (viscosity and viscoelastic modulus) parameters of plant-based ice cream mixes with oleogels were determined. Also, sensory attributes and texture parameters were investigated. The results showed that titratable acidity and fat content of plant-based ice cream samples increased with increasing wax percentage, while pH, soluble solids and protein values are more influenced by the type of plant milk used. The plant-based ice cream sample with spelt milk, hemp oil and 9% candelilla wax received the highest overall acceptability score. The hardness of the plant-based ice cream samples increased as the percentage of candelilla wax added increased.

7.
Metabolites ; 14(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38921439

RESUMEN

Aging is an irreversible process of natural degradation of bodily function. The increase in the aging population, as well as the rise in the incidence of aging-related diseases, poses one of the most pressing global challenges. Hemp seed oil, extracted from the seeds of hemp (Cannabis sativa L.), possesses significant nutritional and biological properties attributed to its unique composition of polyunsaturated fatty acids and various antioxidant compounds. However, there is limited knowledge regarding the anti-aging mechanism of hemp seed oil. This study aimed to evaluate the beneficial effects and potential mechanisms of hemp seed oil in a D-galactose (D-gal)-induced aging rat model through a combined analysis of metabolomics and 16S rRNA gene sequencing. Using nuclear magnetic resonance (NMR)-based metabolomics, significant alterations in serum and urine metabolic phenotypes were observed between the D-gal-induced aging rat model and the healthy control group. Eight and thirteen differentially expressed metabolites related to aging were identified in serum and urine, respectively. Treatment with hemp seed oil significantly restored four and ten potential biomarkers in serum and urine, respectively. The proposed pathways primarily included energy metabolism, amino acid metabolism, one-carbon metabolism, and lipid metabolism. Furthermore, 16S rRNA gene sequencing analysis revealed significant changes in the gut microbiota of aged rats. Compared to the model group, the hemp seed oil group exhibited significant alterations in the abundance of 21 bacterial taxa at the genus level. The results indicated that hemp seed oil suppressed the prevalence of pathogenic bacterial genera such as Streptococcus, Rothia, and Parabacteroides. Additionally, it facilitated the proliferation of the genera Lachnospirace_NK4B4_group and Lachnospirace_UCG_001, while also enhancing the relative abundance of the genus Butyricoccus; a producer of short-chain fatty acids (SCFAs). These findings provided new insights into the pathogenesis of aging and further supported the potential utility of hemp seed oil as an anti-aging therapeutic agent.

8.
Food Chem ; 452: 139591, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761631

RESUMEN

This work aimed to enhance hemp seed oil encapsulation within a hemp seed protein-alginate complex by optimizing parameters in the solution-enhanced dispersion process, employing supercritical carbon dioxide (SEDS) without reliance on organic solvents or elevated temperatures. By response surface methodology (RSM), the microencapsulation efficacy (MEE), particle size (PS) and peroxide value (PV) was determined with respect to three parameters; temperature (°C), pressure (bar) and feed flow rate (mL/min). The optimum conditions were predicted at temperature (40 °C), pressure (150 bar) and feed flow rate (2 mL/min) to offer an MEE of 89.47%, PS of 7.81 µm and PV of 2.91 (meq/kg oil). In addition, the SEDS method was compared with spray- and freeze-drying for encapsulating hemp seed oil. The findings demonstrated SEDS' superiority, exhibiting exceptional attributes such as the highest MEE, smallest PS and the production of spherical, smooth microcapsules. This highlights its effectiveness in comparison to spray- and freeze-drying methods.


Asunto(s)
Cannabis , Cápsulas , Dióxido de Carbono , Composición de Medicamentos , Tamaño de la Partícula , Semillas , Cápsulas/química , Dióxido de Carbono/química , Cannabis/química , Composición de Medicamentos/métodos , Semillas/química , Biopolímeros/química , Aceites de Plantas/química
9.
Am J Clin Nutr ; 120(1): 56-65, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38710445

RESUMEN

BACKGROUND: The effects of consuming hemp seed protein (HSP) as well as its hydrolysate-derived bioactive peptide (HSP+) on blood pressure (BP) has not, to our knowledge, been investigated in humans. OBJECTIVES: We aimed to investigate how consumption of HSP and its hydrolysate modulates 24-h systolic (SBP) and diastolic BP (DBP) and plasma biomarkers of BP compared with casein. METHODS: In a double-blind, randomized, crossover design trial, 35 adults who had mild hypertension with SBP between 130 and 160 mmHg and DBP ≤110 mmHg were recruited. Participants were randomly assigned to varying sequences of 3 6-wk treatments, 50 g casein/d, 50 g HSP/d, or 45 g HSP plus 5 g HSP-derived bioactive peptides/d (HSP+), separated by a 2-wk washout period. Treatment effects were assessed with a linear mixed model with repeated measures. RESULTS: Compared with casein, after HSP+ consumption, 24-h SBP and 24-h DBP decreased from 135.1 and 80.0 mmHg to 128.1 ± 1.6 (P < 0.0001) and 76.0 ± 1.4 mmHg (P < 0.0001), respectively, whereas these values were 133.5 ± 1.6 and 78.9 ± 1.4 mmHg after HSP consumption (P < 0.0001). There were no differences between the HSP and HSP+ consumption in plasma angiotensin-converting enzyme (ACE) activity, renin, or nitric oxide (NO) concentrations. However, these 2 treatments were able to lower both ACE and renin activities and raise NO concentration in plasma compared with casein. CONCLUSIONS: These results suggest that hemp protein consumption, as well as in combination with bioactive peptides, may have a role in the dietary management of hypertension. This trial was registered at clinicaltrials.gov as NCT03508895.


Asunto(s)
Presión Sanguínea , Cannabis , Caseínas , Estudios Cruzados , Hipertensión , Proteínas de Plantas , Semillas , Humanos , Caseínas/administración & dosificación , Método Doble Ciego , Masculino , Femenino , Hipertensión/dietoterapia , Hipertensión/tratamiento farmacológico , Cannabis/química , Persona de Mediana Edad , Semillas/química , Presión Sanguínea/efectos de los fármacos , Proteínas de Plantas/administración & dosificación , Adulto , Hidrolisados de Proteína/administración & dosificación , Anciano , Biomarcadores/sangre
10.
Front Microbiol ; 15: 1353015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638898

RESUMEN

Constipation is a common gastrointestinal disease that seriously affects human physical and mental health. Studies have reported that hemp seeds can improve constipation, however the specific mechanism is still unclear. This study investigates that hemp seed (HS) and its water-ethanol extract (HSE) attenuates loperamide-induced constipation in mice. The research results show that: the fecal water content and small intestinal transit rate of mice in the hemp seed group and hemp seed hydroalcoholic extract group were significantly increased compared with MC group, and the first red feces defecation time was significantly shortened; HS and HSE significantly influence serum levels of Gastrin (Gas), motilin (MTL), substance P (SP), and endothelin (ET), potentially mediating their effects on gastrointestinal motility. HS and HSE can improve colon inflammation in constipated mice with H&E staining. Compared with the model of constipation group, the content of short-chain fatty acids in the HS group and HSE group increased significantly. Gut microbiome studies have shown that the structure and abundance of intestinal flora are altered. HS and HSE changed the abundance of Odoribacter, Bacteroide, Lactobacillus and Prevotella. Together, these results suggest that HS have the potential to stimulate the proliferation of beneficial gut microbes and promote intestinal motility, thereby improving gut health and relieving symptoms of constipation.

11.
Vet Sci ; 11(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38668428

RESUMEN

Infectious skin diseases are quite common in veterinary medicine. These diseases can be caused by both bacteria and pathogenic fungi. Antimicrobial drugs are usually used for treatment. An alternative to these drugs could be ozonated oils with antibacterial and antifungal properties. Four different ozonated oils (linseed, hemp seed, sunflower, and olive) were tested in order to develop an optimal pharmaceutical form for the treatment of skin infections in animals. Chemical parameters such as acid and acidity value, iodine and peroxide value, viscosity, and infrared spectres were analysed. The ozonation of oils resulted in changes in their chemical composition. The antimicrobial activity of the tested oils was evaluated by determining the minimum inhibitory concentrations and zones of inhibition in agar. After ozonation, the acid content increased in all the tested oils. The highest acidity was found in linseed oil (13.00 ± 0.11 mg KOH/g; 6.1%). Hemp oil, whose acidity was also significant (second only to linseed oil), was the least acidified by ozonation (11.45 ± 0.09 mg KOH/g; 5.75%). After ozonation, the iodine value in oils was significantly reduced (45-93%), and the highest amounts of iodine value remained in linseed (47.50 ± 11.94 g Iodine/100 g oil) and hemp (44.77 ± 1.41 Iodine/100 g oil) oils. The highest number of peroxides after the ozonation of oils was found in sunflower oil (382 ± 9.8 meqO2/kg). It was found that ozonated hemp and linseed oils do not solidify and remain in liquid form when the temperature drops. The results showed a tendency for the reference strains of S. aureus, E. faecalis, and E. coli to have broader zones of inhibition (p < 0.001) than clinical strains. Overall, ozonated linseed oil had the highest antibacterial activity, and ozonated olive oil had the lowest, as determined by both methods. It was found that ozonated linseed oil was the most effective on bacteria, while the most sensitive were S. aureus ATCC 25923, MRSA, and S. pseudointermedius (MIC 13.5 mg/mL, 4.6 mg/mL, and 13.5 mg/mL, respectively, and sterile zones 20.67 ± 0.98 mm, 20.25 ± 0.45 mm, and 18.25 ± 0.45 mm, respectively). The aim and new aspect of this work is the characterisation of selected ozonated vegetable oils, especially hemp oil, according to chemical and antibacterial parameters, in order to select suitable candidates for preclinical and clinical animal studies in the treatment of bacterial or fungal skin infections in terms of safety and efficacy.

12.
Int J Biol Macromol ; 263(Pt 1): 130120, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350581

RESUMEN

This study investigates the viscoelastic behavior, gelling properties, and structural characteristics of Deccan hemp seed protein (DHSP) to overcome limitations in its application in food formulations. Small amplitude oscillatory shear measurements were employed to investigate the impact of protein concentration, pH, ionic concentration, and temperature on DHSP's rheological features. The study revealed that the 20 % protein dispersion had the highest storage modulus (G') and yield stress at 63.96 ± 0.23 Pa and 0.61 Pa, respectively. DHSP dispersion exhibited pseudo-plastic behavior across various conditions. The gelling performance was higher at pH 4 and 8 and at ionic concentration in the range of 0.1 M - 0.5 M. Gelation time and temperature were observed from the temperature ramp test. Structural characterizations, including fluorescence spectroscopy, circular dichroism spectra, FTIR spectra, SEM, AFM images, zeta potential analysis, and DSC, provided insights into DHSP's tertiary and secondary conformation, surface characteristics, and thermal properties. Notably, the study highlighted DHSP's exceptional rheological properties, making it a promising gelling material for the food and nutraceutical industries. The findings also offer new insights into DHSP's structural characteristics, suggesting potential applications in food packaging and product development within the food industry.


Asunto(s)
Cannabis , Hibiscus , Temperatura , Geles , Concentración de Iones de Hidrógeno , Reología
13.
Food Chem ; 444: 138633, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330607

RESUMEN

The present study focused on investigating the stability and in vitro simulation characteristics of oil-in-water (O/W) and oleogel-in-water (Og/W) emulsions. Compared with O/W emulsion, the Og/W emulsion exhibited superior stability, with a more evenly spread droplet distribution, and the Og/W emulsion containing 3 % hemp seed protein (HSP) showed better stability against environmental factors, including heat treatment, ionic strength, and changes in pH. Additionally, the stability of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabinol (CBN) and the in vitro digestion of hemp seed oil (HSO) were evaluated. The half-life of CBN in the Og/W emulsion was found to be 131.82 days, with a degradation rate of 0.00527. The in vitro simulation results indicated that the Og/W emulsion effectively delayed the intestinal digestion of HSO, and the bioaccessibility of Δ9-THC and CBN reached 56.0 % and 58.0 %, respectively. The study findings demonstrated that the Og/W emulsion constructed with oleogel and HSP, exhibited excellent stability.


Asunto(s)
Cannabis , Extractos Vegetales , Cannabis/metabolismo , Emulsiones/metabolismo , Cannabinol , Dronabinol , Agua , Compuestos Orgánicos
14.
Food Chem X ; 21: 101226, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38420505

RESUMEN

This study analyzed the flavor of six types of hemp seed oil (HSO) extracted with roasted hemp seed (RHS) under various conditions (Raw, 140 °C_9 min, 140 °C_12 min, 160 °C_12 min, 180 °C_6 min). Electronic tongue (E-tongue), electronic nose (E-nose), GC-MS (gas chromatography-mass spectrometry), and GC-O (gas chromatography-olfactometry) were used for HSO flavor analysis. As a result of the E-tongue analysis, the sweetness tends to increase in most samples as roasting. A total of 89 and 77 volatile compounds were detected through E-nose and GC-MS, and the main volatile compounds were identified as Maillard reaction products. A total of 16 odor active compounds were detected in the GC-O analysis, and in the case of 160 ℃_12 min and 180 ℃_6 min, the scent of Roasted hemp seed oil was more dominant than other aroma profiles. The results of this study are basic data on the flavor characteristics of HSO.

15.
Ultrason Sonochem ; 103: 106766, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38271781

RESUMEN

In this study, ultrasonic-ethanol pretreatment combined with AEE was developed for oil extraction from hemp seeds. The oil yield reached a maximum of 23.32 % at 200 W ultrasonic power and 30 min ultrasonic time, at this point, the degradation rate of Δ9-THC was 83.11 %. By determining the composition of hemp seed before and after pretreatment, it was shown that ultrasonic-ethanol pretreatment reduced the protein content of the raw material. An enzyme mixture consisting of pectinase and hemicellulase (1/1/1, w/w/w) was experimentally determined to be used, and the AEE extraction conditions were optimized using the Plackett-Burman design and the Box-Behnken. The optimal conditions were determined to be pH 5, total enzyme activity of 37,800 U/g, liquid-solid ratio of 10.4 mL/g, enzyme digestion temperature of 32 °C, enzymatic time of 189 min, and oil recovery of 88.38 %. The results of confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the emulsion formed during ultrasonic ethanol pretreatment was not uniformly distributed, and the droplets appeared to be aggregated; and the irregular pores of hemp seed increased after pretreatment. The contents of Δ9-THC and CBN in the extracted oil samples were 9.58 mg/kg and 52.45 mg/kg, respectively. Compared with the oil extracted by Soxhlet extraction (SE), the oil extracted by this experimental method was of better quality and similar in fatty acid composition.


Asunto(s)
Cannabis , Extractos Vegetales , Cannabis/química , Ultrasonido , Dronabinol/análisis , Etanol/análisis , Semillas/química , Agua/química , Aceites de Plantas/química
16.
Int J Biol Macromol ; 256(Pt 1): 128380, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000582

RESUMEN

This study develops hemp seed globulin (GLB)-alginate (ALG) nanoparticles (GANPs) for Cannabisin A (CA) stabilization under environmental stress and during pepsin digestion. The optimal GLB: ALG mass ratio of 1: 1.5 was determined for GANPs formation at pH 3.5, resulting in a high yield of 95.13 ± 0.91 %, a ζ-potential of -35.73 ± 1.04 mV, a hydrodynamic diameter of 470.67 ± 11.36 nm, and a PDI of 0.298 ± 0.016. GANPs were employed to encapsulate CA, achieving a high loading capacity of 13.48 ± 0.04 µg mg-1. FTIR analysis demonstrated that the formation of CA-GLB-ALG nanoparticles (CGANPs) involves electrostatic interactions, hydrogen bonding, and hydrophobic interactions. XRD and DSC analyses revealed that CA is amorphous within the CGANPs. CGANPs demonstrated remarkable dispersion stability as well as resistance to high ionic strength and high-temperature treatments, indicating their potential as efficient hydrophobic drug-delivery vehicles. When compared to free CA, CA coated within CGANPs displayed greater DPPH/ABTS scavenging activity. Furthermore, the ALG-shelled nanoparticles protected GLB from pepsin digestion and slowed the release of CA throughout the release process, extending their stay on the intestinal wall mucosa. These findings imply that CGANPs is an ideal delivery vehicle for CA as they may expand the application of CA in food items.


Asunto(s)
Cannabis , Globulinas , Nanopartículas , Antioxidantes/farmacología , Antioxidantes/química , Alginatos/química , Pepsina A , Nanopartículas/química
17.
Endocrine ; 84(1): 273-286, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38085421

RESUMEN

PURPOSE: This study aimed to investigate the effects of high-intensity interval training (HIIT) alone or in combination with hemp seed on total testosterone (TT) levels, sex hormone-binding globulin (SHBG), body composition, oxidative stress, and antioxidant capacity in sedentary young males. METHODS: Randomly, 48 young sedentary males were assigned among four groups (each comprising 12 individuals) as follows: HIIT + hemp seed (HH), HIIT + placebo (AT), hemp seed only (HS), and control. For eight weeks, exercise groups had HIIT three times per week. Hemp seed groups received 2 g of powder daily. The plasma levels of TT, SHBG, catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and also body mass index (BMI), body fat percentage (BF%), and muscle mass percentage (MM%) were measured. The analysis was based on the intention-to-treat (ITT) and per-protocol (PP). RESULTS: Based on ITT, BMI and BF% decreased, and MM% increased significantly post-intervention in HIIT groups (p < 0.05). TT increased significantly in the HH [mean difference 0.45, 95% CI 0.1 to 0.7, p = 0.005] and AT [mean difference 0.37, 95% CI 0.1 to 0.7, p = 0.01]. The whole hemp seed components showed a significant antioxidant potential. However, none of the SOD, CAT, and MDA indices showed significant changes post-interventions (p ≥ 0.05). CONCLUSION: Finally, HIIT and hemp seed intake showed no significant effects on the antioxidant defense system. However, regular HIIT significantly increased TT levels and improved body composition in sedentary young males. TRIAL REGISTRATION: Iranian Registry of Clinical Trials (registration code: IRCT20140907019082N10).


Asunto(s)
Cannabis , Entrenamiento de Intervalos de Alta Intensidad , Masculino , Humanos , Obesidad , Antioxidantes , Irán , Testosterona , Superóxido Dismutasa
18.
Int J Biol Macromol ; 255: 128077, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37977470

RESUMEN

This study focused on elucidating the non-covalent interactions between hemp seed globulin (GLB) and two hemp seed phenolic compounds, Cannabisin A (CA) and Cannabisin B (CB), and to explore these interactions on the protein's structure, conformation, and functionality. Fluorescence quenching and thermodynamic analysis revealed that static quenching governed non-covalent interaction processes, with hydrogen bonds and van der Waals forces functioning as major forces. This was further substantiated by molecular docking studies. The binding affinity order was CA > CB, indicating that the specific phenolic compound had a notable impact on the binding affinity. Furthermore, when complexed with CA, Tyr and Trp residues were exposed to a more hydrophilic environment than when complexed with CB. It was noted that the complexation with either CA or CB consistently affects GLB's secondary structure, particle size, and ζ-potential. GLB treated with the phenolic compounds exhibited enhanced ABTS and DPPH scavenging activities and improved digestibility compared to untreated GLB. Furthermore, the non-covalent interactions significantly increased CA's water solubility, highlighting GLB as a promising natural carrier for hydrophobic bioactive components. These findings hold potential implications for enhancing hemp seed protein applications within the food industry by positively influencing its functional properties and bioactivity.


Asunto(s)
Cannabis , Globulinas , Cannabis/química , Simulación del Acoplamiento Molecular , Fenoles/análisis , Digestión , Semillas/química
19.
Biol Trace Elem Res ; 202(1): 307-318, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37010725

RESUMEN

For decades hemp has been used as a therapeutic agent for enhancing immunity in animals. Current study was conceptualized to find out the protective role of dietary hemp seed products (hemp seed oil (HO) and hemp seed (HS)) against copper-induced toxicity in fish. Fingerlings of Labeo rohita (Rohu) and Cirrhinus mrigala (Mrigal) were exposed to copper at 20% of the 96 h LC50 (1.34 and 1.52 ppm, respectively) for 30 days. Following Cu exposure, fish were maintained on two types of hemp (Cannabis sativa)-supplemented feeds, on graded levels of hemp seed oil (HO: 1%, 2%, 3%) and hemp seed (HS: 5%, 10%, 15%) for 50 days, while one group was the control (without any copper exposure as well as any supplementation). Copper exposure significantly increased (P < 0.05) WBCs, hematocrit, MCHV, eosinophils, and lymphocytes in L. rohita and also in C. mrigala as compared to control. Copper exposure also significantly (P < 0.05) changed lysozymes, plasma protein, and IgM in both species, in comparison to control. Moreover, alkaline phosphatase, bilirubin, serum glutamic-pyruvic transaminase, and aspartate transaminase were significantly (P < 0.05) changed by copper exposure in comparison to control in both species. Additionally, Antioxidant enzymes like catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase were also significantly (P < 0.05) increased in the brain, gills, liver, and muscle of copper-exposed group in both species as compared to control. Interestingly, all the altered parameter of blood, serum, liver function tests, and antioxidant enzymes (in different organs) because of copper toxicity were successfully reverted to normal level in hemp seed oil (HO) and hemp seed (HS)-supplemented fed groups of both species. In conclusion, hemp seed supplementation showed significant (P < 0.05) improved results against copper toxicity. Thus, it could be recommended as an animal feed ingredient for its therapeutic role.


Asunto(s)
Cannabis , Cyprinidae , Animales , Cobre/toxicidad , Cobre/metabolismo , Cannabis/toxicidad , Antioxidantes/metabolismo , Cyprinidae/metabolismo , Suplementos Dietéticos
20.
Front Immunol ; 14: 1285052, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111585

RESUMEN

Cannabinoids are a group of bioactive compounds abundantly present in Cannabis sativa plant. The active components of cannabis with therapeutic potential are known as cannabinoids. Cannabinoids are divided into three groups: plant-derived cannabinoids (phytocannabinoids), endogenous cannabinoids (endocannabinoids), and synthetic cannabinoids. These compounds play a crucial role in the regulation various physiological processes including the immune modulation by interacting with the endocannabinoid system (A complex cell-signaling system). Cannabinoid receptor type 1 (CB1) stimulates the binding of orexigenic peptides and inhibits the attachment of anorexigenic proteins to hypothalamic neurons in mammals, increasing food intake. Digestibility is unaffected by the presence of any cannabinoids in hemp stubble. Endogenous cannabinoids are also important for the peripheral control of lipid processing in adipose tissue, in addition to their role in the hypothalamus regulation of food intake. Regardless of the kind of synaptic connection or the length of the transmission, endocannabinoids play a crucial role in inhibiting synaptic transmission through a number of mechanisms. Cannabidiol (CBD) mainly influences redox equilibrium through intrinsic mechanisms. Useful effects of cannabinoids in animals have been mentioned e.g., for disorders of the cardiovascular system, pain treatment, disorders of the respiratory system or metabolic disorders. Dietary supplementation of cannabinoids has shown positive effects on health, growth and production performance of small and large animals. Animal fed diet supplemented with hemp seeds (180 g/day) or hemp seed cake (143 g/kg DM) had achieved batter performance without any detrimental effects. But the higher level of hemp or cannabinoid supplementation suppress immune functions and reduce productive performance. With an emphasis on the poultry and ruminants, this review aims to highlight the properties of cannabinoids and their derivatives as well as their significance as a potential feed additive in their diets to improve the immune status and health performance of animals.


Asunto(s)
Cannabinoides , Cannabis , Animales , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Cannabis/química , Endocannabinoides , Dieta , Inmunidad , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA