Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.451
Filtrar
1.
Front Immunol ; 15: 1440623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318629

RESUMEN

Heparan sulfate proteoglycans (HSPGs) regulate a wide range of biological activities in both physiological and pathological conditions. Altered expression or deregulated function of HSPGs and their heparan sulfate (HS) chains significantly contribute to carcinogenesis as well and crucially depends on the functioning of the complex system of HS biosynthetic/modifying enzymes termed as "GAGosome". Here, we aimed at investigating the expression profile of the system in a cell culture model of stroma-epithelial crosstalk and searching for transcription factors potentially related to the regulation of expression of the genes involved. Coculture of BjTERT-fibroblasts with normal PNT2 human prostate epithelial cells resulted in significant downregulation (2-4-fold) of transcriptional activity of HS metabolism-involved genes (EXT1/2, NDST1/2, GLCE, HS2ST1, HS3ST1/2, HS6ST1/2, SULF1/2, HPSE) in both cell types, whereas coculture with prostate cancer cells (LNCaP, PC3, DU145) demonstrated no significant interchanges. Human Transcription Factor RT2 Profiler PCR array and manual RT-PCR verification supposed FOS, MYC, E2F, SRF, NR3C1 as potential candidates for regulation and/or coordination of HS biosynthesis. Taken together, transcriptional activity of HS biosynthetic system in normal fibroblasts and prostate epithelial cells during their coculture might be controlled by their intercellular communication, reflecting of adaptation of these cells to each other. The regulation is attenuated or abrogated if normal fibroblasts interact with prostate cancer cells making the cancer cells independent of the limiting effects of fibroblasts, thus contributing to possibility of unlimited growth and progression. Overall, these data demonstrate an ability of cell-cell interactions to affect transcriptional activity of HS biosynthesis-involved genes.


Asunto(s)
Técnicas de Cocultivo , Fibroblastos , Heparitina Sulfato , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Fibroblastos/metabolismo , Heparitina Sulfato/biosíntesis , Heparitina Sulfato/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Próstata/metabolismo , Próstata/patología , Comunicación Celular , Células Epiteliales/metabolismo
2.
J Vet Intern Med ; 38(5): 2748-2757, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39275920

RESUMEN

BACKGROUND: Endothelial glycocalyx (EG) degradation occurs in septic humans and EG products can be used as biomarkers of endothelial injury. Information about EG biomarkers and their association with disease severity is lacking in hospitalized foals. OBJECTIVES: Measure serum syndecan-1 (SDC-1), heparan sulfate (HS), angiopoietin-2 (ANG-2), aldosterone (ALD), and plasma atrial natriuretic peptide (ANP) concentrations and to determine their association with disease severity and death in hospitalized foals. ANIMALS: Ninety foals ≤3 days old. METHODS: Prospective, multicenter, longitudinal study. Foals were categorized into hospitalized (n = 74; 55 septic; 19 sick nonseptic) and 16 healthy foals. Serum ([SDC-1], [HS], [ANG-2], [ALD]) and plasma (ANP) were measured over 72 hours using immunoassays. RESULTS: Serum ([SDC-1], [HS], [ANG-2], [ALD]) and plasma (ANP) were significantly higher in hospitalized and septic than healthy foals (P < .05). Serum (ANG-2) and plasma (ANP) were significantly higher in hospitalized nonsurvivors than in survivors (P < .05). On admission, hospitalized foals with serum (HS) > 58.7 ng/mL had higher odds of nonsurvival (odds ratio [OR] = 6.1; 95% confidence interval [CI] = 1.02-36.7). Plasma (ANP) >11.5 pg/mL was associated with the likelihood of nonsurvival in hospitalized foals (OR = 7.2; 95% CI = 1.4-37.4; P < .05). Septic foals with serum (ANG-2) >1018 pg/mL on admission had higher odds of nonsurvival (OR = 6.5; 95% CI =1.2-36.6; P < .05). CONCLUSION AND CLINICAL IMPORTANCE: Critical illness in newborn foals is associated with EG degradation and injury, and these biomarkers are related to the severity of disease on admission and the outcome of sick foals.


Asunto(s)
Biomarcadores , Enfermedad Crítica , Glicocálix , Enfermedades de los Caballos , Animales , Caballos , Enfermedades de los Caballos/sangre , Enfermedades de los Caballos/mortalidad , Enfermedades de los Caballos/metabolismo , Glicocálix/metabolismo , Estudios Prospectivos , Masculino , Biomarcadores/sangre , Femenino , Animales Recién Nacidos/sangre , Sindecano-1/sangre , Sepsis/veterinaria , Sepsis/sangre , Sepsis/mortalidad , Heparitina Sulfato/sangre , Factor Natriurético Atrial/sangre , Estudios Longitudinales , Angiopoyetina 2/sangre
3.
Carbohydr Res ; 545: 109270, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39270443

RESUMEN

High levels of heparan sulfate (HS) are a marker for several mucopolysaccharidosis (MPS) disorders which are lysosomal storage diseases caused by genetic defects in HS-degrading enzymes. Quantitation of HS in biological samples is therefore critical for diagnosis and evaluating the efficacy of new therapies. Herein we present the efficient synthesis of a butylated GlcN-GlcA disaccharide and its deuterated derivative for use as an internal standard in a quantitative mass spectrometry-based assay for analysis of HS following butanolysis. The synthesis features the stereoselective 1,2-cis glycosylation of a GlcA acceptor with a 6-O-benzoyl-2-deoxy-2-azido thioglucoside donor.

4.
Results Probl Cell Differ ; 73: 375-417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39242387

RESUMEN

Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a "surfing" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.


Asunto(s)
Comunicación Celular , Humanos , Animales , Nanotubos/química , Internalización del Virus , Estructuras de la Membrana Celular
5.
Microorganisms ; 12(9)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39338451

RESUMEN

Hepatitis B virus (HBV) infection remains a major health threat with limited treatment options. One of various new antiviral strategies is based on a fusion of Staphylococcus aureus nuclease (SN) with the capsid-forming HBV core protein (HBc), termed coreSN. Through co-assembly with wild-type HBc-subunits, the fusion protein is incorporated into HBV nucleocapsids, targeting the nuclease to the encapsidated viral genome. However, coreSN expression was based on transfection of a plasmid vector. Here, we explored whether introducing protein transduction domains (PTDs) into a fluorescent coreSN model could confer cell-penetrating properties for direct protein delivery into cells. Four PTDs were inserted into two different positions of the HBc sequence, comprising the amphiphilic translocation motif (TLM) derived from the HBV surface protein PreS2 domain and three basic PTDs derived from the Tat protein of human immunodeficiency virus-1 (HIV-1), namely Tat4, NP, and NS. To directly monitor the interaction with cells, the SN in coreSN was replaced with the green fluorescent protein (GFP). The fusion proteins were expressed in E. coli, and binding to and potential uptake by human cells was examined through flow cytometry and fluorescence microscopy. The data indicate PTD-dependent interactions with the cells, with evidence of uptake in particular for the basic PTDs. Uptake was enhanced by a triplicated Simian virus 40 (SV40) large T antigen nuclear localization signal (NLS). Interestingly, the basic C terminal domain of the HBV core protein was found to function as a novel PTD. Hence, further developing cell-permeable viral capsid protein fusions appears worthwhile.

6.
Genes Genomics ; 46(10): 1165-1174, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153155

RESUMEN

BACKGROUND: Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) catalyzes the sulfation of glucuronic acid residues in heparan sulfate proteoglycans, enabling these proteoglycans to interact with numerous ligands within tumor microenvironments. However, the prognostic role of HS2ST1 expression in cancer remains unclear. OBJECTIVE: This investigated HS2ST1 expression levels and their prognostic significance in various cancer types, demonstrated the prognostic value of HS2ST1 expression in hepatocellular carcinoma (HCC) patients, and identified molecular signatures associated with HS2ST1 expression. METHODS: HS2ST1 expression and patient survival data from The Cancer Genome Atlas (TCGA) datasets were analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA) portal. We obtained gene expression and clinicopathological information on HCC patients from the TCGA and the Japan and France International Cancer Genome Consortium (ICGC) databases and performed survival analyses. We also examined relevant protein networks, differentially expressed genes, gene set enrichments, and tumor immune microenvironment features associated with HS2ST1 expression. RESULTS: HS2ST1 exhibited higher expression in eight tumor types compared with normal tissues and was associated with poor prognoses in five tumors, including HCC. HS2ST1 status correlated with poor prognosis in two ICGC HCC cohorts. Elevated HS2ST1 expression in HCC tumors was associated with signaling pathways involved in cell cycle progression, protein secretion, and mTORC1 signaling. Moreover, HS2ST1 expression levels were inversely correlated with immune cell infiltration in the tumor microenvironment. CONCLUSION: Our study elucidates the prognostic significance of HS2ST1 expression in HCC patients and provides insights into the potential roles of HS2ST1 in signaling pathways and the tumor microenvironment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sulfotransferasas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Pronóstico , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino
7.
Cell Mol Life Sci ; 81(1): 350, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141086

RESUMEN

Heparan sulfate (HS) proteoglycans are important regulators of cellular responses to soluble mediators such as chemokines, cytokines and growth factors. We profiled changes in expression of genes encoding HS core proteins, biosynthesis enzymes and modifiers during macrophage polarisation, and found that the most highly regulated gene was Sulf2, an extracellular HS 6-O-sulfatase that was markedly downregulated in response to pro-inflammatory stimuli. We then generated Sulf2+/- bone marrow chimeric mice and examined inflammatory responses in antigen-induced arthritis, as a model of rheumatoid arthritis. Resolution of inflammation was impaired in myeloid Sulf2+/- chimeras, with elevated joint swelling and increased abundance of pro-arthritic Th17 cells in synovial tissue. Transcriptomic and in vitro analyses indicated that Sulf2 deficiency increased type I interferon signaling in bone marrow-derived macrophages, leading to elevated expression of the Th17-inducing cytokine IL6. This establishes that dynamic remodeling of HS by Sulf2 limits type I interferon signaling in macrophages, and so protects against Th17-driven pathology.


Asunto(s)
Macrófagos , Ratones Endogámicos C57BL , Transducción de Señal , Células Th17 , Animales , Células Th17/inmunología , Células Th17/metabolismo , Ratones , Macrófagos/metabolismo , Macrófagos/inmunología , Sulfatasas/metabolismo , Sulfatasas/genética , Sulfotransferasas/metabolismo , Sulfotransferasas/genética , Células Mieloides/metabolismo , Células Mieloides/inmunología , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Experimental/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Inflamación/metabolismo , Inflamación/patología , Ratones Noqueados , Interleucina-6/metabolismo , Interleucina-6/genética , Heparitina Sulfato/metabolismo
8.
Cancer Cell Int ; 24(1): 296, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180066

RESUMEN

BACKGROUND: Vascular endothelial growth factor (VEGF) is an important proangiogenic factor and has been considered as a key target of antiangiogenetic therapy in oral squamous cell carcinoma (OSCC). However, clinical application of bevacizumab, a specific VEGF antibody, didn't improve the survival rate of OSCC patients. One possible explanation is that VEGF gene expresses diverse isoforms, which associate with extracellular vesicles (EVs), and EVs potentially contribute to VEGF resistance to bevacizumab. However, clear solution is lacking in addressing this issue. METHODS: Expression of VEGF isoforms in OSCC cells was confirmed by reverse transcription and polymerase chain reaction (RT-PCR) and western blot. EVs isolated from OSCC cell's conditioned medium (CM) were characterized by western blot, transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Flow cytometry, immunogold labeling and western blot were applied to study the VEGF on EVs. Tube formation assay and Matrigel plug angiogenesis assay were used for analyzing the angiogenesis capacity of EV-VEGF. RESULTS: The most popular isoforms expressed by VEGF gene are VEGF121, VEGF165 and VEGF189. In this study, we demonstrated that all three isoforms of mRNA could be detected at varying levels in OSCC cells, while only VEGF165 and VEGF189 proteins were found. CM derived from OSCC cells, both soluble and non-soluble forms of VEGF could be detected. We further confirmed the presence of VGEF189 bound to EVs as a non-soluble form. EV-bound VEGF189 presented angiogenic activity, which could not be neutralized by bevacizumab. It was found that VEGF189 bound to EVs by heparan sulfate proteoglycans (HSPG). In addition, the angiogenic effect of EV-VEGF could be reversed by surfen, a kind of HSPG antagonist both in vitro and in vivo. CONCLUSION: Antagonists targeting HSPG might potentially overcome the resistance of EV-VEGF to bevacizumab and serve as an alternative for anti-VEGF therapy in OSCC.

9.
Smart Med ; 3(2): e20230046, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39188697

RESUMEN

Global health faces an immense burden from infectious diseases caused by viruses and intracellular protozoan parasites such as the coronavirus disease (COVID-19) and malaria, respectively. These pathogens propagate through the infection of human host cells. The first stage of this host cell infection mechanism is cell attachment, which typically involves interactions between the infectious agent and surface components on the host cell membranes, specifically heparan sulfate (HS) and/or sialic acid (SA). Hence, nanoparticles (NPs) which contain or mimic HS/SA that can directly bind to the pathogen surface and inhibit cell infection are emerging as potential candidates for an alternative anti-infection therapeutic strategy. These NPs can be prepared from metals, soft matter (lipid, polymer, and dendrimer), DNA, and carbon-based materials among others and can be designed to include aspects of multivalency, broad-spectrum activity, biocidal mechanisms, and multifunctionality. This review provides an overview of such anti-pathogen nanomedicines beyond drug delivery. Nanoscale inhibitors acting against viruses and obligate intracellular protozoan parasites are discussed. In the future, the availability of broadly applicable nanotherapeutics would allow early tackling of existing and upcoming viral diseases. Invasion inhibitory NPs could also provide urgently needed effective treatments for protozoan parasitic infections.

10.
J Biol Chem ; 300(9): 107691, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159814

RESUMEN

The triggering receptor expressed on myeloid cells-2 (TREM2), a pivotal innate immune receptor, orchestrates functions such as inflammatory responses, phagocytosis, cell survival, and neuroprotection. TREM2 variants R47H and R62H have been associated with Alzheimer's disease, yet the underlying mechanisms remain elusive. Our previous research established that TREM2 binds to heparan sulfate (HS) and variants R47H and R62H exhibit reduced affinity for HS. Building upon this groundwork, our current study delves into the interplay between TREM2 and HS and its impact on microglial function. We confirm TREM2's binding to cell surface HS and demonstrate that TREM2 interacts with HS, forming HS-TREM2 binary complexes on microglia cell surfaces. Employing various biochemical techniques, including surface plasmon resonance, low molecular weight HS microarray screening, and serial HS mutant cell surface binding assays, we demonstrate TREM2's robust affinity for HS, and the effective binding requires a minimum HS size of approximately 10 saccharide units. Notably, TREM2 selectively binds specific HS structures, with 6-O-sulfation and, to a lesser extent, the iduronic acid residue playing crucial roles. N-sulfation and 2-O-sulfation are dispensable for this interaction. Furthermore, we reveal that 6-O-sulfation is essential for HS-TREM2 ternary complex formation on the microglial cell surface, and HS and its 6-O-sulfation are necessary for TREM2-mediated ApoE3 uptake in microglia. By delineating the interaction between HS and TREM2 on the microglial cell surface and demonstrating its role in facilitating TREM2-mediated ApoE uptake by microglia, our findings provide valuable insights that can inform targeted interventions for modulating microglial functions in Alzheimer's disease.

11.
Neuroscience ; 553: 121-127, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38992568

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is characterized by accumulation of amyloid beta (Aß) and hyperphosphorylated tau (Tau-P) in the brain. Aß enhances the activity of kinases involved in the formation of Tau-P. Phosphorylation at Thr 181 determines the propagation of multiple tau phosphorylations. Aß is derived from the amyloid precursor protein (APP). Cleavage of APP by ß-secretase also initiates release of heparan sulfate (HS) from the proteoglycan glypican-1 (GPC1). OBJECTIVES: In this study, we have explored possible connections between GPC1 expression, HS release, APP processing and Tau-P formation in human neural stem cells. METHODS: GPC1 formation was suppressed by using CRISPR/Cas9 and increased by using a vector encoding GPC1. HS release from GPC1 was increased by growing cells in medium containing Arg and ascorbate. Effects were monitored by immunofluorescence microscopy and slot immunoblotting using antibodies/antisera recognizing Aß, GPC1, HS released from GPC1, total Tau, and Tau phosphorylated at Thr-181, 217 or 231. The latter have been used as blood biomarkers for AD. RESULTS: Suppression of GPC1 expression resulted in increased phosphorylation at Thr 181 and Thr 217. When GPC1 was overexpressed, phosphorylation at Thr 217 decreased. Stimulation of HS release from GPC1 diminished tau phosphorylation at all of the three Thr positions, while expression of GPC1 was unaffected. Simultaneous stimulation of HS release and APP processing by the cytokine TNF-α also suppressed tau phosphorylation. CONCLUSION: The increased release of GPC1-derived HS may interfere with Aß formation and/or Aß interaction with tau.


Asunto(s)
Péptidos beta-Amiloides , Glipicanos , Células-Madre Neurales , Proteínas tau , Humanos , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Glipicanos/metabolismo , Células-Madre Neurales/metabolismo , Fosforilación/fisiología , Proteínas tau/metabolismo
13.
Sci Rep ; 14(1): 17582, 2024 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079959

RESUMEN

The endothelial glycocalyx is damaged in postcardiac arrest syndrome (PCAS), but the prognostic value is unknown. We aimed to observe the expression and prognostic value of glycocalyx shedding products, including syndecan-1 (SDC-1), hyaluronan (HA), and heparan sulfate (HS) in PCAS. Data on clinical and 28-day outcomes of seventy-one consecutive patients with out-of-hospital cardiac arrest (OHCA) after the return of spontaneous circulation (ROSC) were collected. SDC-1, HA, and HS were measured on days 0, 1, and 3 after ROSC. Thirty healthy individuals were controls. Glycocalyx shedding was observed in human umbilical vein endothelial cells (HUVECs) stimulated during hypoxia and reoxygenation in vitro. Within 4 h of ROSC, SDC-1 and HA levels, significantly increased. In the 28-day non-survivors, HA levels showed a gradual upward trend, SDC-1 remained at a high level, and HS levels first increased, then decreased. Kaplan-Meier curves and binary logistic regression analysis showed the prognostic value of SDC-1 levels on days 0, 1, and 3, HA levels on days 1 and 3, and HS levels on day 1. Only HS levels on day 1 showed a prognostic value for 28-day neurological outcomes. SDC-1 and HA levels were positively correlated with the no-flow time. In vitro, HUVECs showed shedding of SDC-1 and HS during a prolonged duration of hypoxia. After ROSC, SDC-1, HA, and HS levels may predict the 28-day survival after PCAS, and HS levels are associated with functional outcomes.


Asunto(s)
Biomarcadores , Glicocálix , Heparitina Sulfato , Células Endoteliales de la Vena Umbilical Humana , Paro Cardíaco Extrahospitalario , Sindecano-1 , Humanos , Paro Cardíaco Extrahospitalario/sangre , Glicocálix/metabolismo , Masculino , Femenino , Biomarcadores/sangre , Persona de Mediana Edad , Pronóstico , Sindecano-1/sangre , Sindecano-1/metabolismo , Anciano , Heparitina Sulfato/sangre , Heparitina Sulfato/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Retorno de la Circulación Espontánea , Ácido Hialurónico/sangre , Ácido Hialurónico/metabolismo
14.
Mol Genet Metab ; 142(4): 108535, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018614

RESUMEN

Mucopolysaccharidoses (MPS) disorders are a group of ultra-rare, inherited, lysosomal storage diseases caused by enzyme deficiencies that result in accumulation of glycosaminoglycans (GAGs) in cells throughout the body including the brain, typically leading to early death. Current treatments do not address the progressive cognitive impairment observed in patients with neuronopathic MPS disease. The rarity and clinical heterogeneity of these disorders as well as pre-existing brain disease in clinically diagnosed patients make the development of new therapeutics utilizing a traditional regulatory framework extremely challenging. Children with neuronopathic MPS disorders will likely sustain irreversible brain damage if randomized to a placebo or standard-of-care treatment arm that does not address brain disease. The United States Food and Drug Administration (FDA) recognized these challenges, and, in 2020, issued final guidance for industry on slowly progressive, low-prevalence, rare diseases with substrate deposition that result from single enzyme defects, outlining a path for generating evidence of effectiveness to support accelerated approval based on reduction of substrate accumulation [1]. Neuronopathic MPS disorders, which are characterized by the accumulation of the GAG heparan sulfate (HS) in the brain, fit the intended disease characteristics for which this guidance was written, but to date, this guidance has not yet been applied to any therapeutic candidate for MPS. In February 2024, the Reagan-Udall Foundation for the FDA convened a public workshop for representatives from the FDA, patient advocacy groups, clinical and basic science research, and industry to explore a case study of using cerebrospinal fluid (CSF) HS as a relevant biomarker to support accelerated approval of new therapeutics for neuronopathic MPS disorders. This review provides a summary of the MPS presentations at the workshop and perspective on the path forward for neuronopathic MPS disorders.


Asunto(s)
Biomarcadores , Heparitina Sulfato , Mucopolisacaridosis , Niño , Humanos , Aprobación de Drogas , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Mucopolisacaridosis/terapia , Estados Unidos , United States Food and Drug Administration
15.
Front Oral Health ; 5: 1430077, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953010

RESUMEN

Introduction: Oral herpes infections caused by herpes simplex virus type 1 (HSV-1) are one of the most common in the human population. Recently, they have been classified as an increasing problem in immunocompromised patients and those suffering from chronic inflammation of the oral mucosa and gums. Treatment mainly involves nucleoside analogues, such as acyclovir and its derivatives, which reduce virus replication and shedding. As drug-resistant strains of herpes emerge rapidly, there is a need for the development of novel anti-herpes agents. The aim of the study was to design an antiviral peptide, based on natural compounds, non-toxic to the host, and efficient against drug-resistant HSV-1. Here, we designed a lysine-rich derivative of amphibian temporin-1CEb conjugated to peptides penetrating the host cell membrane and examined their activity against HSV-1 infection of oral mucosa. Methods: We assessed the antiviral efficiency of the tested compound in simple 2D cell models (VeroE6 and TIGKs cells) and a 3D organotypic model of human gingiva (OTG) using titration assay, qPCR, and confocal imaging. To identify the molecular mechanism of antiviral activity, we applied the Azure A metachromatic test, and attachment assays techniques. Toxicity of the conjugates was examined using XTT and LDH assays. Results: Our results showed that temporin-1CEb analogues significantly reduce viral replication in oral mucosa. The mechanism of peptide analogues is based on the interaction with heparan sulfate, leading to the reduce attachment of HSV-1 to the cell membrane. Moreover, temporin-1CEb conjugates effectively penetrate the gingival tissue being effective against acyclovir-resistant strains. Collectively, we showed that temporin-1CEb can be regarded as a novel, naturally derived antiviral compound for HSV-1 treatment.

16.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062776

RESUMEN

Antithrombin III (ATIII) is a potent endogenous anticoagulant that binds to heparan sulfate proteoglycans (HSPGs) on endothelial cells' surfaces. Among these HSPGs, syndecans (SDCs) are crucial as transmembrane receptors bridging extracellular ligands with intracellular signaling pathways. Specifically, syndecan-4 (SDC4) has been identified as a key receptor on endothelial cells for transmitting the signaling effects of ATIII. Meanwhile, SDCs have been implicated in facilitating the cellular internalization of SARS-CoV-2. Given the complex interactions between ATIII and SDC4, our study analyzed the impact of ATIII on the virus entry into host cells. While ATIII binds to all SDC isoforms, it shows the strongest affinity for SDC4. SDCs' heparan sulfate chains primarily influence ATIII's SDC attachment, although other parts might also play a role in ATIII's dominant affinity toward SDC4. ATIII significantly reduces SARS-CoV-2's cellular entry into cell lines expressing SDCs, suggesting a competitive inhibition mechanism at the SDC binding sites, particularly SDC4. Conversely, the virus or its spike protein decreases the availability of SDCs on the cell surface, reducing ATIII's cellular attachment and hence contributing to a procoagulant environment characteristic of COVID-19.


Asunto(s)
Antitrombina III , COVID-19 , SARS-CoV-2 , Sindecano-4 , Internalización del Virus , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , SARS-CoV-2/efectos de los fármacos , Sindecano-4/metabolismo , COVID-19/virología , COVID-19/metabolismo , Internalización del Virus/efectos de los fármacos , Antitrombina III/metabolismo , Antitrombina III/farmacología , Unión Proteica , Vacunas contra la COVID-19/inmunología , Tratamiento Farmacológico de COVID-19 , Sindecanos/metabolismo , Animales
17.
Glycobiology ; 34(8)2024 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-38963938

RESUMEN

Heparan sulfate (HS) is a linear polysaccharide with high structural and functional diversity. Detection and localization of HS in tissues can be performed using single chain variable fragment (scFv) antibodies. Although several anti-HS antibodies recognizing different sulfation motifs have been identified, little is known about their interaction with HS. In this study the interaction between the scFv antibody HS4C3 and heparin was investigated. Heparin-binding lysine and arginine residues were identified using a protect and label methodology. Site-directed mutagenesis was applied to further identify critical heparin-binding lysine/arginine residues using immunohistochemical and biochemical assays. In addition, computational docking of a heparin tetrasaccharide towards a 3-D homology model of HS4C3 was applied to identify potential heparin-binding sites. Of the 12 lysine and 15 arginine residues within the HS4C3 antibody, 6 and 9, respectively, were identified as heparin-binding. Most of these residues are located within one of the complementarity determining regions (CDR) or in their proximity. All basic amino acid residues in the CDR3 region of the heavy chain were involved in binding. Computational docking showed a heparin tetrasaccharide close to these regions. Mutagenesis of heparin-binding residues reduced or altered reactivity towards HS and heparin. Identification of heparin-binding arginine and lysine residues in HS4C3 allows for better understanding of the interaction with HS and creates a framework to rationally design antibodies targeting specific HS motifs.


Asunto(s)
Heparina , Heparitina Sulfato , Heparitina Sulfato/química , Heparitina Sulfato/inmunología , Heparitina Sulfato/metabolismo , Heparina/química , Heparina/metabolismo , Simulación del Acoplamiento Molecular , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/genética , Humanos , Animales , Mutagénesis Sitio-Dirigida , Sitios de Unión , Secuencia de Aminoácidos
18.
Neurol Int ; 16(4): 790-803, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39051219

RESUMEN

Glucocorticoids are used during glioblastoma treatment to prevent the cerebral edema effect surrounding normal brain tissue. The aim of our study was to investigate the long-term effects of multiple administrations of glucocorticoids onto the glycosylated components (proteoglycans and glycosaminoglycans) of normal brain extracellular matrix and the glucocorticoid receptor (GR, Nr3c1) in an experimental model in vivo. Two-month-old male C57Bl/6 mice (n = 90) were injected intraperitoneally with various doses of dexamethasone (DXM) (1; 2.5 mg/kg) for 10 days. The mRNA levels of the GR, proteoglycans core proteins, and heparan sulfate metabolism-involved genes were determined at the 15th, 30th, 60th, and 90th days by a real-time RT-PCR. The glycosaminoglycans content was studied using dot blot and staining with Alcian blue. A DXM treatment increased total GAG content (2-fold), whereas the content of highly sulfated glycosaminoglycans decreased (1.5-2-fold). The mRNA level of the heparan sulfate metabolism-involved gene Hs3St2 increased 5-fold, the mRNA level of Hs6St2 increased6-7-fold, and the mRNA level of proteoglycan aggrecan increased 2-fold. A correlation analysis revealed an association between the mRNA level of the GR and the mRNA level of 8 of the 14 proteoglycans-coding and 4 of the 13 heparan sulfate metabolism-involved genes supporting GR involvement in the DXM regulation of the expression of these genes. In summary, multiple DXM administrations led to an increase in the total GAG content and reorganized the brain extracellular matrix in terms of its glycosylation pattern.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39042016

RESUMEN

The pulmonary epithelial glycocalyx is rich in glycosaminoglycans such as hyaluronan and heparan sulfate. Despite their presence, the importance of these glycosaminoglycans in bacterial lung infections remains elusive. To address this, we intranasally inoculated mice with Streptococcus pneumoniae in the presence or absence of enzymes targeting pulmonary hyaluronan and heparan sulfate, followed by characterization of subsequent disease pathology, pulmonary inflammation, and lung barrier dysfunction. Enzymatic degradation of hyaluronan and heparan sulfate exacerbated pneumonia in mice, as evidenced by increased disease scores and alveolar neutrophil recruitment. However, targeting epithelial hyaluronan in combination with Streptococcus pneumoniae infection further exacerbated systemic disease, indicated by elevated splenic bacterial load and plasma levels of pro-inflammatory cytokines. In contrast, enzymatic cleavage of heparan sulfate resulted in increased bronchoalveolar bacterial burden, lung damage and pulmonary inflammation in mice infected with Streptococcus pneumoniae. Accordingly, heparinase-treated mice also exhibited disrupted lung barrier integrity as evidenced by higher alveolar edema scores and vascular protein leakage into the airways. This finding was corroborated in a human alveolus-on-a-chip platform, confirming that heparinase treatment also disrupts the human lung barrier during Streptococcus pneumoniae infection. Notably, enzymatic pre-treatment with either hyaluronidase or heparinase also rendered human epithelial cells more sensitive to pneumococcal-induced barrier disruption, as determined by transepithelial electrical resistance measurements, consistent with our findings in murine pneumonia. Taken together, these findings demonstrate the importance of intact hyaluronan and heparan sulfate in limiting pneumococci-induced damage, pulmonary inflammation, and epithelial barrier function and integrity. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

20.
Mol Cell Proteomics ; 23(8): 100803, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880242

RESUMEN

Substance use disorder is a major concern, with few therapeutic options. Heparan sulfate (HS) and chondroitin sulfate (CS) interact with a plethora of growth factors and their receptors and have profound effects on cellular signaling. Thus, targeting these dynamic interactions might represent a potential novel therapeutic modality. In the present study, we performed mass spectrometry-based glycomic and proteomic analysis to understand the effects of cocaine and methamphetamine (METH) on HS, CS, and the proteome of two brain regions critically involved in drug addiction: the lateral hypothalamus and the striatum. We observed that cocaine and METH significantly alter HS and CS abundances as well as sulfate contents and composition. In particular, repeated METH or cocaine treatments reduced CS 4-O-sulfation and increased CS 6-O-sulfation. Since C4S and C6S exercise differential effects on axon growth, regeneration, and plasticity, these changes likely contribute to drug-induced neural plasticity in these brain regions. Notably, we observed that restoring these alterations by increasing CS 4-0 levels in the lateral hypothalamus by adeno-associated virus delivery of an shRNA to arylsulfatase B (N-acetylgalactosamine-4-sulfatase) ameliorated anxiety and prevented the expression of preference for cocaine in a novelty induced conditioned place preference test during cocaine withdrawal. Finally, proteomics analyses revealed a number of aberrant proteins in METH- and cocaine-treated versus saline-treated mice, including myelin proteolipid protein, calcium/calmodulin-dependent protein kinase type II subunit alpha, synapsin-2, tenascin-R, calnexin, annexin A7, hepatoma-derived growth factor, neurocan, and CSPG5, and oxidative phosphorylation among the top perturbed pathway. Taken together, these data support the role of HS, CS, and associated proteins in stimulants abuse and suggest that manipulation of HSPGs can represent a novel therapeutic strategy.


Asunto(s)
Cocaína , Cuerpo Estriado , Glicómica , Metanfetamina , Ratones Endogámicos C57BL , Proteómica , Animales , Cocaína/farmacología , Metanfetamina/farmacología , Masculino , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Ratones , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Heparitina Sulfato/metabolismo , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA