Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Metabolism ; 157: 155940, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878857

RESUMEN

BACKGROUND AND AIM: Although it is well established that hormones like glucagon stimulates gluconeogenesis via the PKA-mediated phosphorylation of CREB and dephosphorylation of the cAMP-regulated CREB coactivators CRTC2, the role of neural signals in the regulation of gluconeogenesis remains uncertain. METHODS AND RESULTS: Here, we characterize the noradrenergic bundle architecture in mouse liver; we show that the sympathoexcitation induced by acute cold exposure promotes hyperglycemia and upregulation of gluconeogenesis via triggering of the CREB/CRTC2 pathway. Following its induction by dephosphorylation, CRTC2 translocates to the nucleus and drives the transcription of key gluconeogenic genes. Rodents submitted to different models of sympathectomy or knockout of CRTC2 do not activate gluconeogenesis in response to cold. Norepinephrine directly acts in hepatocytes mainly through a Ca2+-dependent pathway that stimulates CREB/CRTC2, leading to activation of the gluconeogenic program. CONCLUSION: Our data demonstrate the importance of the CREB/CRTC2 pathway in mediating effects of hepatic sympathetic inputs on glucose homeostasis, providing new insights into the role of norepinephrine in health and disease.


Asunto(s)
Frío , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Gluconeogénesis , Hígado , Norepinefrina , Factores de Transcripción , Animales , Gluconeogénesis/fisiología , Hígado/metabolismo , Ratones , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Masculino , Norepinefrina/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Neuronas Adrenérgicas/metabolismo , Neuronas Adrenérgicas/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/fisiología , Hepatocitos/metabolismo
2.
Saudi Pharm J ; 29(9): 1061-1069, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34588851

RESUMEN

The medicinal uses of Calotropis procera are diverse, yet some of them are based on effects that still lack scientific support. Control of diabetes is one of them. Recently, latex proteins from C. procera latex (LP) have been shown to promote in vivo glycemic control by the inhibition of hepatic glucose production via AMP-activated protein kinase (AMPK). Glycemic control has been attributed to an isolated fraction of LP (CpPII), which is composed of cysteine peptidases (95%) and osmotin (5%) isoforms. Those proteins are extensively characterized in terms of chemistry, biochemistry and structural aspects. Furthermore, we evaluated some aspects of the mitochondrial function and cellular mechanisms involved in CpPII activity. The effect of CpPII on glycemic control was evaluated in fasting mice by glycemic curve and glucose and pyruvate tolerance tests. HepG2 cells was treated with CpPII, and cell viability, oxygen consumption, PPAR activity, production of lactate and reactive oxygen species, mitochondrial density and protein and gene expression were analyzed. CpPII reduced fasting glycemia, improved glucose tolerance and inhibited hepatic glucose production in control animals. Additionally, CpPII increased the consumption of ATP-linked oxygen and mitochondrial uncoupling, reduced lactate concentration, increased protein expression of mitochondrial complexes I, III and V, and activity of peroxisome-proliferator-responsive elements (PPRE), reduced the presence of reactive oxygen species (ROS) and increased mitochondrial density in HepG2 cells by activation of AMPK/PPAR. Our findings strongly support the medicinal use of the plant and suggest that CpPII is a potential therapy for prevention and/or treatment of type-2 diabetes. A common epitope sequence shared among the proteases and osmotin is possibly the responsible for the beneficial effects of CpPII.

3.
Pharmacol Rep ; 66(3): 380-5, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24905512

RESUMEN

BACKGROUND: Tumor necrosis factor alpha (TNFα) is implicated in the development of insulin resistance in obesity, type 2 diabetes and cancer. However, its ability to modulate the action of insulin on glycogen catabolism in the liver is controversial. The aim of the present study was to investigate whether TNFα acutely affects the suppression by insulin of hepatic glucose production (HGP) and glycogenolysis stimulated by cyclic adenosine monophosphate (cAMP). METHODS: TNFα (10 µg/kg) was injected intravenously to rats and, 1 or 6h later, their livers were subjected to in situ perfusion with cAMP (3 µM), in the presence or absence of physiological (20 µU/mL) or supraphysiological (500 µU/mL) concentrations of insulin. RESULTS: The injection of TNFα, 1 or 6h before liver perfusion, had no direct effect on the action of cAMP in stimulating HGP and glycogenolysis. However, when TNFα was injected 1h, but not 6h, before liver perfusion it completely abolished (p<0.05) the suppressive effect of 20 µU/mL insulin on HGP and glycogenolysis stimulated by cAMP. Furthermore, the injection of TNFα 1h or 6h before liver perfusion did not influence the suppression of cAMP-stimulated HGP and glycogenolysis by 500 µU/mL insulin. CONCLUSION: TNFα acutely abolished the suppressive effect of physiological, but not supraphysiological, levels of insulin on HGP and glycogenolysis stimulated by cAMP, suggesting an important role of this mechanism to the increased HGP in several pathological states.


Asunto(s)
AMP Cíclico/metabolismo , Glucosa/metabolismo , Glucogenólisis/fisiología , Insulina/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Hígado/metabolismo , Glucógeno Hepático/metabolismo , Masculino , Perfusión/métodos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA