Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2401946, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103304

RESUMEN

Nociceptors are key sensory receptors that transmit warning signals to the central nervous system in response to painful stimuli. This fundamental process is emulated in an electronic device by developing a novel artificial nociceptor with an ultrathin, nonstoichiometric gallium oxide (GaOx)-silicon oxide heterostructure. A large-area 2D-GaOx film is printed on a substrate through liquid metal printing to facilitate the production of conductive filaments. This nociceptive structure exhibits a unique short-term temporal response following stimulation, enabling a facile demonstration of threshold-switching physics. The developed heterointerface 2D-GaOx film enables the fabrication of fast-switching, low-energy, and compliance-free 2D-GaOx nociceptors, as confirmed through experiments. The accumulation and extrusion of Ag in the oxide matrix are significant for inducing plastic changes in artificial biological sensors. High-resolution transmission electron microscopy and electron energy loss spectroscopy demonstrate that Ag clusters in the material dispersed under electrical bias and regrouped spontaneously when the bias is removed owing to interfacial energy minimization. Moreover, 2D nociceptors are stable; thus, heterointerface engineering can enable effective control of charge transfer in 2D heterostructural devices. Furthermore, the diffusive 2D-GaOx device and its Ag dynamics enable the direct emulation of biological nociceptors, marking an advancement in the hardware implementation of artificial human sensory systems.

2.
Chemosphere ; 364: 143054, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121957

RESUMEN

Contemporary global industrialization, coupled with the relentless growth of the population, has led to a persistent escalation in the emission and accumulation of various toxic and harmful chemicals in the environment, severely disrupting the ecological balance. The development of efficient environmental cleanup materials is a crucial scientific and technological concern. Since the groundbreaking work on Ti3C2Tx in 2011, there has been a huge growing interest in MXene-based composites developed through heterointerface engineering due to its high surface area, hydrophilicity, eco-friendliness, biocompatibility, easy functionalization, excellent thermal/mechanical properties, metal conductivity and rich electronic density. In the area of environmental remediation, MXene-based composites obtained through heterointerface engineering strategies have the ability to effectively remove and systematically monitor contaminants in comparison to virgin MXene, thanks to the synergistic effects and complementary benefits. Heterointerface engineering strategy increases specific surface area, introduces catalytic sites, constructs heterojunctions/Schottky junctions, and facilitates carrier migration and electron-hole separation. These novel MXene-based composites represent significant advances in MXene research and deserve a comprehensive review. Although several excellent reviews and perspectives on the application of MXene-based composites in environmental remediation have been published, there is still a scarcity of comprehensive and systematic assessments on the reliable data and mechanisms of various MXene-based composite materials for pollutant removal and monitoring. In this focused review, the first part briefly introduces the common preparation strategies and characterization methods of single MXene and MXene-based composites, and the second part details the innovative application of MXene-based composites (involving the amalgamation of MXene with metal oxides, metal sulfide, g-C3N4, layered double hydroxides, metal-organic frameworks, single atom/quantum dots, polymers, etc.) in the field of environmental remediation, including carbon dioxide reduction, nitrogen monoxide and volatile organic compounds removal, antibiotic and heavy metal ions degradation, summarizing the relevant performance and mechanisms. Furthermore, the recent advancements in the utilization of MXene-based composites for the sensing of emerging environmental contaminants (antibiotic and antibiotic resistance genes) are summarized. Finally, an outline of the existing challenges and future prospects on this exciting field was narrated for plausible real-world use. This review will help to inspire the diverse design of MXene-based composites and to advance research related to their application in the environmental sector.

3.
Nano Lett ; 24(30): 9186-9194, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39012034

RESUMEN

The interaction between light and moiré superlattices presents a platform for exploring unique light-matter phenomena. Tailoring these optical properties holds immense potential for advancing the utilization of moiré superlattices in photonics, optoelectronics, and valleytronics. However, the control of the optical polarization state in moiré superlattices, particularly in the presence of moiré effects, remains elusive. Here, we unveil the emergence of optical anisotropy in moiré superlattices by constructing twisted WSe2/WSe2/SiP heterostructures. We report a linear polarization degree of ∼70% for moiré excitons, attributed to the spatially nonuniform charge distribution, corroborated by first-principles calculations. Furthermore, we demonstrate the modulation of this linear polarization state via the application of a magnetic field, resulting in polarization angle rotation and a magnetic-field-dependent linear polarization degree, influenced by valley coherence and moiré potential effects. Our findings demonstrate an efficient strategy for tuning the optical polarization state of moiré superlattices using heterointerface engineering.

4.
Angew Chem Int Ed Engl ; 63(31): e202405756, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38721710

RESUMEN

Although oxygen vacancies (Ovs) have been intensively studied in single semiconductor photocatalysts, exploration of intrinsic mechanisms and in-depth understanding of Ovs in S-scheme heterojunction photocatalysts are still limited. Herein, a novel S-scheme photocatalyst made from WO3-Ov/In2S3 with Ovs at the heterointerface is rationally designed. The microscopic environment and local electronic structure of the S-scheme heterointerface are well optimized by Ovs. Femtosecond transient absorption spectroscopy (fs-TAS) reveals that Ovs trigger additional charge movement routes and therefore increase charge separation efficiency. In addition, Ovs have a synergistic effect on the thermodynamic and kinetic parameters of S-scheme photocatalysts. As a result, the optimal photocatalytic performance is significantly improved, surpassing that of single component WO3-Ov and In2S3 (by 35.5 and 3.9 times, respectively), as well as WO3/In2S3 heterojunction. This work provides new insight into regulating the photogenerated carrier dynamics at the heterointerface and also helps design highly efficient S-scheme photocatalysts.

5.
Molecules ; 28(19)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37836746

RESUMEN

The rational design of the heterogeneous interfaces enables precise adjustment of the electronic structure and optimization of the kinetics for electron/ion migration in energy storage materials. In this work, the built-in electric field is introduced to the iron-based anode material (Fe2O3@TiO2) through the well-designed heterostructure. This model serves as an ideal platform for comprehending the atomic-level optimization of electron transfer in advanced lithium-ion batteries (LIBs). As a result, the core-shell Fe2O3@TiO2 delivers a remarkable discharge capacity of 1342 mAh g-1 and an extraordinary capacity retention of 82.7% at 0.1 A g-1 after 300 cycles. Fe2O3@TiO2 shows an excellent rate performance from 0.1 A g-1 to 4.0 A g-1. Further, the discharge capacity of Fe2O3@TiO2 reached 736 mAh g-1 at 1.0 A g-1 after 2000 cycles, and the corresponding capacity retention is 83.62%. The heterostructure forms a conventional p-n junction, successfully constructing the built-in electric field and lithium-ion reservoir. The kinetic analysis demonstrates that Fe2O3@TiO2 displays high pseudocapacitance behavior (77.8%) and fast lithium-ion reaction kinetics. The capability of heterointerface engineering to optimize electrochemical reaction kinetics offers novel insights for constructing high-performance iron-based anodes for LIBs.

6.
Materials (Basel) ; 16(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687522

RESUMEN

Since the discovery of graphene, two-dimensional ultrathin nanomaterials with an atomic thickness (typically <5 nm) have attracted tremendous interest due to their fascinating chemical and physical properties. These ultrathin nanomaterials, referred to as atomically thin materials (ATMs), possess inherent advantages such as a high specific area, highly exposed surface-active sites, efficient atom utilization, and unique electronic structures. While substantial efforts have been devoted to advancing ATMs through structural chemistry, the potential of heterointerface engineering to enhance their properties has not yet been fully recognized. Indeed, the introduction of bi- or multi-components to construct a heterointerface has emerged as a crucial strategy to overcome the limitations in property enhancement during ATM design. In this review, we aim to summarize the design principles of heterointerfacial ATMs, present general strategies for manipulating their interfacial structure and catalytic properties, and provide an overview of their application in energy conversion and storage, including the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), the oxygen reduction reaction (ORR), the CO2 electroreduction reaction (CO2RR), photocatalysis, and rechargeable batteries. The central theme of this review is to establish correlations among interfacial modulation, structural and electronic properties, and ATMs' major applications. Finally, based on the current research progress, we propose future directions that remain unexplored in interfacial ATMs for enhancing their properties and introducing novel functionalities in practical applications.

7.
Nanomaterials (Basel) ; 13(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678007

RESUMEN

Heterointerface engineering has been verified to be an effective approach to enhance the energy density of alkali-ion batteries by resolving inherent shortcomings of single materials. However, the rational construction of heterogeneous composite with abundant heterogeneous interfaces for sodium-ion batteries (SIBs) is still a significant challenge. Herein, inspired by density functional theory calculations, interface engineering can greatly decrease the energy bandgap and migration barrier of Na ions in Sb and Na3Sb phases, as well as enhance the mechanical properties. A porous heterointerface MOFC-Sb is fabricated by utilizing MOF-C as a support and buffer, exhibiting excellent electrochemical performances for sodium storage. The MOF-C-Sb anode with its rich heterointerface presents an improved electrochemical performance of 540.5 mAh g-1 after 100 cycles at 0.1 A g-1, and 515.9 mAh g-1 at 1.6 A g-1 in term of sodium storage, efficiently resolving the serious volume expansion issues of metal Sb. These results indicate the structural superiority of heterointerface-engineered structure and afford valuable information for the rational design and construction of Sb-based anode materials for high-performance electrochemical energy storage.

8.
Small ; 18(13): e2107514, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35152556

RESUMEN

Heterointerface engineering with multiple electroactive and inactive supporting components is considered an efficient approach to enhance electrochemical performance for sodium-ion batteries (SIBs). Nevertheless, it is still a challenge to rationally design heterointerface engineering and understand the synergistic effect reaction mechanisms. In this paper, the two-phase heterointerface engineering (Sb2 S3 and FeS2 ) is well designed to incorporate into N-doped porous hollow carbon nanofibers (Sb-Fe-S@CNFs) by proper electrospinning design. The obtained Sb-Fe-S@CNFs are used as anode in SIBs to evaluate the electrochemical performance. It delivers a reversible capacity of 396 mA h g-1 after 2000 cycles at 1 A g-1 and exhibits an ultra-long high rate cycle life for 16 000 cycles at 10 A g-1 . The admirable electrochemical performance is mainly attributed to the following reasons: The porous carbon nanofibers serve as an accelerator of the electrons/ions and a buffer to alleviate volume expansion upon long cyclic performance. The abundant phase boundaries of Sb2 S3 /FeS2 exert low Na+ adsorption energy and greatly promote the charge transfer in the internal electric field calculated by first-principle density functional theory. Therefore, the as-prepared Sb-Fe-S@CNFs represents a promising candidate for an efficient anode electrode material in SIBs.

9.
Adv Mater ; 34(4): e2106195, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34599773

RESUMEN

Electromagnetic (EM) absorbers play an increasingly essential role in the electronic information age, even toward the coming "intelligent era". The remarkable merits of heterointerface engineering and its peculiar EM characteristics inject a fresh and infinite vitality for designing high-efficiency and stimuli-responsive EM absorbers. However, there still exist huge challenges in understanding and reinforcing these interface effects from the micro and macro perspectives. Herein, EM response mechanisms of interfacial effects are dissected in depth, and with a focus on advanced characterization as well as theoretical techniques. Then, the representative optimization strategies are systematically discussed with emphasis on component selection and structural design. More importantly, the most cutting-edge smart EM functional devices based on heterointerface engineering are reported. Finally, current challenges and concrete suggestions are proposed, and future perspectives on this promising field are also predicted.

10.
Small Methods ; 5(8): e2100444, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34927864

RESUMEN

The chemical heterointerfaces in hybrid electrode materials play an important role in overcoming the intrinsic drawbacks of individual materials and thus expedite the in-depth development of electrochemical energy storage. Benefiting from the three enhancement effects of accelerating charge transport, increasing the number of storage sites, and reinforcing structural stability, the chemical heterointerfaces have attracted extensive interest and the electrochemical performances of hybrid electrode materials have been significantly optimized. In this review, recent advances regarding chemical heterointerface engineering in hybrid electrode materials are systematically summarized. Especially, the intrinsic behaviors of chemical heterointerfaces on hybrid electrode materials are refined based on built-in electric field, van der Waals interaction, lattice mismatch and connection, electron cloud bias and chemical bond, and their combination. The strategies for introducing chemical heterointerfaces are classified into in situ local transformation, in situ growth, cosynthesis, and other strategy. The recent progress about the chemical heterointerfaces engineering specially focusing on metal-ion batteries, supercapacitors, and Li-S batteries are introduced in detail. Furthermore, the classification and characterization of chemical heterointerfaces are briefly described. Finally, the emerging challenges and perspectives about future directions of chemical heterointerface engineering are proposed.

11.
Nanomicro Lett ; 13(1): 126, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34138326

RESUMEN

Metal-air batteries, like Zn-air batteries (ZABs) are usually suffered from low energy conversion efficiency and poor cyclability caused by the sluggish OER and ORR at the air cathode. Herein, a novel bimetallic Co/CoFe nanomaterial supported on nanoflower-like N-doped graphitic carbon (NC) was prepared through a strategy of coordination construction-cation exchange-pyrolysis and used as a highly efficient bifunctional oxygen electrocatalyst. Experimental characterizations and density functional theory calculations reveal the formation of Co/CoFe heterostructure and synergistic effect between metal layer and NC support, leading to improved electric conductivity, accelerated reaction kinetics, and optimized adsorption energy for intermediates of ORR and OER. The Co/CoFe@NC exhibits high bifunctional activities with a remarkably small potential gap of 0.70 V between the half-wave potential (E1/2) of ORR and the potential at 10 mA cm‒2 (Ej=10) of OER. The aqueous ZAB constructed using this air electrode exhibits a slight voltage loss of only 60 mV after 550-cycle test (360 h, 15 days). A sodium polyacrylate (PANa)-based hydrogel electrolyte was synthesized with strong water-retention capability and high ionic conductivity. The quasi-solid-state ZAB by integrating the Co/CoFe@NC air electrode and PANa hydrogel electrolyte demonstrates excellent mechanical stability and cyclability under different bending states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA