Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(2): 214-228, mar. 2024. tab, graf
Artículo en Español | LILACS | ID: biblio-1552134

RESUMEN

Cancer cells modify lipid metabolism to proliferate, Passiflora edulis ( P. edulis ) fruit juice (ZuFru) has antitumor activity, but whether a mechanism is through modulation of cell lipids is unknown. T o establish if ZuFru modifies cholesterol and triglycerides in SW480 and SW620. ZuFru composition was studied by phytochemical march; antiproliferative activity by sulforhodamine B, cholesterol , and triglycerides by Folch method. Z ufru contains anthocyanins, flavonoids, alkaloids , and tannins. Cell lines showed differences in their growth rate ( p =0.049). At 39.6 µg/m L of ZuFru, cell viability was decreased: SW480 (45.6%) and SW620 (45.1%). In SW480, cholesterol (44.6%) and triglycerides (46.5%) decreased; In SW620, cholesterol decreased 14.8% and triglycerides increased 7%, with significant differences for both lines. A ntiproliferative activity of ZuFru could be associated with the inhibition of intracellular biosynthesis of cholesterol and triglycerides in SW480. Action mechanisms need to be further investigated.


Las células cancerosas modifican el metabolismo lipídico para proliferar; el zumo de fruta (ZuFru) de Passiflora edulis ( P. edulis ) tiene activida d antitumoral, sin embargo, se desconoce si se involucran los lípidos celulares. E stablecer si ZuFru modifica colesterol y triglicéridos en células SW480 y SW620. C omposición del ZuFru, actividad antiproliferativa, colesterol y triglicéridos. Se encontraro n antocianinas, flavonoides, alcaloides y taninos. Las líneas celulares mostraron diferencias en su tasa de crecimiento ( p =0 . 049); ZuFru 39,6 µg/ml se disminuyó la viabilidad celular; SW480 (45,6%) y SW620 (45,1%); en SW480 colesterol (44,6%) y triglicérid os (46,5%) en SW620, colesterol (14,8%) y los triglicéridos aumentaron 7%, con diferencias significativas para ambas líneas. La actividad antiproliferativa del ZuFru podría estar asociada a la inhibición de la biosíntesis intracelular de colesterol y de tr iglicéridos en SW480, pero no en SW620. Estos mecanismos de acción deben ser fuertemente investigados.


Asunto(s)
Extractos Vegetales/administración & dosificación , Neoplasias Colorrectales/tratamiento farmacológico , Passiflora/química , Jugos de Frutas y Vegetales/análisis , Fenoles/análisis , Polisacáridos/análisis , Triglicéridos , Flavonoides/análisis , Extractos Vegetales/química , Supervivencia Celular/efectos de los fármacos , Colesterol , Anticarcinógenos , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antioxidantes
2.
Plants (Basel) ; 12(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38140490

RESUMEN

This study aimed to evaluate the response of Toona ciliata seedlings to sublethal doses of glyphosate. The increasing use of glyphosate in agriculture concerns the scientific community, as the drift of this pollutant into aquatic systems or atmospheric currents can affect non-target species. Therefore, we need to understand how non-target species respond to small doses of this herbicide. T. ciliata seedlings (clone BV-1110) were exposed to sublethal doses of glyphosate (0, 9.6, 19.2, 38.4, 76.8 g ae ha-1). Anatomical, physiological, and photochemical analyses were performed 60 days after herbicide application, and growth assessments were carried out after 160 days of cultivation. We found that sublethal doses of glyphosate above 19.2 g ae ha-1 induced toxicity symptoms in Toona ciliata leaves. These symptoms were mild in some cases, such as chlorosis, but severe in other cases, such as tissue necrosis. We observed a positive relationship between increased plant height and photochemical yield with plant exposure to sub-doses 9.6 and 19.2 g ae ha-1. A sublethal dose of 38.4 g ae ha-1 improved the photosynthetic rate and carboxylation efficiency. Thus, we confirmed the hypothesis of a hormetic effect when T. ciliata was exposed to sub-doses of glyphosate equal to or lower than 38.4 g ae ha-1. However, the sublethal dose of 76.8 g ae ha-1 must be considered toxic, impacting photosynthetic activity and, consequently, the height of T. ciliata. The stem diameter of T. ciliata responded positively to increasing glyphosate doses. This occurs to compensate for the negative effect of glyphosate on water absorption. Further research will provide valuable information for harnessing the potential benefits of hormesis to improve the productivity of T. ciliata.

3.
Plants (Basel) ; 12(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37896025

RESUMEN

Photosynthesis is a crucial process supporting life on Earth. However, unfavorable environmental conditions including toxic metals may limit the photosynthetic efficiency of plants, and the responses to those challenges may vary among genotypes. In this study, we evaluated photosynthetic parameters of the chili pepper varieties Jalapeño, Poblano, and Serrano exposed to Cd (0, 5, 10 µM), Tl (0, 6, 12 nM), and V (0, 0.75, 1.5 µM). Metals were added to the nutrient solution for 60 days. Stomatal conductance (Gs), transpiration rate (Tr), net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), instantaneous carboxylation efficiency (Pn/Ci), instantaneous water use efficiency (instWUE), and intrinsic water use efficiency (iWUE) were recorded. Mean Pn increased with 12 nM Tl in Serrano and with 0.75 µM V in Poblano. Tl and V increased mean Tr in all three cultivars, while Cd reduced it in Jalapeño and Serrano. Gs was reduced in Jalapeño and Poblano with 5 µM Cd, and 0.75 µM V increased it in Serrano. Ci increased in Poblano with 6 nM Tl, while 12 nM Tl reduced it in Serrano. Mean instWUE increased in Poblano with 10 µM Cd and 0.75 µM V, and in Serrano with 12 nM Tl, while 6 nM Tl reduced it in Poblano and Serrano. Mean iWUE increased in Jalapeño and Poblano with 5 µM Cd, in Serrano with 12 nM Tl, and in Jalapeño with 1.5 µM V; it was reduced with 6 nM Tl in Poblano and Serrano. Pn/Ci increased in Serrano with 5 µM Cd, in Jalapeño with 6 nM Tl, and in Poblano with 0.75 µM V. Interestingly, Tl stimulated six and inhibited five of the seven photosynthetic variables measured, while Cd enhanced three and decreased two variables, and V stimulated five variables, with none inhibited, all as compared to the respective controls. We conclude that Cd, Tl, and V may inhibit or stimulate photosynthetic parameters depending on the genotype and the doses applied.

4.
Redox Rep ; 27(1): 259-269, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36356189

RESUMEN

Encephalic vascular accident, or stroke, is the most common pathology of the central nervous system in humans, the second leading cause of death and physical and cognitive disabilities, in developing countries. It presents as an ischemic (more common) or hemorrhagic form. Ozone therapy has been shown to be effective in neuromodulation, neuroprotection, and nerve regeneration. The present study aimed to evaluate the effect of targeted mild ozone after inducing cerebral ischemia in vitro. Neuroblastoma lineage cells (SH-SY5Y) and canine amniotic membrane stem cells were subjected to 24 hours of hypoxia in an incubator culture chamber. The cells were evaluated by MTT assay, colorimetric assay spectrophotometry, fluorescence microscopy, and flow cytometry. Treatment with low concentrations of ozone (2-10 µg/mL), indicated a possible neuroregenerative effect at low concentrations, correlated with lower levels of apoptosis and oxidative stress compared to cells not subjected to hypoxia. High concentrations of ozone (18-30 µg/mL) promoted an increase in rate of apoptosis and cell death. We developed a novel protocol that mimics ozone therapy for ischemic stroke, using ozonized culture medium after hypoxia induction. Although more studies are needed, we conclude that ozone has a dose-dependent hormetic effect and can reverse the effect of ischemia in vitro at low concentrations.


Asunto(s)
Neuroblastoma , Ozono , Humanos , Animales , Perros , Ozono/uso terapéutico , Ozono/farmacología , Oxígeno , Estrés Oxidativo , Apoptosis , Isquemia , Hipoxia , Línea Celular Tumoral
5.
Insects ; 12(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34564220

RESUMEN

Currently, the human species has been recognized as the primary species responsible for Earth's biodiversity decline. Contamination by different chemical compounds, such as pesticides, is among the main causes of population decreases and species extinction. Insects are key for ecosystem maintenance; unfortunately, their populations are being drastically affected by human-derived disturbances. Pesticides, applied in agricultural and urban environments, are capable of polluting soil and water sources, reaching non-target organisms (native and introduced). Pesticides alter insect's development, physiology, and inheritance. Recently, a link between pesticide effects on insects and their epigenetic molecular mechanisms (EMMs) has been demonstrated. EMMs are capable of regulating gene expression without modifying genetic sequences, resulting in the expression of different stress responses as well as compensatory mechanisms. In this work, we review the main anthropogenic contaminants capable of affecting insect biology and of triggering EMMs. EMMs are involved in the development of several diseases in native insects affected by pesticides (e.g., anomalous teratogenic reactions). Additionally, EMMs also may allow for the survival of some species (mainly pests) under contamination-derived habitats; this may lead to biodiversity decline and further biotic homogenization. We illustrate these patterns by reviewing the effect of neonicotinoid insecticides, insect EMMs, and their ecological consequences.

6.
J Hazard Mater ; 384: 121434, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31812481

RESUMEN

Tolerance level to cadmium (Cd) toxicity is generally associated with reductions of the internal Cd accumulation in living organisms. In plants, Cd exposure frequently triggers negative effects on their growth and productivity. However, an increased number of studies has reported the improved performance of some plant species (or their accessions/genotypes/varieties/cultivars/clones) to Cd exposure, despite Cd accumulation in their roots and shoots. These results indicate that plants have developed protective strategies to neutralize the side-effects from Cd toxicity or, more controversially, mechanisms that employ Cd as beneficial element. Here, we gathered information about Cd-induced hormetic effects on plants, and explored the potential mechanisms that allow them to have a better performance under Cd exposure. The promotion of plant development depends on both direct and indirect Cd-induced alterations in the metabolism of plants and their surround environment. In addition, the mechanisms behind the positive Cd-induced transgenerational effects were also discussed in the present paper.


Asunto(s)
Cadmio/farmacología , Hormesis , Magnoliopsida/efectos de los fármacos , Cadmio/toxicidad , Hormesis/efectos de los fármacos , Magnoliopsida/crecimiento & desarrollo , Magnoliopsida/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA