Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1232358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901806

RESUMEN

Host-associated microbiota can influence host phenotypic variation, fitness and potential to adapt to local environmental conditions. In turn, both host evolutionary history and the abiotic and biotic environment can influence the diversity and composition of microbiota. Yet, to what extent environmental and host-specific factors drive microbial diversity remains largely unknown, limiting our understanding of host-microbiome interactions in natural populations. Here, we compared the intestinal microbiota between two phylogenetically related fishes, the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius) in a common landscape. Using amplicon sequencing of the V3-V4 region of the bacterial 16S rRNA gene, we characterised the α and ß diversity of the microbial communities in these two fish species from both brackish water and freshwater habitats. Across eight locations, α diversity was higher in the nine-spined stickleback, suggesting a broader niche use in this host species. Habitat was a strong determinant of ß diversity in both host species, while host species only explained a small fraction of the variation in gut microbial composition. Strong habitat-specific effects overruled effects of geographic distance and historical freshwater colonisation, suggesting that the gut microbiome correlates primarily with local environmental conditions. Interestingly, the effect of habitat divergence on gut microbial communities was stronger in three-spined stickleback than in nine-spined stickleback, possibly mirroring the stronger level of adaptive divergence in this host species. Overall, our results show that microbial communities reflect habitat divergence rather than colonisation history or dispersal limitation of host species.

2.
BMC Microbiol ; 23(1): 51, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36858951

RESUMEN

BACKGROUND: Host associated gut microbiota are important in understanding the coevolution of host-microbe, and how they may help wildlife populations to adapt to rapid environmental changes. Mammalian gut microbiota composition and diversity may be affected by a variety of factors including geographic variation, seasonal variation in diet, habitat disturbance, environmental conditions, age, and sex. However, there have been few studies that examined how ecological and environmental factors influence gut microbiota composition in animals' natural environments. In this study, we explore how host habitat, geographical location and environmental factors affect the fecal microbiota of Cynomys ludovicianus at a small spatial scale. We collected fecal samples from five geographically distinct locations in the Texas Panhandle classified as urban and rural areas and analyzed them using high throughput 16S rRNA gene amplicon sequencing. RESULTS: The results showed that microbiota of these fecal samples was largely dominated by the phylum Bacteroidetes. Fecal microbiome diversity and composition differed significantly across sampling sites and habitats. Prairie dogs inhabiting urban areas showed reduced fecal diversity due to more homogenous environment and, likely, anthropogenic disturbance. Urban prairie dog colonies displayed greater phylogenetic variation among replicates than those in rural habitats. Differentially abundant analysis revealed that bacterial species pathogenic to humans and animals were highly abundant in urban areas which indicates that host health and fitness might be negatively affected. Random forest models identified Alistipes shahii as the important species driving the changes in fecal microbiome composition. Despite the effects of habitat and geographic location of host, we found a strong correlation with environmental factors and that- average maximum temperature was the best predictor of prairie dog fecal microbial diversity. CONCLUSIONS: Our findings suggest that reduction in alpha diversity in conjunction with greater dispersion in beta diversity could be indicative of declining host health in urban areas; this information may, in turn, help determine future conservation efforts. Moreover, several bacterial species pathogenic to humans and other animals were enriched in prairie dog colonies near urban areas, which may in turn adversely affect host phenotype and fitness.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Humanos , Filogenia , ARN Ribosómico 16S , Sciuridae
3.
J Adv Res ; 43: 1-12, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36585100

RESUMEN

INTRODUCTION: The parasitoid wasp Microplitis mediator is an important natural enemy of the turnip moth Agrotis segetum and other Noctuidae pests. In our field observation, it was fortuitously discovered that sex pheromone traps used for A. segetum also attract female wasps, verified by a simulated field condition dual-choice laboratory assay. Therefore, it was hypothesized that olfactory recognition could be crucial in this process. In this regard, a female-biased odorant receptor of the wasp, MmedOR49, attracted our attention. OBJECTIVES: To unravel the significance of the female-biased MmedOR49 regulating host pheromone recognition. METHODS: Expression analysis (fluorescence in situ hybridization; quantitative realtime PCR), in vitro (two-electrode voltage-clamp recordings) and in vivo (RNAi combined with behavioral assessments) functional studies, and bioinformatics (structural modeling and molecular docking) were carried out to investigate the characteristics of MmedOR49. RESULTS: MmedOR49 expression was detected in the antennae of females by FISH. Quantification indicated that the expression level of MmedOR49 increased significantly after adult emergence. In vitro functional study revealed that MmedOR49 was specifically tuned to cis-5-decenyl acetate (Z5-10:Ac), the major sex pheromone component of A. segetum. Molecular docking showed that Z5-10:Ac strongly bound to the key amino acid residues His 80, Ile 81, and Arg 84 of MmedOR49 through hydrogen bonding. Behavioral assays indicated that female wasps were significantly attracted by Z5-10:Ac in a three-cage olfactometer. RNAi targeting further confirmed that MmedOR49 was necessary to recognize Z5-10:Ac, as female wasps lost their original behavioral responses to Z5-10:Ac after down-regulation of the MmedOR49 transcript. CONCLUSION: Although M. mediator is a larval endoparasitoid, female wasps have a behavioral preference for a sex pheromone component of lepidopteran hosts. In this behavior, for female M. mediator, MmedOR49 plays an important role in guiding the habitat of host insects. These data provide a potential target for enhancing natural enemy utilization and pest control.


Asunto(s)
Mariposas Nocturnas , Receptores Odorantes , Atractivos Sexuales , Avispas , Femenino , Animales , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Atractivos Sexuales/metabolismo , Hibridación Fluorescente in Situ , Simulación del Acoplamiento Molecular , Avispas/genética , Avispas/metabolismo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo
4.
Front Microbiol ; 13: 855750, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369474

RESUMEN

The advancement of high throughput sequencing has greatly facilitated the exploration of viruses that infect marine hosts. For example, a number of putative virus genomes belonging to the Totiviridae family have been described in crustacean hosts. However, there has been no characterization of the most newly discovered putative viruses beyond description of their genomes. In this study, two novel double-stranded RNA (dsRNA) virus genomes were discovered in the Atlantic blue crab (Callinectes sapidus) and further investigated. Sequencing of both virus genomes revealed that they each encode RNA dependent RNA polymerase proteins (RdRps) with similarities to toti-like viruses. The viruses were tentatively named Callinectes sapidus toti-like virus 1 (CsTLV1) and Callinectes sapidus toti-like virus 2 (CsTLV2). Both genomes have typical elements required for -1 ribosomal frameshifting, which may induce the expression of an encoded ORF1-ORF2 (gag-pol) fusion protein. Phylogenetic analyses of CsTLV1 and CsTLV2 RdRp amino acid sequences suggested that they are members of two new genera in the family Totiviridae. The CsTLV1 and CsTLV2 genomes were detected in muscle, gill, and hepatopancreas of blue crabs by real-time reverse transcription quantitative PCR (RT-qPCR). The presence of ~40 nm totivirus-like viral particles in all three tissues was verified by transmission electron microscopy, and pathology associated with CsTLV1 and CsTLV2 infections were observed by histology. PCR assays showed the prevalence and geographic range of these viruses, to be restricted to the northeast United States sites sampled. The two virus genomes co-occurred in almost all cases, with the CsTLV2 genome being found on its own in 8.5% cases, and the CsTLV1 genome not yet found on its own. To our knowledge, this is the first report of toti-like viruses in C. sapidus. The information reported here provides the knowledge and tools to investigate transmission and potential pathogenicity of these viruses.

5.
Sci Total Environ ; 832: 155015, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35395311

RESUMEN

Assessing the structure and composition of gut microbiota of sentinel species such as spotted seals (Phoca largha) is a potential tool for assessing the health of the marine mammals and their habitats. However, the link between the host microbiome and their habitat is poorly understood. In this study, microbial communities in the habitat (sea ice and water) and marine mammalian host (fecal matter from P. largha) were evaluated in samples obtained from the Liaodong Bay, China during population aggregation period. Results from high-throughput sequencing showed that the bacterial communities in P. largha fecal matter were less rich and diverse compared to those from the water and ice samples. Significant differences in the composition and function of bacterial communities were also found among the water, ice, and fecal samples, in which sample type and sampling site had the greatest impact on composition and function variations, respectively. Several potential pathogenic bacteria and bacteria with functions associated with human disease were significantly enhanced in the communities of P. largha feces compared to those of surrounding environments. The ratios of environmental microorganisms sourced from the P. largha fecal matter were estimated. The results showed that certain bacteria in P. largha-inhabited fecal matter were associated with sea ice and had specific antibiotic resistance and infectious capacity. These findings provide critical data for monitoring the health of marine mammals and their habitats, which is essential for predicting the impact of anthropogenic disturbances on marine ecosystems.


Asunto(s)
Caniformia , Microbioma Gastrointestinal , Phoca , Animales , Ecosistema , Agua
6.
J Fungi (Basel) ; 7(7)2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34356951

RESUMEN

The culture-based approach was used to characterize the fungal endophytes associated with the coralloid roots of the endemic Cycas debaoensis and Cycas fairylakea from various population sites in China. We aim to determine if the assemblages of fungal endophytes inside these endemic plant hosts are distinct and could be explored for bioprospecting. The isolation method yielded a total of 284 culturable fungal strains. Identification based on the analysis of the internal transcribed spacer (ITS) rDNA showed that they belonged to two phyla, five classes, eight orders and 22 families. At least 33 known genera and 62 different species were confirmed based on >97% ITS sequence similarity. The most frequent and observed core taxa in the two host species regardless of their population origin were Talaromyces, Penicillium, Fusarium, Pochonia and Gliocladiopsis. Seventy percent was a rare component of the fungal communities with only one or two recorded isolates. Contrary to common notions, diversity and fungal richness were significantly higher in C. debaoensis and C. fairylakea collected from a botanical garden, while the lowest was observed in C. debaoensis from a natural habitat; this provides evidence that garden management, and to a minor extent, ex-situ conservation practice, could influence fungal endophyte communities. We further selected nineteen fungal isolates and screened for their antagonistic activities via a co-cultivation approach against the phytopathogens, Diaporthe sp. and Colletotrichum sp. Among these, five isolates with high ITS similarity matches with Hypoxylon vinosupulvinatum (GD019, 99.61%), Penicillium sp. (BD022, 100%), Penicillifer diparietisporus (GD008, 99.46%), Clonostachys rogersoniana (BF024, 99.46%) and C. rosea (BF011, 99.1%), which showed exceptional antagonistic activities against the phytopathogenic fungi with a significant inhibition rate of 70-80%. Taken together, our data presented the first and most comprehensive molecular work on culturable fungal endophytes associated with the coralloid roots of cycads. Our study also demonstrated that about 5% of fungal endophytes were not detected by the high-throughput sequencing approach, implying the equal importance of a culture-dependent approach to study fungal communities of cycads. We further highlighted the potential role of endemic and rare plants to discover and isolate unique plant-associated fungal taxa with excellent biocontrol properties.

7.
Ecosphere ; 9(4)2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30271654

RESUMEN

The importance of parasites as both members of biological communities and as structuring agents of host communities has been increasingly emphasized. Yet parasites of aquatic macroinvertebrates and the environmental factors regulating their richness and abundance remain poorly studied. Here we quantified parasite richness and abundance within 12 genera of odonate naiads and opportunistically sampled four additional orders of aquatic macroinvertebrates from 35 freshwater ponds in the San Francisco Bay Area of California, USA. We also tested the relative contributions of host- and habitat-level factors in driving patterns of infection abundance for the most commonly encountered parasite (the trematode Haematoloechus sp.) in nymphal damselflies and dragonflies using hierarchical generalized linear mixed models. Over the course of two years, we quantified the presence and intensity of parasites from 1,612 individuals. We identified six parasite taxa: two digenetic trematodes, one larval nematode, one larval acanthocephalan, one gregarine, and a mite, for which the highest infection prevalence (39%) occurred in the damselfly genus, Ishnura sp. Based on the hierarchical analysis of Haematoloechus sp. occurrence, infection prevalence and abundance were associated predominantly with site-level factors, including definitive host (frog) presence, nymphal odonate density, water pH and conductivity. In addition, host suborder interacted with the presence of fishes, such that damselflies had higher infection rates in sites with fish relative to those without, whereas the opposite was true for dragonfly nymphs. These findings offer insights into the potential interaction between host- and site-level factors in shaping parasite populations within macroinvertebrate taxa.

8.
Insects ; 3(4): 1220-35, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-26466736

RESUMEN

Augmentative releases of parasitoids may be a useful tool for the area-wide management of tephritid pests. The latter are parasitized by many wasp species, though only a few of them are relevant for augmentative biocontrol purposes. To date, nearly all the actual or potential biocontrol agents for such programs are egg or larval Opiinae parasitoids (Hymenoptera: Braconidae). Here, we review the literature published on their habitat and host location behavior, as well as the factors that modulate this behavior, which is assumed to be sequential; parasitoids forage first for the host habitat and then for the host itself. Parasitoids rely on chemical, visual, and mechanical stimuli, often strongly related to their ecology. Behavioral modulation factors include biotic and abiotic factors including learning, climatic conditions and physiological state of the insect. Finally, conclusions and perspectives for future research are briefly highlighted. A detailed knowledge of this behavior may be very useful for selecting the release sites for both inundative/augmentative releases of mass-reared parasitoids and inoculative releases for classical biocontrol.

9.
Oecologia ; 109(4): 483-489, 1997 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28307331

RESUMEN

Biological control manipulations of natural enemies to reduce pest populations represent large-scale ecological experiments that have both benefited from and contributed to various areas of modern ecology. Unfortunately, economic expediency and the need for rapid implementation often require that biological control programs be based more on trial and error than on sound ecological theory and testing. This approach has led to some remarkable successes but it has also produced dismal failures. This point is particularly well illustrated in the historical development and use of entomopathogenic nematodes for the biological control of insect pests. Intense effort has focused on developing these natural enemies as alternatives to chemical insecticides, in part because laboratory assays indicated that these nematodes possess a broad host range. This illusory attribute launched hundreds of field releases, many of which failed due to ecological barriers to infection that are not apparent from laboratory exposures, where conditions are optimal and host-parasite contact assured. For example, the entomopathogenic nematode Steinernema carpocapsae is a poor choice to control scarab larvae because this nematode uses an ambusher foraging strategy near the soil surface whereas the equally sedentary scarab remains within the soil profile, shows a weak host recognition response to scarabs, has difficulty overcoming the scarab immune response, and has low reproduction in this host. Conversely, two other nematodes, Heterorhabditis bacteriophora and S. glaseri, are highly adapted to parasitize scarabs: they use a cruising foraging strategy, respond strongly to scarabs, easily overcome the immune response, and reproduce well in these hosts. Increased understanding of the ecology of entomopathogenic nematodes has enabled better matches between parasites and hosts, and more accurate predictions of field performance. These results underline the importance of a strong partnership between basic and applied ecology in the area of biological control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA