Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Parasite ; 31: 61, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39361830

RESUMEN

Monogenea (Platyhelminthes), mainly gill and fin ectoparasites of fish, are often recognized as host specific and morphologically and ecologically diverse. These parasites exhibit high species diversity at the level of host species or individual fish specimens. Using case studies, especially those widely performed in Dactylogyrus parasitizing cyprinoid fish, this article presents current knowledge on the ecology and evolution of congeneric gill monogeneans. The important aspects of the ecology of congeneric monogeneans are highlighted, in particular: host specificity expressed at several host levels (from strict specificity to phylogenetic specificity), microhabitat specificity expressed by restricted positions on fish gills to facilitate intraspecific mating, and the link between microhabitat preference and morphological adaptation (i.e., sclerotized structures of the haptor) or reproductive isolation. From the evolutionary perspective, this study focused on the processes of the speciation and diversification of congeneric monogeneans, highlighting the role of host switch as the most prominent coevolutionary event, accompanied in some cases mostly by intrahost speciation or cospeciation, as revealed by cophylogenetic studies. Here, important knowledge on evolutionary patterns of host specificity, microhabitat specificity, and morphological adaptation is presented. Host-specific monogeneans may represent an important tool for studying the historical biogeography of their hosts. Specifically, in the case of freshwater fish hosts exhibiting disjunctive distribution, they reflect both historical and contemporary contacts. The role of host-specific congeneric monogeneans in revealing historical intercontinental and intracontinental contacts between freshwater fish is highlighted. Finally, the importance of the role of genetic coadaptation, limiting the presence of host-specific monogeneans in hybrid fish, is emphasized.


Title: Monogènes spécifiques à leur hôte parasitant les poissons d'eau douce : écologie et évolution des associations hôtes-parasites. Abstract: Les Monogènes (Plathelminthes), principalement ectoparasites des branchies et des nageoires des poissons, sont souvent reconnus comme spécifiques à leur hôte et diversifiés morphologiquement et écologiquement. Ces parasites présentent une grande diversité d'espèces au niveau des espèces hôtes ou des spécimens individuels de poissons. À l'aide d'études de cas (en particulier celles largement réalisées chez les Dactylogyrus parasitant les poissons cyprinoïdes), les connaissances actuelles sur l'écologie et l'évolution des monogènes branchiaux congénères sont présentées. Les aspects importants de l'écologie des monogènes congénères sont mis en évidence, en particulier la spécificité à l'hôte exprimée à plusieurs niveaux de l'hôte (de la spécificité stricte à la spécificité phylogénétique), la spécificité du microhabitat exprimée par des positions restreintes sur les branchies des poissons pour faciliter l'accouplement intraspécifique, et le lien entre la préférence du microhabitat et l'adaptation morphologique (c'est-à-dire les structures sclérifiées du hapteur) ou l'isolement reproductif. Du point de vue évolutif, l'étude a été concentrée sur les processus de spéciation et de diversification des monogènes congénères, soulignant le rôle du changement d'hôte comme l'événement coévolutif le plus important, accompagné surtout dans certains cas de spéciation ou de cospéciation intra-hôte, comme le révèlent les études cophylogénétiques. Des connaissances importantes sont présentées ici sur les modèles évolutifs de spécificité d'hôte, de spécificité de microhabitat et d'adaptation morphologique. Les monogènes spécifiques à l'hôte peuvent représenter un outil important pour étudier la biogéographie historique de leurs hôtes. Plus précisément, dans le cas des poissons d'eau douce hôtes présentant une distribution disjonctive, ils reflètent à la fois des contacts historiques et contemporains. Le rôle des monogènes congénères spécifiques à leur hôte dans la révélation des contacts intercontinentaux et intracontinentaux historiques entre poissons d'eau douce est mis en évidence. Enfin, l'importance du rôle de la coadaptation génétique limitant la présence de monogènes spécifiques à l'hôte chez les poissons hybrides est soulignée.


Asunto(s)
Evolución Biológica , Enfermedades de los Peces , Agua Dulce , Branquias , Especificidad del Huésped , Interacciones Huésped-Parásitos , Animales , Enfermedades de los Peces/parasitología , Branquias/parasitología , Agua Dulce/parasitología , Platelmintos/fisiología , Platelmintos/clasificación , Platelmintos/genética , Platelmintos/aislamiento & purificación , Infecciones por Trematodos/veterinaria , Infecciones por Trematodos/parasitología , Peces/parasitología , Filogenia , Ecosistema , Trematodos/fisiología , Trematodos/clasificación , Trematodos/genética , Especificidad de la Especie
2.
Theory Biosci ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269598

RESUMEN

In recent discussions, the widespread conviction that scientific individuation practices are governed by theories and concepts of biological individuality has been challenged, particularly by advocates of practice-based approaches. This discussion raises questions about the relationship between individuation practices and concepts of individuality. In this paper, I discuss four studies of host-parasite systems and analyze the respective individuation practices to see whether they correspond to established concepts of biological individuality. My analysis suggests that scientists individuate biological systems on different levels of organization and that the researchers' respective emphasis on one of the levels depends on the explanandum and research context as well as epistemic aims and purposes. It thus makes sense to use different concepts of individuality to account for different individuation practices. However, not all individuation practices are represented equally well by concepts of biological individuality. To account for this observation, I propose that concepts of individuality should be understood as abstracted, idealized, or simplified models that represent only certain aspects of scientific practice. A modeling account suggests a pluralistic view of concepts of biological individuality that not only allows the coexistence of different kinds of individuality (e.g., evolutionary individuality, immunological individuality, ecological individuality) but also of normative and descriptive concepts.

3.
Am Nat ; 204(2): 121-132, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39008840

RESUMEN

AbstractClimate change will alter interactions between parasites and their hosts. Warming may affect patterns of local adaptation, shifting the environment to favor the parasite or host and thus changing the prevalence of disease. We assessed local adaptation to hosts and temperature in the facultative ciliate parasite Lambornella clarki, which infects the western tree hole mosquito Aedes sierrensis. We conducted laboratory infection experiments with mosquito larvae and parasites collected from across a climate gradient, pairing sympatric or allopatric populations across three temperatures that were either matched or mismatched to the source environment. Lambornella clarki parasites were locally adapted to their hosts, with 2.6 times higher infection rates on sympatric populations compared with allopatric populations, but they were not locally adapted to temperature. Infection peaked at the intermediate temperature of 12.5°C, notably lower than the optimum temperature for free-living L. clarki growth, suggesting that the host's immune response can play a significant role in mediating the outcome of infection. Our results highlight the importance of host selective pressure on parasites, despite the impact of temperature on infection success.


Asunto(s)
Aedes , Interacciones Huésped-Parásitos , Larva , Temperatura , Animales , Aedes/parasitología , Larva/parasitología , Larva/crecimiento & desarrollo , Adaptación Fisiológica , Apicomplexa/fisiología
4.
J Evol Biol ; 37(7): 795-806, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38699979

RESUMEN

Arms race dynamics are a common outcome of host-parasite coevolution. While they can theoretically be maintained indefinitely, realistic arms races are expected to be finite. Once an arms race has ended, for example due to the evolution of a generalist-resistant host, the system may transition into coevolutionary dynamics that favour long-term diversity. In microbial experiments, host-parasite arms races often transition into a stable coexistence of generalist-resistant hosts, (semi-)susceptible hosts, and parasites. While long-term host diversity is implicit in these cases, parasite diversity is usually overlooked. In this study, we examined parasite diversity after the end of an experimental arms race between a unicellular alga (Chlorella variabilis) and its lytic virus (PBCV-1). First, we isolated virus genotypes from multiple time points from two replicate microcosms. A time-shift experiment confirmed that the virus isolates had escalating host ranges, i.e., that arms races had occurred. We then examined the phenotypic and genetic diversity of virus isolates from the post-arms race phase. Post-arms race virus isolates had diverse host ranges, survival probabilities, and growth rates; they also clustered into distinct genetic groups. Importantly, host range diversity was maintained throughout the post-arms race phase, and the frequency of host range phenotypes fluctuated over time. We hypothesize that this dynamic polymorphism was maintained by a combination of fluctuating selection and demographic stochasticity. Together with previous work in prokaryotic systems, our results link experimental observations of arms races to natural observations of long-term host and parasite diversity.


Asunto(s)
Chlorella , Chlorella/virología , Chlorella/genética , Variación Genética , Coevolución Biológica , Evolución Biológica
5.
Am Nat ; 203(1): 43-54, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38207142

RESUMEN

AbstractPrevious host-parasite coevolutionary theory has focused on understanding the determinants of local adaptation using spatially discrete models. However, these studies fall short of describing patterns of host-parasite local adaptation across spatial scales. In contrast, empirical work demonstrates that patterns of adaptation depend on the scale at which they are measured. Here, we propose a mathematical model of host-parasite coevolution in continuous space that naturally leads to a scale-dependent definition of local adaptation. In agreement with empirical research, we find that patterns of adaptation vary across spatial scales. In some cases, not only the magnitude of local adaptation but also the identity of the locally adapted species will depend on the spatial scale at which measurements are taken. Building on our results, we suggest a way to consistently measure parasite local adaptation when continuous space is the driver of cross-scale variation. We also describe a way to test whether continuous space is driving cross-scale variation. Taken together, our results provide a new perspective that can be used to understand empirical observations previously unexplained by theoretical expectations and deepens our understanding of the mechanics of host-parasite local adaptation.


Asunto(s)
Parásitos , Animales , Interacciones Huésped-Parásitos , Evolución Biológica , Adaptación Fisiológica
6.
Ecol Lett ; 27(1): e14316, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37787147

RESUMEN

The high tree diversity in tropical forests has long been a puzzle to ecologists. In the 1970s, Janzen and Connell proposed that tree species (hosts) coexist due to the stabilizing actions of specialized enemies. This Janzen-Connell hypothesis was subsequently supported by theoretical studies. Yet, such studies have taken the presence of specialized pathogens for granted, overlooking that pathogen coexistence also requires an explanation. Moreover, stable ecological coexistence does not necessarily imply evolutionary stability. What are the conditions that allow Janzen-Connell effects to evolve? We link theory from community ecology, evolutionary biology and epidemiology to tackle this question, structuring our approach around five theoretical frameworks. Phenomenological Lotka-Volterra competition models provide the most basic framework, which can be restructured to include (single- or multi-)pathogen dynamics. This ecological foundation can be extended to include pathogen evolution. Hosts, of course, may also evolve, and we introduce a coevolutionary model, showing that host-pathogen coevolution can lead to highly diverse systems. Our work unpacks the assumptions underpinning Janzen-Connell and places theoretical bounds on pathogen and host ecology and evolution. The five theoretical frameworks taken together provide a stronger theoretical basis for Janzen-Connell, delivering a wider lens that can yield important insights into the maintenance of diversity in these increasingly threatened systems.


Asunto(s)
Bosques , Árboles , Modelos Teóricos
7.
Dev Comp Immunol ; 152: 105115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38101714

RESUMEN

Granulins are conserved in nearly all metazoans, with an intriguing loss in insects. These pleiotropic peptides are involved in numerous physiological and pathological processes yet have been overwhelmingly examined in mammalian systems. While work in other animal models has been informative, a richer understanding of the proteins should be obtained by integrating knowledge from all available contexts. The main bodies of work described here include 1) the structure-function relationships of progranulin and its cleavage products, 2) the role of expanded granulin gene families and different isoforms in fish immunology, 3) the release of granulin peptides to promote host angiogenesis by parasitic worms, 4) a diversity of molluscan uses for granulins, including immune activation in intermediate hosts to trematodes, 5) knowledge gained on lysosomal functions from C. elegans and the stress-related activities of granulins. We provide an overview of functional reports across the Metazoa to inform much-needed future research.


Asunto(s)
Caenorhabditis elegans , Mamíferos , Animales , Progranulinas , Granulinas , Isoformas de Proteínas/genética
8.
Curr Biol ; 34(2): 403-409.e3, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38141618

RESUMEN

The initial process by which novel sexual signals evolve remains unclear, because rare new variants are susceptible to loss by drift or counterselection imposed by prevailing female preferences.1,2,3,4 We describe the diversification of an acoustic male courtship signal in Hawaiian populations of the field cricket Teleogryllus oceanicus, which was brought about by the evolution of a brachypterous wing morph ("small-wing") only 6 years ago.5 Small-wing has a genetic basis and causes silence or reduced-amplitude signaling by miniaturizing male forewings, conferring protection against an eavesdropping parasitoid, Ormia ochracea.5 We found that wing reduction notably increases the fundamental frequency of courtship song from an average of 5.1 kHz to 6.4 kHz. It also de-canalizes male song, broadening the range of peak signal frequencies well outside normal song character space. As courtship song prompts female mounting and is sexually selected,6,7,8,9 we evaluated two scenarios to test the fate of these new signal values. Females might show reduced acceptance of small-wing males, imposing counterselection via prevailing preferences. Alternatively, females might accept small-wing males as readily as long-wing males if their window of preference is sufficiently wide. Our results support the latter. Females preferred males who produced some signal over none, but they mounted sound-producing small-wing males as often as sound-producing long-wing males. Indiscriminate mating can facilitate the persistence of rare, novel signal values. If female permissiveness is a general characteristic of the earliest stages of sexual signal evolution, then taxa with low female mate acceptance thresholds should be more prone to diversification via sexual selection.


Asunto(s)
Gryllidae , Conducta Sexual Animal , Animales , Masculino , Femenino , Alas de Animales , Hawaii , Sonido , Acústica
9.
Mol Ecol ; 32(18): 5028-5041, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37540037

RESUMEN

Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host-parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for O. grillus including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.


Asunto(s)
Anfípodos , Parásitos , Trematodos , Animales , Anfípodos/genética , Interacciones Huésped-Parásitos/genética , Trematodos/genética , Fenotipo
10.
Ecol Evol ; 13(7): e10318, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37456066

RESUMEN

Using a dynamic optimisation model for juvenile fish in stochastic food environments, we investigate optimal hormonal regulation, energy allocation and foraging behaviour of a growing host infected by a parasite that only incurs an energetic cost. We find it optimal for the infected host to have higher levels of orexin, growth and thyroid hormones, resulting in higher activity levels, increased foraging and faster growth. This growth strategy thus displays several of the fingerprints often associated with parasite manipulation: higher levels of metabolic hormones, faster growth, higher allocation to reserves (i.e. parasite-induced gigantism), higher risk-taking and eventually higher predation rate. However, there is no route for manipulation in our model, so these changes reflect adaptive host compensatory responses. Interestingly, several of these changes also increase the fitness of the parasite. Our results call for caution when interpreting observations of gigantism or risky host behaviours as parasite manipulation without further testing.

11.
Proc Natl Acad Sci U S A ; 120(30): e2220761120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37463213

RESUMEN

Crozier's paradox suggests that genetic kin recognition will not be evolutionarily stable. The problem is that more common tags (markers) are more likely to be recognized and helped. This causes common tags to increase in frequency, eliminating the genetic variability that is required for genetic kin recognition. Two potential solutions to this problem have been suggested: host-parasite coevolution and multiple social encounters. We show that the host-parasite coevolution hypothesis does not work as commonly assumed. Host-parasite coevolution only stabilizes kin recognition at a parasite resistance locus if parasites adapt rapidly to hosts and cause intermediate or high levels of damage (virulence). Additionally, when kin recognition is stabilized at a parasite resistance locus, this can have an additional cost of making hosts more susceptible to parasites. However, we show that if the genetic architecture is allowed to evolve, meaning natural selection can choose the recognition locus, genetic kin recognition is more likely to be stable. The reason for this is that host-parasite coevolution can maintain tag diversity at another (neutral) locus by genetic hitchhiking, allowing that other locus to be used for genetic kin recognition. These results suggest a way that host-parasite coevolution can resolve Crozier's paradox, without making hosts more susceptible to parasites. However, the opportunity for multiple social encounters may provide a more robust resolution of Crozier's paradox.


Asunto(s)
Parásitos , Animales , Parásitos/genética , Selección Genética , Adaptación Fisiológica , Virulencia , Interacciones Huésped-Parásitos/genética , Evolución Biológica
12.
Parasit Vectors ; 16(1): 37, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707856

RESUMEN

BACKGROUND: Understanding the interactions between bat flies and host bats offer us fundamental insights into the coevolutionary and ecological processes in host-parasite relationships. Here, we investigated the identities, host specificity, and patterns of host association of bat flies in a subtropical region in East Asia, which is an understudied region for bat fly research. METHODS: We used both morphological characteristics and DNA barcoding to identify the bat fly species found on 11 cavernicolous bat species from five bat families inhabiting Hong Kong. We first determined the phylogenetic relationships among bat fly species. Then, we elucidated the patterns of bat-bat fly associations and calculated the host specificity of each bat fly species. Furthermore, we assembled the mitogenomes of three bat fly species from two families (Nycteribiidae and Streblidae) to contribute to the limited bat fly genetic resources available. RESULTS: We examined 641 individuals of bat flies and found 20 species, of which many appeared to be new to science. Species of Nycteribiidae included five Nycteribia spp., three Penicillidia spp., two Phthiridium spp., one Basilia sp., and one species from a hitherto unknown genus, whereas Streblidae included Brachytarsina amboinensis, three Raymondia spp., and four additional Brachytarsina spp. Our bat-bat fly association network shows that certain closely related bat flies within Nycteribiidae and Streblidae only parasitized host bat species that are phylogenetically more closely related. For example, congenerics of Raymondia only parasitized hosts in Rhinolophus and Hipposideros, which are in two closely related families in Rhinolophoidea, but not other distantly related co-roosting species. A wide spectrum of host specificity of these bat fly species was also revealed, with some bat fly species being strictly monoxenous, e.g. nycteribiid Nycteribia sp. A, Phthiridium sp. A, and streblid Raymondia sp. A, while streblid B. amboinensis is polyxenous. CONCLUSIONS: The bat fly diversity and specificity uncovered in this study have shed light on the complex bat-bat fly ecology in the region, but more bat-parasite association studies are still needed in East Asian regions like China as a huge number of unknown species likely exists. We highly recommend the use of DNA barcoding to support morphological identification to reveal accurate host-ectoparasite relationships for future studies.


Asunto(s)
Quirópteros , Dípteros , Animales , Asia Oriental , Dípteros/genética , Especificidad del Huésped , Interacciones Huésped-Parásitos , Filogenia
13.
Front Zool ; 20(1): 5, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703186

RESUMEN

BACKGROUND: Several hypotheses have been proposed to explain parasite infection in parental species and their hybrids. Hybrid heterosis is generally applied to explain the advantage for F1 generations of hybrids exhibiting a lower level of parasite infection when compared to parental species. Post-F1 generations often suffer from genetic incompatibilities potentially reflected in the higher level of parasite infection when compared to parental species. However, the presence of specific parasites in an associated host is also limited by close coevolutionary genetic host-parasite associations. This study focused on monogenean parasites closely associated with two leuciscid fish species-common bream and roach-with the aim of comparing the level of monogenean infection between parental species and hybrids representing two F1 generations with different mtDNA and two backcross generations with different cyto-nuclear compositions. RESULTS: Monogenean infection in F1 generations of hybrids was lower when compared to parental species, in line with the hybrid heterosis hypothesis. Monogenean infection in backcross generations exhibited similarities with the parental species whose genes contributed more to the backcross genotype. The distribution of monogeneans associated with one or the other parental species showed the same asymmetry with a higher proportion of roach-associated monogeneans in both F1 generations and backcross generation with roach in the paternal position. A higher proportion of common bream-associated monogeneans was found in backcross generation with common bream in the paternal position. CONCLUSIONS: Our study indicated that cyto-nuclear incompatibilities in hybrids do not induce higher monogenean infection in backcross generations when compared to parental species. However, as backcross hybrids with a higher proportion of the genes of one parental taxon also exhibited high level of this parental taxon-associated parasites, host-parasite coevolutionary interactions seem to play an obvious role in determining the level of infection of host-specific monogeneans in hybrids.

14.
Ecol Evol ; 12(8): e9136, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35923940

RESUMEN

George Price showed how the effects of natural selection and environmental change could be mathematically partitioned. This partitioning may be especially useful for understanding host-parasite coevolution, where each species represents the environment for the other species. Here, we use coupled Price equations to study this kind of antagonistic coevolution. We made the common assumption that parasites must genetically match their host's genotype to avoid detection by the host's self/nonself recognition system, but we allowed for the possibility that non-matching parasites have some fitness. Our results show how natural selection on one species results in environmental change for the other species. Numerical iterations of the model show that these environmental changes can periodically exceed the changes in mean fitness due to natural selection, as suggested by R.A. Fisher. Taken together, the results give an algebraic dissection of the eco-evolutionary feedbacks created during host-parasite coevolution.

15.
Proc Biol Sci ; 289(1978): 20212800, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35858064

RESUMEN

Hosts can avoid parasites (and pathogens) by reducing social contact, but such isolation may carry costs, e.g. increased vulnerability to predators. Thus, many predator-host-parasite systems confront hosts with a trade-off between predation and parasitism. Parasites, meanwhile, evolve higher virulence in response to increased host sociality and consequently, increased multiple infections. How does predation shift coevolution of host behaviour and parasite virulence? What if predators are selective, i.e. predators disproportionately capture the sickest hosts? We answer these questions with an eco-coevolutionary model parametrized for a Trinidadian guppy-Gyrodactylus spp. system. Here, increased predation drives host coevolution of higher grouping, which selects for higher virulence. Additionally, higher predator selectivity drives the contact rate higher and virulence lower. Finally, we show how predation and selectivity can have very different impacts on host density and prevalence depending on whether hosts or parasites evolve, or both. For example, higher predator selectivity led to lower prevalence with no evolution or only parasite evolution but higher prevalence with host evolution or coevolution. These findings inform our understanding of diverse systems in which host behavioural responses to predation may lead to increased prevalence and virulence of parasites.


Asunto(s)
Parásitos , Poecilia , Animales , Evolución Biológica , Interacciones Huésped-Parásitos , Parásitos/fisiología , Conducta Predatoria , Virulencia
16.
Biol Lett ; 18(3): 20210552, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35259944

RESUMEN

Evolutionary arms races can alter both parasite infectivity and host resistance, and it is difficult to separate the effects of these twin determinants of infection outcomes. We used a co-introduced, invasive host-parasite system (the lungworm Rhabdias pseudosphaerocephala and cane toads Rhinella marina), where rapid adaptation and dispersal have led to population differences in infection resistance. We quantified behavioural responses of parasite larvae to skin-chemical cues of toads from different invasive populations, and rates at which juvenile hosts became infected following standardized exposure to lungworms. Chemical cues from toad skin altered host-seeking behaviour by parasites, similarly among populations. The number of infection attempts (parasite larvae entering the host's body) also did not differ between populations, but rates of successful infection (establishment of adult worm in host lungs) were higher for range-edge toads than for range-core conspecifics. Thus, lower resistance to parasite infection in range-edge juvenile toads appears to be due to less effective immune defences of the host rather than differential behavioural responses of the parasite. In this ongoing host-parasite arms race, changing outcomes appear to be driven by shifts in host immunocompetence.


Asunto(s)
Parásitos , Infecciones por Rhabditida , Rhabditoidea , Animales , Evolución Biológica , Bufo marinus , Especies Introducidas , Infecciones por Rhabditida/epidemiología , Infecciones por Rhabditida/parasitología , Rhabditoidea/fisiología
17.
Curr Biol ; 32(7): 1593-1598.e3, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148861

RESUMEN

Coevolution between hosts and parasites is a major driver of rapid evolutionary change1 and diversification.2,3 However, direct antagonistic interactions between hosts and parasites could be disrupted4 when host microbiota form a line of defense, a phenomenon widespread across animal and plant species.5,6 By suppressing parasite infection, protective microbiota could reduce the need for host-based defenses and favor host support for microbiota colonization,6 raising the possibility that the microbiota can alter host-parasite coevolutionary patterns and processes.7 Here, using an experimental evolution approach, we co-passaged populations of nematode host (Caenorhabditis elegans) and parasites (Staphylococcus aureus) when hosts were colonized (or not) by protective bacteria (Enterococcus faecalis). We found that microbial protection during coevolution resulted in the evolution of host mortality tolerance-higher survival following parasite infection-and in parasites adapting to microbial defenses. Compared to unprotected host-parasite coevolution, the protected treatment was associated with reduced dominance of fluctuating selection dynamics in host populations. No differences in host recombination rate or genetic diversity were detected. Genomic divergence was observed between parasite populations coevolved in protected and unprotected hosts. These findings indicate that protective host microbiota can determine the evolution of host defense strategies and shape host-parasite coevolutionary dynamics.


Asunto(s)
Microbiota , Parásitos , Animales , Bacterias , Evolución Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Interacciones Huésped-Parásitos/genética
18.
Biol Lett ; 17(12): 20210321, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34932924

RESUMEN

Parasite-mediated selection is thought to maintain host genetic diversity for resistance. We might thus expect to find a strong positive correlation between host genetic diversity and infection prevalence across natural populations. Here, we used computer simulations to examine host-parasite coevolution in 20 simi-isolated clonal populations across a broad range of values for both parasite virulence and parasite fecundity. We found that the correlation between host genetic diversity and infection prevalence can be significantly positive for intermediate values of parasite virulence and fecundity. But the correlation can also be weak and statistically non-significant, even when parasite-mediated frequency-dependent selection is the sole force maintaining host diversity. Hence correlational analyses of field populations, while useful, might underestimate the role of parasites in maintaining host diversity.


Asunto(s)
Parásitos , Animales , Evolución Biológica , Variación Genética , Interacciones Huésped-Parásitos , Prevalencia , Selección Genética , Virulencia
19.
J Hered ; 112(7): 590-601, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34612500

RESUMEN

Three subspecies of Northern Bahamian Rock Iguanas, Cyclura cychlura, are currently recognized: C. c. cychlura, restricted to Andros Island, and C. c. figginsi and C. c. inornata, native to the Exuma Island chain. Populations on Andros are genetically distinct from Exuma Island populations, yet genetic divergence among populations in the Exumas is inconsistent with the 2 currently recognized subspecies from those islands. The potential consequences of this discrepancy might include the recognition of a single subspecies throughout the Exumas rather than 2. That inference also ignores evidence that populations of C. cychlura are potentially adaptively divergent. We compared patterns of population relatedness in a three-tiered host-parasite system: C. cychlura iguanas, their ticks (genus Amblyomma, preferentially parasitizing these reptiles), and Rickettsia spp. endosymbionts (within tick ectoparasites). Our results indicate that while C. c. cychlura on Andros is consistently supported as a separate clade, patterns of relatedness among populations of C. c. figginsi and C. c. inornata within the Exuma Island chain are more complex. The distribution of the hosts, different tick species, and Rickettsia spp., supports the evolutionary independence of C. c. inornata. Further, these patterns are also consistent with two independent evolutionarily significant units within C. c. figginsi. Our findings suggest coevolutionary relationships between the reptile hosts, their ectoparasites, and rickettsial organisms, suggesting local adaptation. This work also speaks to the limitations of using neutral molecular markers from a single focal taxon as the sole currency for recognizing evolutionary novelty in populations of endangered species.


Asunto(s)
Iguanas , Lagartos , Parásitos , Animales , Genética de Población
20.
J Evol Biol ; 34(12): 1944-1953, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695269

RESUMEN

The dynamics of coevolution between hosts and parasites are influenced by their genetic interactions. Highly specific interactions, where the outcome of an infection depends on the precise combination of host and parasite genotypes (G × G interactions), have the potential to maintain genetic variation by inducing negative frequency-dependent selection. The importance of this effect also rests on whether such interactions are consistent across different environments or modified by environmental variation (G × G × E interaction). In the black bean aphid, Aphis fabae, resistance to its parasitoid Lysiphlebus fabarum is largely determined by the possession of a heritable bacterial endosymbiont, Hamiltonella defensa, with strong G × G interactions between H. defensa and L. fabarum. A key environmental factor in this system is the host plant on which the aphid feeds. Here, we exposed genetically identical aphids harbouring three different strains of H. defensa to three asexual genotypes of L. fabarum and measured parasitism success on three common host plants of A. fabae, namely Vicia faba, Chenopodium album and Beta vulgaris. As expected, we observed the pervasive G × G interaction between H. defensa and L. fabarum, but despite strong main effects of the host plants on average rates of parasitism, this interaction was not altered significantly by the host plant environment (no G × G × E interaction). The symbiont-conferred specificity of resistance is thus likely to mediate the coevolution of A. fabae and L. fabarum, even when played out across diverse host plants of the aphid.


Asunto(s)
Áfidos , Avispas , Animales , Áfidos/genética , Genotipo , Interacciones Huésped-Parásitos , Simbiosis , Avispas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA