Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 703
Filtrar
1.
AAPS PharmSciTech ; 25(6): 183, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138765

RESUMEN

The dissolution and bioavailability challenges posed by poorly water-soluble drugs continue to drive innovation in pharmaceutical formulation design. Nintedanib (NDNB) is a typical BCS class II drug that has been utilized to treat idiopathic pulmonary fibrosis (IPF). Due to the low solubility, its oral bioavailability is relatively low, limiting its therapeutical effectiveness. It is crucial to enhance the dissolution and the oral bioavailability of NDNB. In this study, we focused on the preparation of amorphous solid dispersions (ASD) using hot melt extrusion (HME). The formulation employed Kollidon® VA64 (VA64) as the polymer matrix, blended with the NDNB at a ratio of 9:1. HME was conducted at temperatures ranging from 80 °C to 220 °C. The successful preparation of ASD was confirmed through various tests including polarized light microscopy (PLM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The in-vitro cumulative release of NDNB-ASD in 2 h in a pH 6.8 medium was 8.3-fold higher than that of NDNB (p < 0.0001). In a pH 7.4 medium, it was 10 times higher (p < 0.0001). In the in-vivo pharmacokinetic experiments, the area under curve (AUC) of NDNB-ASD was 5.3-fold higher than that of NDNB and 2.2 times higher than that of commercially available soft capsules (Ofev®) (p < 0.0001). There was no recrystallization after 6 months under accelarated storage test. Our study indicated that NDNB-ASD can enhance the absorption of NDNB, thus providing a promising method to improve NDNB bioavailability in oral dosages.


Asunto(s)
Disponibilidad Biológica , Indoles , Solubilidad , Indoles/farmacocinética , Indoles/química , Indoles/administración & dosificación , Administración Oral , Animales , Química Farmacéutica/métodos , Rastreo Diferencial de Calorimetría/métodos , Difracción de Rayos X/métodos , Masculino , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Composición de Medicamentos/métodos , Conejos , Polímeros/química , Tecnología de Extrusión de Fusión en Caliente/métodos , Liberación de Fármacos
2.
Curr Pharm Des ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39108005

RESUMEN

Controlled-release drug delivery systems (CRDDS) are more beneficial than conventional immediate release (IRDDS) for reduced intake, prolonged duration of action, lesser adverse effects, higher bioavailability, etc. The preparation of CRDDS is more complex than IRDDS. The hot melt extrusion (HME) technique is used for developing amorphous solid dispersion of poorly water soluble drugs to improve their dissolution rate and oral bioavailability. HME can be employed to develop CRDDS. Sustained release delivery systems (SRDDS), usually given orally, can also be developed using HME. This technique has the advantages of using no organic solvent, converting crystalline drugs to amorphous, improving bioavailability, etc. However, the heat sensitivity of drugs, miscibility between drug-polymer, and the availability of a few polymers are some of the challenges HME faces in developing CRDDS and SRDDS. The selection of a suitable polymer and the optimization of the process with the help of the QbD principle are two important aspects of the successful application of HME. In this review, strategies to prepare SRDDS and CRDDS using HME are discussed with its applications in research.

3.
Int J Pharm ; 663: 124556, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122196

RESUMEN

Hot melt extrusion (HME) processed Poly (lactic-co-glycolic acid) (PLGA) implant is one of the commercialized drug delivery products, which has solid, well-designed shape and rigid structures that afford efficient locoregional drug delivery on the spot of interest for months. In general, there are a variety of material, processing, and physiological factors that impact the degradation rates of PLGA-based implants and concurrent drug release kinetics. The objective of this study was to investigate the impacts of PLGA's material characteristics on PLGA degradation and subsequent drug release behavior from the implants. Three model drugs (Dexamethasone, Carbamazepine, and Metformin hydrochloride) with different water solubility and property were formulated with different grades of PLGAs possessing distinct co-polymer ratios, molecular weights, end groups, and levels of residual monomer (high/ViatelTM and low/ ViatelTM Ultrapure). Physicochemical characterizations revealed that the plasticity of PLGA was inversely proportional to its molecular weight; moreover, the residual monomer could impose a plasticizing effect on PLGA, which increased its thermal plasticity and enhanced its thermal processability. Although the morphology and microstructure of the implants were affected by many factors, such as processing parameters, polymer and drug particle size and distribution, polymer properties and polymer-drug interactions, implants prepared with ViatelTM PLGA showed a smoother surface and a stronger PLGA-drug intimacy than the implants with ViatelTM Ultrapure PLGA, due to the higher plasticity of the ViatelTM PLGA. Subsequently, the implants with ViatelTM PLGA exhibited less burst release than implants with ViatelTM Ultrapure PLGA, however, their onset and progress of the lag and substantial release phases were shorter and faster than the ViatelTM Ultrapure PLGA-based implants, owing to the residual monomer accelerated the water diffusion and autocatalyzed PLGA hydrolysis. Even though the drug release profiles were also influenced by other factors, such as composition, drug properties and polymer-drug interaction, all three cases revealed that the residual monomer accelerated the swelling and degradation of PLGA and impaired the implant's integrity, which could negatively affect the subsequent drug release behavior and performance of the implants. These results provided insights to formulators on rational PLGA implant design and polymer selection.

4.
Eur J Pharm Sci ; : 106880, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181171

RESUMEN

High-shear (HS) melt granulation and hot melt extrusion (HME) were compared as perspective melt-based technologies for preparation of amorphous solid dispersions (ASDs). ASDs were prepared using mesoporous carriers (Syloid® 244FP or Neusilin® US2), which were loaded with carvedilol dispersed in polymeric matrix (polyethylene glycol 6000 or Soluplus®). Formulations with high carvedilol content were obtained either by HME (11 extrudates with polymer:carrier ratio 1:1) or HS granulation (6 granulates with polymer:carrier ratio 3:1). DSC and XRD analysis confirmed the absence of crystalline carvedilol for the majority of prepared ADSs, thus confirming the stabilizing effect of selected polymers and carriers over amorphous carvedilol. HME produced larger particles compared to HS melt granulation, which was in line with better flow time and Carr index of extrudates. Moreover, SEM images revealed smoother surface of ASDs obtained by HME, contributing to less obstructed flow. The rougher and more porous surface of HS granules was correlated to larger granule specific surface area, manifesting in faster carvedilol release from Syloid® 244FP-based granules, as compared to their HME counterparts. Regarding dissolution, the two HS-formulations performed superior to pure crystalline carvedilol, thereby confirming the suitability of HS melt granulation for developing dosage forms with improved carvedilol dissolution.

5.
Chem Pharm Bull (Tokyo) ; 72(7): 681-688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39019599

RESUMEN

Clarithromycin (CLA) is the preferred drug for treating respiratory infections in pediatric patients, but it has the drawbacks of extreme bitterness and poor water solubility. The purpose of this study was to improve solubility and mask the extreme bitterness of CLA. We use Hot Melt Extrusion (HME) to convert CLA and Eudragit® E100 into Solid Dispersion (SD). Differential scanning calorimetry (DSC) and Powder X-ray diffraction (PXRD) were used to identify the crystalline form of the prepared SDs, which showed that the crystalline CLA was converted to an amorphous form. At the same time, an increase in dissolution rate was observed, which is one of the properties of SD. The results showed that the prepared SD significantly increased the dissolution rate of crystalline CLA. Subsequently, the SD of CLA was prepared into a dry suspension with excellent suspending properties and a taste-masking effect. The bitterness bubble chart and taste radar chart showed that the SD achieved the bitter taste masking of CLA. Principal components analysis (PCA) of the data generated by the electronic tongue showed that the bitter taste of CLA was significantly suppressed using the polymer Eudragit® E100. Subsequently, a dry suspension was prepared from the SD of CLA. In conclusion, this work illustrated the importance of HME for preparing amorphous SD of CLA, which can solve the problems of bitterness-masking and poor solubility. It is also significant for the development of compliant pediatric formulations.


Asunto(s)
Claritromicina , Solubilidad , Suspensiones , Gusto , Gusto/efectos de los fármacos , Claritromicina/química , Claritromicina/farmacología , Suspensiones/química , Tecnología de Extrusión de Fusión en Caliente , Polímeros/química , Composición de Medicamentos , Calor , Acrilatos
6.
Pharm Dev Technol ; : 1-7, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38995216

RESUMEN

The appearance of an extrudate formulation was monitored during hot-melt extrusion (HME) continuous manufacturing over 3 days. The formulation matrix consisted of a polymeric component, copovidone, and a low molecular weight surfactant, polysorbate 80. Based on studies prior to the continuous manufacturing, the desired appearance of the target extrudate is translucent. Although process parameters such as feed rate and screw speed were fixed during the continuous manufacturing, the extrudate appearance changed over time from turbid to translucent. For root-cause investigation, the extrudates were analyzed offline by differential scanning calorimetry (DSC) and advanced polymer chromatography (APC™). Although the polysorbate 80 content of both turbid and translucent extrudates was within target, the glass transition temperature of the turbid extrudate was 2 °C above expected value. The observed turbidity was traced to lot-to-lot variability of the polysorbate 80 used in the continuous manufacturing, where APC™ analysis revealed that the relative content of the low molecular weight component varied from 23% to 27% in correlation with the evolution from turbid to translucent extrudates. This work stresses the importance of taking feeding material variability into account during continuous manufacturing.

7.
Pharmaceutics ; 16(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39065592

RESUMEN

Developing bioequivalent (BE) generic products of complex dosage forms like intravitreal implants (IVIs) of corticosteroids such as dexamethasone prepared using hot-melt extrusion (HME), based on biodegradable poly (lactide-co-glycolide) (PLGA) polymers, can be challenging. A better understanding of the relationship between the physicochemical and physicomechanical properties of IVIs and their effect on drug release and ocular bioavailability is crucial to develop novel BE approaches. It is possible that the key physicochemical and physicomechanical properties of IVIs such as drug properties, implant surface roughness, mechanical strength and toughness, and implant erosion could vary for different compositions, resulting in changes in drug release. Therefore, this study investigated the hypothesis that biodegradable ophthalmic dexamethasone-loaded implants with 20% drug and 80% PLGA polymer(s) prepared using single-pass hot-melt extrusion (HME) differ in physicochemical and/or physicomechanical properties and drug release depending on their PLGA polymer composition. Acid end-capped PLGA was mixed with an ester end-capped PLGA to make three formulations: HME-1, HME-2, and HME-3, containing 100%, 80%, and 60% w/w of the acid end-capped PLGA. Further, this study compared the drug release between independent batches of each composition. In vitro release tests (IVRTs) indicated that HME-1 implants can be readily distinguished by their release profiles from HME-2 and HME-3, with the release being similar for HME-2 and HME-3. In the early stages, drug release generally correlated well with polymer composition and implant properties, with the release increasing with PLGA acid content (for day-1 release, R2 = 0.80) and/or elevated surface roughness (for day-1 and day-14 release, R2 ≥ 0.82). Further, implant mechanical strength and toughness correlated inversely with PLGA acid content and day-1 drug release. Drug release from independent batches was similar for each composition. The findings of this project could be helpful for developing generic PLGA polymer-based ocular implant products.

8.
Int J Pharm X ; 8: 100263, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39040516

RESUMEN

Hot-melt extrusion (HME) potentially coupled with 3D printing is a promising technique for the manufacturing of dosage forms such as drug-eluting implants which might even be individually adapted to patient-specific anatomy. However, these manufacturing methods involve the risk of thermal degradation of incorporated drugs during processing. In this work, the stability of the anti-inflammatory drug dexamethasone (DEX) was studied during HME using the polymers Eudragit® RS, ethyl cellulose and polyethylene oxide. The extrusion process was performed at different temperatures. Furthermore, the influence of accelerated screw speed, the addition of the plasticizers triethyl citrate and polyethylene glycol 6000 or the addition of the antioxidants butylated hydroxytoluene and tocopherol in two concentrations were studied. The DEX recovery was analyzed by a high performance liquid chromatography method suitable for the detection of thermal degradation products. The strongest impact on the drug stability was found for the processing temperature, which was found to reduce the DEX recovery to <20% for certain processing conditions. In addition, differences between tested polymers were observed, whereas the use of additives did not result in remarkable changes in drug stability. In conclusion, suitable extrusion parameters were identified for the processing of DEX with high drug recovery rates for the tested polymers. Moreover, the importance of a suitable analysis method for drug stability during HME that is influenced by several parameters was highlighted.

9.
Pharmaceutics ; 16(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38931886

RESUMEN

BACKGROUND: Pazopanib hydrochloride (PZB) is a protein kinase inhibitor approved by the United States Food and Drug Administration and European agencies for the treatment of renal cell carcinoma and other renal malignancies. However, it exhibits poor aqueous solubility and inconsistent oral drug absorption. In this regard, the current research work entails the development and evaluation of the extrudates of pazopanib hydrochloride by the hot-melt extrusion (HME) technique for solubility enhancement and augmenting oral bioavailability. RESULTS: Solid dispersion of the drug was prepared using polymers such as Kollidon VA64, hydroxypropylmethylcellulose (HPMC), Eudragit EPO, and Affinisol 15LV in a 1:2 ratio by the HME process through a lab-scale 18 mm extruder. Systematic optimization of the formulation variables was carried out with the help of custom screening design (JMP Software by SAS, Version 14.0) to study the impact of polymer type and plasticizer level on the quality of extrudate processability by measuring the torque value, appearance, and disintegration time as the responses. The polymer blends containing Kollidon VA64 and Affinisol 15LV resulted in respective clear transparent extrudates, while Eudragit EPO and HPMC extrudates were found to be opaque white and brownish, respectively. Furthermore, evaluation of the impact of process parameters such as screw rpm and barrel temperature was measured using a definitive screening design on the extrude appearance, torque, disintegration time, and dissolution profile. Based on the statistical outcomes, it can be concluded that barrel temperature has a significant impact on torque, disintegration time, and dissolution at 30 min, while screw speed has an insignificant impact on the response variables. Affinisol extrudates showed less moisture uptake and faster dissolution in comparison to Kollidon VA64 extrudates. Affinisol extrudates were evaluated for polymorphic stability up to a 3-month accelerated condition and found no recrystallization. PZB-Extrudates using the Affinisol polymer (Test formulation A) revealed significantly higher bioavailability (AUC) in comparison to the free Pazopanib drug and marketed formulation.

10.
Pharmaceutics ; 16(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38931904

RESUMEN

The aim of this study was to fabricate mini-tablets of polyhedrons containing theophylline using a fused deposition modeling (FDM) 3D printer, and to evaluate the correlation between release kinetics models and their geometric shapes. The filaments containing theophylline, hydroxypropyl cellulose (HPC), and EUDRAGIT RS PO (EU) could be obtained with a consistent thickness through pre-drying before hot melt extrusion (HME). Mini-tablets of polyhedrons ranging from tetrahedron to icosahedron were 3D-printed using the same formulation of the filament, ensuring equal volumes. The release kinetics models derived from dissolution tests of the polyhedrons, along with calculations for various physical parameters (edge, SA: surface area, SA/W: surface area/weight, SA/V: surface area/volume), revealed that the correlation between the Higuchi model and the SA/V was the highest (R2 = 0.995). It was confirmed that using 3D- printing for the development of personalized or pediatric drug products allows for the adjustment of drug dosage by modifying the size or shape of the drug while maintaining or controlling the same release profile.

11.
Pharmaceutics ; 16(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38931905

RESUMEN

Dry-powder inhalers (DPIs) are valued for their stability but formulating them is challenging due to powder aggregation and limited flowability, which affects drug delivery and uniformity. In this study, the incorporation of L-leucine (LEU) into hot-melt extrusion (HME) was proposed to enhance dispersibility while simultaneously maintaining the high aerodynamic performance of inhalable microparticles. This study explored using LEU in HME to improve dispersibility and maintain the high aerodynamic performance of inhalable microparticles. Formulations with crystalline itraconazole (ITZ) and LEU were made via co-jet milling and HME followed by jet milling. The LEU ratio varied, comparing solubility, homogenization, and aerodynamic performance enhancements. In HME, ITZ solubility increased, and crystallinity decreased. Higher LEU ratios in HME formulations reduced the contact angle, enhancing mass median aerodynamic diameter (MMAD) size and aerodynamic performance synergistically. Achieving a maximum extra fine particle fraction of 33.68 ± 1.31% enabled stable deep lung delivery. This study shows that HME combined with LEU effectively produces inhalable particles, which is promising for improved drug dispersion and delivery.

12.
AAPS PharmSciTech ; 25(5): 136, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862810

RESUMEN

Cannabidiol (CBD) is a highly lipophilic compound with poor oral bioavailability, due to poor aqueous solubility and extensive pre-systemic metabolism. The aim of this study was to explore the potential of employing Hot Melt Extrusion (HME) technology for the continuous production of Self Emulsifying Drug Delivery Systems (SEDDS) to improve the solubility and in vitro dissolution performance of CBD. Accordingly, different placebos were processed through HME in order to obtain a lead CBD loaded solid SEDDS. Two SEDDS were prepared with sesame oil, Poloxamer 188, Gelucire®59/14, PEO N80 and Soluplus®. Moreover, Vitamin E was added as an antioxidant. The SEDDS formulations demonstrated emulsification times of 9.19 and 9.30 min for F1 and F2 respectively. The formed emulsions showed smaller droplet size ranging from 150-400 nm that could improve lymphatic uptake of CBD and reduce first pass metabolism. Both formulations showed significantly faster in vitro dissolution rate (90% for F1 and 83% for F2) compared to 14% for the pure CBD within the first hour, giving an enhanced release profile. The formulations were tested for stability over a 60-day time period at 4°C, 25°C, and 40°C. Formulation F1 was stable over the 60-day time-period at 4°C. Therefore, the continuous HME technology could replace conventional methods for processing SEDDS and improve the oral delivery of CBD for better therapeutic outcomes.


Asunto(s)
Cannabidiol , Química Farmacéutica , Sistemas de Liberación de Medicamentos , Emulsiones , Solubilidad , Cannabidiol/química , Cannabidiol/administración & dosificación , Emulsiones/química , Sistemas de Liberación de Medicamentos/métodos , Administración Oral , Química Farmacéutica/métodos , Tecnología de Extrusión de Fusión en Caliente/métodos , Liberación de Fármacos , Tamaño de la Partícula , Disponibilidad Biológica , Composición de Medicamentos/métodos , Polietilenglicoles/química , Estabilidad de Medicamentos , Aceite de Sésamo/química , Polivinilos
13.
Int J Nanomedicine ; 19: 5721-5737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895153

RESUMEN

Purpose: Curcumin nanocrystals (Cur-NCs) were prepared by hot melt extrusion (HME) technology to improve the dissolution and bioavailability of curcumin (Cur). Methods: Cur-NCs with different drug-carrier ratios were prepared by one-step extrusion process with Eudragit® EPO (EEP) as the carrier. The dispersed size and solid state of Cur in extruded samples were characterized by dynamic light scattering (DLS), scanning electron microscope (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The thermal stability of Cur was analyzed by thermogravimetric analysis (TGA) and high performance liquid chromatography (HPLC). Dissolution and pharmacokinetics were studied to evaluate the improvement of dissolution and absorption of Cur by nano-preparation. Results: Cur-NCs with particle sizes in the range of 50~150 nm were successfully prepared by using drug-carrier ratios of 1:1, 2:1 and 4:1, and the crystal form of Cur was Form 1 both before and after HME. The extrudate powders showed very efficient dissolution with the cumulative dissolution percentage of 80% in less than 2 min, and the intrinsic dissolution rates of them were 13.68 ± 1.20 mg/min/cm2, 11.78 ± 0.57 mg/min/cm2 and 4.35 ± 0.20 mg/min/cm2, respectively, whereas that of pure Cur was only 0.04 ± 0.00 mg/min/cm2. The TGA data demonstrated that the degradation temperature of Cur was about 250 °C, while the HPLC results showed Cur was degraded when extruded at the temperature over 150 °C. Pharmacokinetic experiment showed a significant improvement in the absorption of Cur. The Cmax of Cur in the Cur-NC group was 1.68 times that of pure Cur group, and the Cmax and area under the curve (AUC0-∞) of metabolites were 2.79 and 4.07 times compared with pure Cur group. Conclusion: Cur-NCs can be prepared by HME technology in one step, which significantly improves the dissolution and bioavailability of Cur. Such a novel method for preparing insoluble drug nanocrystals has broad application prospects.


Asunto(s)
Disponibilidad Biológica , Curcumina , Tecnología de Extrusión de Fusión en Caliente , Nanopartículas , Tamaño de la Partícula , Solubilidad , Curcumina/farmacocinética , Curcumina/química , Curcumina/administración & dosificación , Nanopartículas/química , Animales , Tecnología de Extrusión de Fusión en Caliente/métodos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Masculino , Rastreo Diferencial de Calorimetría , Estabilidad de Medicamentos , Liberación de Fármacos , Difracción de Rayos X , Ácidos Polimetacrílicos
14.
Eur J Pharm Biopharm ; 200: 114335, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768765

RESUMEN

The study endeavors the fabrication of extended-release adipic acid (APA) buccal films employing a quality by design (QbD) approach. The films intended for the treatment of xerostomia were developed utilizing hot-melt extrusion technology. The patient-centered quality target product profile was created, and the critical quality attributes were identified accordingly. Three early-stage formulation development trials, complemented by risk assessment aligned the formulation and process parameters with the product quality standards. Employing a D-optimal mixture design, the formulations were systematically optimized by evaluating three formulation variables: amount of the release-controlling polymer Eudragit® (E RSPO), bioadhesive agent Carbopol® (CBP 971P), and pore forming agent polyethylene glycol (PEG 1500) as independent variables, and % APA release in 1, 4 and 8 h as responses. Using design of experiment software (Design-Expert®), a total of 16 experimental runs were computed and extruded using a Thermofisher ScientificTM twin screw extruder. All films exhibited acceptable content uniformity and extended-release profiles with the potential for releasing APA for at least 8 h. Films containing 30% E RSPO, 10% CBP 971P, and 20% PEG 1500 released 88.6% APA in 8 h. Increasing the CBP concentration enhanced adhesiveness and swelling capacities while decreasing E RSPO concentration yielded films with higher mechanical strength. The release kinetics fitted well into Higuchi and Krosmeyer-Peppas models indicating a Fickian diffusion release mechanism.


Asunto(s)
Preparaciones de Acción Retardada , Liberación de Fármacos , Xerostomía , Xerostomía/tratamiento farmacológico , Tecnología de Extrusión de Fusión en Caliente/métodos , Polietilenglicoles/química , Humanos , Administración Bucal , Química Farmacéutica/métodos , Adipatos/química , Acrilatos/química , Ácidos Polimetacrílicos/química , Polímeros/química , Composición de Medicamentos/métodos
15.
Int J Pharm ; 659: 124249, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38772496

RESUMEN

This study aimed to develop, optimize, and evaluate hot-melt-extruded ophthalmic inserts capable of sustained release of diquafosol tetrasodium (DQS) via a design of experiments approach. DQS, a tear stimulant for dry eye management, faces challenges of frequent administration and low bioavailability. The developed insert uses biodegradable polymers in varied proportions to achieve sustained release. Optimized through mixture design, the insert completely dissolved within 24 h and maintained a stable drug content, thickness, and surface pH over three months at room temperature. In vitro corneal permeation studies on excised rabbit corneas demonstrated increased bioavailability, suggesting a reduced dosing frequency compared with conventional eye drops. Therefore, this insert has potential to enhance treatment outcomes by improving patient compliance and providing sustained drug effects.


Asunto(s)
Córnea , Preparaciones de Acción Retardada , Polifosfatos , Nucleótidos de Uracilo , Conejos , Animales , Polifosfatos/química , Nucleótidos de Uracilo/administración & dosificación , Nucleótidos de Uracilo/química , Córnea/metabolismo , Córnea/efectos de los fármacos , Soluciones Oftálmicas/administración & dosificación , Soluciones Oftálmicas/química , Disponibilidad Biológica , Liberación de Fármacos , Administración Oftálmica , Composición de Medicamentos/métodos , Implantes de Medicamentos , Calor , Química Farmacéutica/métodos
16.
Pharmaceutics ; 16(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794322

RESUMEN

The co-administration of curcumin and hesperetin might be beneficial in terms of neuroprotective activity; therefore, in this study, we attempted to develop a fixed-dose formulation comprising these two compounds in an amorphous state. The aim of obtaining an amorphous state was to overcome the limitations of the low solubility of the active compounds. First, we assessed the possibility of using popular sweeteners (erythritol, xylitol, and sorbitol) as plasticizers to reduce the glass transition temperature of PVP K30 to prepare the polymer-excipient blends, which allowed the preparation of amorphous solid dispersions via hot-melt extrusion at a temperature below the original glass transition of PVP K30. Erythritol proved to be the superior plasticizer. Then, we focused on the development of fixed-dose amorphous solid dispersions of curcumin and hesperetin. Powder X-ray diffraction and thermal analysis confirmed the amorphous character of dispersions, whereas infrared spectroscopy helped to assess the presence of intermolecular interactions. The amorphous state of the produced dispersions was maintained for 6 months, as shown in a stability study. Pharmaceutical parameters such as dissolution rate, solubility, and in vitro permeability through artificial membranes were evaluated. The best improvement in these features was noted for the dispersion, which contained 15% of the total content of the active compounds with erythritol used as the plasticizer.

17.
Pharm Res ; 41(6): 1233-1245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744732

RESUMEN

PURPOSE: This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer' matrix ratios and drug release behaviors. METHODS: Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs. RESULTS: IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a "dissolution plateau phenomenon", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated "dissolution" and RSPO-PVP VA64 assembly-mediated "swelling". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the "dissolution plateau phenomenon" in ASDs at 35% ~ 50% of PVP VA64. CONCLUSIONS: This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.


Asunto(s)
Preparaciones de Acción Retardada , Composición de Medicamentos , Liberación de Fármacos , Ibuprofeno , Polímeros , Preparaciones de Acción Retardada/química , Ibuprofeno/química , Ibuprofeno/administración & dosificación , Polímeros/química , Composición de Medicamentos/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Tecnología de Extrusión de Fusión en Caliente/métodos , Compuestos de Vinilo/química , Pirrolidinas/química , Química Farmacéutica/métodos , Povidona/química
18.
Front Nutr ; 11: 1398380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812933

RESUMEN

Background: Rice starch has high digestibility due to its large carbohydrate content. Synergistic modification of hot-melt extrusion (HME) and additives such as flavonoids, hydrocolloids, proteins, lipids, and other additives has the tendency to retard the rate of starch hydrolysis. Hence, the current investigation aimed to study the combined effect of the HME-assisted addition of nobiletin (NOB, 0, 2, 4, and 6%) on the multi-scale structures, interactions, thermal, and digestibility characteristics of rice starch. Methods: The study employed density functional theory calculations and an infrared second derivative of an Fourier-transform infrared (FTIR) spectrometer to analyze the interactions between NOB and starch. The physicochemical properties of the starch extrudates were characterized by FTIR, 13C nuclear magnetic resonance, X-ray diffraction, and differential scanning calorimetry, while the digestibility was evaluated using an in vitro digestion model. Results: HME was found to disrupt the crystalline structure, helix structure, short-ordered structure, and thermal properties of starch. The interaction between NOB and starch involved hydrophobic interactions and hydrogen bonds, effectively preventing the molecular chains of starch from interacting with each other and disrupting their double helix structure. The addition of NOB led to the formation of a highly single-helical V-type crystalline structure, along with the formation of ordered structural domains. Consequently, the combined treatment significantly enhanced the ordered structure and thermal stability of starch, thus effectively leading to an increase in resistant starch and slowly digestion starch. Discussion: The study underscores that synergistic modification of HME and NOB holds promise for enhancing both the nutritional value and functional properties of rice starch. These findings offer valuable insights for developing high-quality rice starch products with broader applications.

19.
J Taibah Univ Med Sci ; 19(2): 252-262, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38616800

RESUMEN

Objectives: Antibiotics are the most commonly administered medications among pediatric patients. However most of the time, accurate dose administration to children becomes a problem due to the extremely bitter taste. Cefpodoxime proxetil (CP) and roxithromycin (ROX) are antibiotics often prescribed to the pediatric population and have a bitter taste. Marketed formulations of these drugs are dry suspension and/or tablets. The lyophilization method involves various steps and thus is time consuming and expensive. The objective of this study was to mask the bitter taste of CP and ROX without compromising the solubility and drug release profile compared to marketed formulations, as well as to overcome the disadvantages associated with the currently used lyophilization technique. Methods: Hot melt extrusion (HME) technology was used to process CP and ROX individually with Eudragit E PO polymer. The extrudates obtained were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, and differential scanning calorimetry. The powdered extrudates were formulated as dispersible tablets and evaluated for in vitro and in vivo taste-masking efficiency. Results: The tablets prepared in this study showed comparable dissolution profiles but the taste-masking efficiency was significantly enhanced compared to the marketed tablets of CP and ROX. The results of in vivo human taste-masking evaluation were also in agreement with the in vitro taste-masking studies. Conclusion: The current work presents solvent-free, scalable, and continuous HME technology for addressing the bitter taste issues of CP and ROX. The disadvantages associated with the currently used lyophilization technique were overcome by developing the formulations using HME technology.

20.
Pharmaceutics ; 16(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675214

RESUMEN

Fused deposition modeling (FDM) is a rather new technology in the production of personalized dosage forms. The melting and printing of polymer-active pharmaceutical ingredient (API)-mixtures can be used to produce oral dosage forms with different dosage as well as release behavior. This process is utilized to increase the bioavailability of pharmaceutically relevant active ingredients that are poorly soluble in physiological medium by transforming them into solid amorphous dispersions (ASD). The release from such ASDs is expected to be faster and higher compared to the raw materials and thus enhance bioavailability. Printing directly from powder while forming ASDs from loperamide in Polyvinylalcohol was realized. Different techniques such as a change in infill and the incorporation of sorbitol as a plastisizer to change release patterns as well as a non-destructive way for the determination of API distribution were shown. By measuring the melt viscosities of the mixtures printed, a rheological model for the printer used is proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA