Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Geroscience ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313624

RESUMEN

Mitochondrial dysfunction is linked to physical impairment and dementia. Mitochondrial DNA copy number (mtDNAcn) from blood may predict cognitive decline and dementia risk, but the effect of somatic mutations or frailty is unknown. We estimated mtDNAcn using fastMitoCalc and microheteroplasmies using mitoCaller, from Whole Genome Sequencing (WGS) data. In 189,566 participants free of dementia at study entry (mean age = 56 ± 8), we examined the association between mtDNAcn and subsequent dementia diagnosis using Cox regression. Cognition was assessed in a subset on average 8.9 years later. We examined the associations between mtDNAcn and cognitive measures using multivariable linear regression, adjusted for demographic factors, mtDNAcn-related parameters, and apolipoprotein E ε4 status. We further stratified by frailty and microheteroplasmies. Over an average follow-up of 13.2 years, 3533 participants developed dementia. Each SD higher mtDNAcn (16) was associated with 4.2% lower all-cause dementia hazard (HR = 0.958, p = 0.030), 6% lower non-AD dementia hazard (HR = 0.933, p = 0.022), and not-AD dementia hazard. The associations between mtDNAcn and all-cause dementia and non-AD dementia were stronger among those who were pre-frail or frail or with higher microheteroplasmies. Higher mtDNAcn was associated with higher DSST scores (p = 0.036) and significant only among those with higher microheteroplasmies or frailty (p = 0.029 and 0.048, respectively). mtDNAcn was also associated with delta TMT and paired associate learning only in pre-frail/frail participants (p = 0.007 and 0.045, respectively). Higher WGS-based mtDNAcn in human blood is associated with lower dementia risk, specifically non-AD dementia, and specific cognitive function. The relationships appear stronger in high somatic mutations or frailty. Future studies are warranted to investigate biological underpinnings.

2.
Se Pu ; 42(9): 909-917, 2024 Sep.
Artículo en Chino | MEDLINE | ID: mdl-39198950

RESUMEN

Based on the technical methods of GB/T 42430-2023 and GA/T 204-2019, this study established an analytical method for headspace injection double-column dual-detector (hydrogen flame ion detector) gas chromatography for the simultaneous analysis of at least 12 volatile compounds, including ethanol, in human blood using two different equipment platforms and chromatographic columns. A 100 µL blood or urine sample and a 0.04 g/L tert-butanol working solution prepared as an internal standard are introduced into the headspace sample bottle and then sealed, mixed, and placed on the headspace sampler rack. Using different equipment platforms and columns, methodological parameters such as the limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy of the method were systematically evaluated. The chromatographic separation of acetone, alcohols and benzenes using the established method was satisfactory. The linear ranges, linear correlation coefficients (r), and LODs of acetone and six alcohols, including ethanol, were 0.10-3.00 g/L, >0.997, and 0.05 g/L, respectively. The LOQs were 0.10 g/L for all other compounds, excluding n-propanol (0.005 g/L). Additionally, the linear ranges, r values, LODs, and LOQs of benzene and four benzene derivatives were 0.05-50 mg/L, >0.995, 0.02 mg/L, and 0.05 mg/L, respectively (Column J&W DB-BAC1 UI and Column Rtx-BAC-PLUS 2). The average recoveries of compounds on J&W DB-BAC1 UI and Rtx-BAC-PLUS 2 columns ranged from 92.2% to 111.6%, and the relative standard deviations (RSDs, n=6) ranged from 0.4% to 7.4%. The LOD, LOQ, precision, accuracy, and linearity of the established method met the requirements of relevant standards, and no significant differences arose between the methodological parameters of the two platforms. CNAS-GL006 (2019) and JJF 1059.1-2012 were used as guides to evaluate the uncertainty of ethanol on two different sets of equipment platforms and chromatographic columns. The ethanol uncertainty was mainly derived from the calibration curve; however, the confidence probability was 95% (k=2). According to the analysis of the verification samples and real samples, the established method is suitable for the high-precision quantitative analysis of acetone and six alcohols and five benzene derivatives in human blood and other body fluids. It can be used in practical scenarios such as judicial identification and the detection of poisons.


Asunto(s)
Etanol , Compuestos Orgánicos Volátiles , Humanos , Cromatografía de Gases/métodos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/sangre , Límite de Detección
3.
Neuron ; 112(18): 3089-3105.e7, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39191260

RESUMEN

The blood-brain barrier (BBB) serves as a crucial vascular specialization, shielding and nourishing brain neurons and glia while impeding drug delivery. Here, we conducted single-cell mRNA sequencing of human cerebrovascular cells from 13 surgically resected glioma samples and adjacent normal brain tissue. The transcriptomes of 103,230 cells were mapped, including 57,324 endothelial cells (ECs) and 27,703 mural cells (MCs). Both EC and MC transcriptomes originating from lower-grade glioma were indistinguishable from those of normal brain tissue, whereas transcriptomes from glioblastoma (GBM) displayed a range of abnormalities. Among these, we identified LOXL2-dependent collagen modification as a common GBM-dependent trait and demonstrated that inhibiting LOXL2 enhanced chemotherapy efficacy in both murine and human patient-derived xenograft (PDX) GBM models. Our comprehensive single-cell RNA sequencing-based molecular atlas of the human BBB, coupled with insights into its perturbations in GBM, holds promise for guiding future investigations into brain health, pathology, and therapeutic strategies.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Glioma , Análisis de la Célula Individual , Humanos , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Ratones , Animales , Glioma/metabolismo , Glioma/patología , Células Endoteliales/metabolismo , Transcriptoma , Aminoácido Oxidorreductasas/metabolismo , Aminoácido Oxidorreductasas/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Masculino , Femenino
4.
Chemistry ; 30(50): e202401255, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39162779

RESUMEN

An imbalance in cysteine (Cys) levels in the cells and plasma has been identified as the risk indicator for various human diseases. The structural similarity of cysteine with its congener homocysteine and glutathione offers challenges in its measurement. Herein, we report a hydrogen-bonded organic-inorganic framework of Cu(II) (HOIF) for the selective detection of cysteine over other biothiols. The non-fluorescent HOIF showed 12-fold green emission in the presence of cysteine. The monomeric unit of HOIF is stabilized via intermolecular hydrogen bonds, resulting in a non-porous network structure. Non-interference from homocysteine, glutathione, and other competitive bio-analytes revealed explicit affinity of HOIF for cysteine. Fluorimetric titration showed a wide working concentration window (650 nM-800 µM) for measuring cysteine in an aqueous medium. The mechanistic investigation involving HRMS, EPR, and UV-vis spectroscopic studies revealed the decomplexation of HOIF with Cys, resulting in a fluorescence turn-on response from the luminescent ligand. Validation using a commercial dye, "Cysteine Green", confirmed the prospect of HOIF for early diagnostic purposes. Utilizing the fluorescence turn-on property of HOIF in the presence of cysteine, we measured cysteine quantitatively in the blood plasma samples. Bio-imaging of endogenous cysteine in cancer cells indicated the ability of HOIF to monitor the intracellular cysteine.


Asunto(s)
Cisteína , Enlace de Hidrógeno , Estructuras Metalorgánicas , Cisteína/química , Cisteína/sangre , Humanos , Estructuras Metalorgánicas/química , Cobre/química , Colorantes Fluorescentes/química , Línea Celular Tumoral , Espectrometría de Fluorescencia
5.
Artículo en Inglés | MEDLINE | ID: mdl-39113217

RESUMEN

In this study, a new amperometric biosensor was developed for glucose determination. For this purpose, polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film was prepared by electropolymerization of aniline and pyrrole with poly(sodium-4-styrenesulfonate) on a platinum plate. The best working conditions of the polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film were determined. The glucose oxidase enzyme was immobilized by the entrapment method in polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film. Glucose determination was made based on the oxidation of hydrogen peroxide, which is formed as a result of the enzymatic reaction on the surface of the prepared biosensor at +0.40 V. The working range for the glucose determination of the biosensor was determined. The effects of pH and temperature on the response of the glucose biosensor were investigated. The reusability and shelf life of the biosensor were determined. The effects of interference in biological environments on the response of the biosensor were investigated. Glucose determination was made in the biological fluid (blood) with the prepared biosensor. This study has a feature that sheds light on biosensor studies to be developed for the detection of substances in the human body, such as glucose, uric acid, and urea. This article will set an example for future scientific research on the development of a sensor for other biological fluids in the human body, such as the sensor developed for blood samples. In addition, this developed sensor provides an innovation that improves the quality of life of patients by allowing them to constantly monitor their glucose levels and intervene when necessary.

6.
Sleep Adv ; 5(1): zpae042, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131770

RESUMEN

Study Objectives: Sleep deprivation is highly prevalent and caused by conditions such as night shift work or illnesses like obstructive sleep apnea. Compromised sleep affects cardiovascular-, immune-, and neuronal systems. Recently, we published human serum proteome changes after a simulated night shift. This pilot proteomic study aimed to further explore changes in human blood serum after 6 hours of sleep deprivation at night. Methods: Human blood serum samples from eight self-declared healthy females were analyzed using Orbitrap Eclipse mass spectrometry (MS-MS) and high-pressure liquid chromatography. We used a within-participant design, in which the samples were taken after 6 hours of sleep at night and after 6 hours of sleep deprivation the following night. Systems biological databases and bioinformatic software were used to analyze the data and comparative analysis were done with other published sleep-related proteomic datasets. Results: Out of 494 proteins, 66 were found to be differentially expressed proteins (DEPs) after 6 hours of sleep deprivation. Functional enrichment analysis revealed the associations of these DEPs with several biological functions related to the altered regulation of cellular processes such as platelet degranulation and blood coagulation, as well as associations with different curated gene sets. Conclusions: This study presents serum proteomic changes after 6 hours of sleep deprivation, supports previous findings showing that short sleep deprivation affects several biological processes, and reveals a molecular signature of proteins related to pathological conditions such as altered coagulation and platelet function, impaired lipid and immune function, and cell proliferation. Data are available via ProteomeXchange with identifier PXD045729. This paper is part of the Genetic and other molecular underpinnings of sleep, sleep disorders, and circadian rhythms including translational approaches Collection.

7.
Anal Bioanal Chem ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160437

RESUMEN

Queuosine (Q) is a hypermodified 7-deaza-guanosine nucleoside exclusively synthesized by bacteria. This micronutrient and its respective nucleobase form queuine (q) are salvaged by humans either from gut microflora or digested food. Depletion of Q-tRNA in human or mouse cells causes protein misfolding that triggers endoplasmic reticular stress and the activation of the unfolded protein responses. In vivo, this reduces the neuronal architecture of the mouse brain affecting learning and memory. Herein, a sensitive method for quantifying free q and Q in human blood was developed, optimised and validated. After evaluating q/Q extraction efficiency in several different solid-phase sorbents, Bond Elut PBA (phenylboronic acid) cartridges were found to have the highest extraction recovery for q (82%) and Q (71%) from pooled human plasma. PBS with 4% BSA was used as surrogate matrix for method development and validation. An LC-MS/MS method was validated across the concentration range of 0.0003-1 µM for both q and Q, showing excellent linearity (r2 = 0.997 (q) and r2 = 0.998 (Q)), limit of quantification (0.0003 µM), accuracy (100.39-125.71%) and precision (CV% < 15.68%). In a sampling of healthy volunteers (n = 44), there was no significant difference in q levels between male (n = 14; mean = 0.0068 µM) and female (n = 30; mean = 0.0080 µM) participants (p = 0.50). Q was not detected in human plasma. This validated method can now be used to further substantiate the role of q/Q in nutrition, physiology and pathology.

8.
Elife ; 132024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150053

RESUMEN

Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.


People with diabetes are at greater risk of developing severe COVID-19 and dying from the illness, which is caused by a virus known as SARS-CoV-2. The high blood sugar levels associated with diabetes appear to be a contributing factor to this heightened risk. However, diabetes is a complex condition encompassing a range of metabolic disorders, and it is therefore likely that other factors may contribute. Previous research identified a link between an enzyme called cathepsin L and more severe COVID-19 in people with diabetes. Elevated cathepsin L levels are known to contribute to diabetes complications, such as kidney damage and vision loss. It has also been shown that cathepsin L helps SARS-CoV-2 to enter and infect cells. This raised the question of whether elevated cathepsin L is responsible for the increased COVID-19 vulnerability in patients with diabetes. To investigate, He, Zhao et al. monitored disease severity and cathepsin L levels in patients with COVID-19. This confirmed that people with diabetes had more severe COVID-19 and that higher levels of cathepsin L are linked to more severe disease. Analysis also revealed that cathepsin L activity increases as blood glucose levels increase. In laboratory experiments, cells exposed to glucose or fluid from the blood of people with diabetes were more easily infected with SARS-CoV-2, with cells genetically modified to lack cathepsin L being more resistant to infection. Further experiments revealed this was due to glucose promoting maturation and migration of cathepsin L in the cells. The findings of He, Zhao et al. help to explain why people with diabetes are more likely to develop severe or fatal COVID-19. Therefore, controlling blood glucose levels in people with diabetes may help to prevent or reduce the severity of the disease. Additionally, therapies targeting cathepsin L could also potentially help to treat COVID-19, especially in patients with diabetes, although more research is needed to develop and test these treatments.


Asunto(s)
COVID-19 , Catepsina L , Hiperglucemia , SARS-CoV-2 , COVID-19/mortalidad , COVID-19/metabolismo , Catepsina L/metabolismo , Catepsina L/genética , Humanos , Animales , Ratones , SARS-CoV-2/genética , Masculino , Femenino , Complicaciones de la Diabetes , Persona de Mediana Edad , Comorbilidad , Diabetes Mellitus , Retículo Endoplásmico/metabolismo , Lisosomas/metabolismo , Adulto , Anciano , Aparato de Golgi/metabolismo
9.
Rev Cardiovasc Med ; 25(6): 199, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39076342

RESUMEN

Background: The objective of this study is to estimate the causal relationship between plasma proteins and myocardial infarction (MI) through Mendelian randomization (MR), predict potential target-mediated side effects associated with protein interventions, and ensure a comprehensive assessment of clinical safety. Methods: From 3 proteome genome-wide association studies (GWASs) involving 9775 European participants, 331 unique blood proteins were screened and chosed. The summary data related to MI were derived from a GWAS meta-analysis, incorporating approximately 61,000 cases and 577,000 controls. The assessment of associations between blood proteins and MI was conducted through MR analyses. A phenome-wide MR (Phe-MR) analysis was subsequently employed to determine the potential on-target side effects of protein interventions. Results: Causal mediators for MI were identified, encompassing cardiotrophin-1 (CT-1) (odds ratio [OR] per SD increase: 1.16; 95% confidence interval [CI]: 1.13-1.18; p = 1.29 × 10 - 31 ), Selenoprotein S (SELENOS) (OR: 1.16; 95% CI: 1.13-1.20; p = 4.73 × 10 - 24 ), killer cell immunoglobulin-like receptor 2DS2 (KIR2DS2) (OR: 0.93; 95% CI: 0.90-0.96; p = 1.08 × 10 - 5 ), vacuolar protein sorting-associated protein 29 (VPS29) (OR: 0.92; 95% CI: 0.90-0.94; p = 8.05 × 10 - 13 ), and histo-blood group ABO system transferase (NAGAT) (OR: 1.05; 95% CI: 1.03-1.07; p = 1.41 × 10 - 5 ). In the Phe-MR analysis, memory loss risk was mediated by CT-1, VPS29 exhibited favorable effects on the risk of 5 diseases, and KIR2DS2 showed no predicted detrimental side effects. Conclusions: Elevated genetic predictions of KIR2DS2 and VPS29 appear to be linked to a reduced risk of MI, whereas an increased risk is associated with CT-1, SELENOS, and NAGAT. The characterization of side effect profiles aids in the prioritization of drug targets. Notably, KIR2DS2 emerges as a potentially promising target for preventing and treating MI, devoid of predicted detrimental side effects.

10.
Regen Ther ; 26: 281-289, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38993537

RESUMEN

Introduction: The skin plays a crucial role as a protective barrier against external factors, but disruptions to its integrity can lead to wound formation and hinder the natural healing process. Scar formation and delayed wound healing present significant challenges in skin injury treatment. While alternative approaches such as skin substitutes and tissue engineering exist, they are often limited in accessibility and cost. Exosomes have emerged as a potential solution for wound healing due to their regenerative properties. Methods: In this study, exosomes were isolated from human blood serum using a kit. The exosomes were characterized, and their effects on cell migration were assessed in vitro. Additionally, the wound healing capacity of exosomes was evaluated in vivo using a rat full-thickness wound model. Results: Our in vitro findings revealed that exosomes significantly promoted cell migration. In vivo experiments demonstrated that the injection of exosomes at different areas of the wound accelerated the wound healing process, resulting in wound closure, collagen synthesis, vessel formation, and angiogenesis in the wound area. These results suggest that exosomes have a promising therapeutic potential for expediting wound healing and minimizing scar formation. Conclusions: The findings of this study highlight the potential of exosomes as a novel approach for enhancing wound healing. Exosomes showed positive effects on both cell migration and wound closure in in vitro and in vivo studies, suggesting their potential use as a regenerative therapy for skin injuries. Further research is needed to fully understand the mechanisms underlying the beneficial effects of exosomes on wound healing and to optimize their application in clinical settings.

11.
J Extracell Vesicles ; 13(7): e12470, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001700

RESUMEN

Extracellular vesicles (EVs) have emerged as a promising tool for clinical liquid biopsy. However, the identification of EVs derived from blood samples is hindered by the presence of abundant plasma proteins, which impairs the downstream biochemical analysis of EV-associated proteins and nucleic acids. Here, we employed optimized asymmetric flow field-flow fractionation (AF4) combined with density cushion ultracentrifugation (UC) to obtain high-purity and intact EVs with very low lipoprotein contamination from human plasma and serum. Further proteomic analysis revealed more than 1000 EV-associated proteins, a large proportion of which has not been previously reported. Specifically, we found that cell-line-derived EV markers are incompatible with the identification of plasma-EVs and proposed that the proteins MYCT1, TSPAN14, MPIG6B and MYADM, as well as the traditional EV markers CD63 and CD147, are plasma-EV markers. Benefiting from the high-purity of EVs, we conducted comprehensive miRNA profiling of plasma EVs and nanosized particles (NPs), as well as compared plasma- and serum-derived EVs, which provides a valuable resource for the EV research community. Overall, our findings provide a comprehensive assessment of human blood EVs as a basis for clinical biopsy applications.


Asunto(s)
Vesículas Extracelulares , Ultracentrifugación , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Ultracentrifugación/métodos , Proteómica/métodos , MicroARNs/sangre , Fraccionamiento de Campo-Flujo/métodos , Biomarcadores/sangre , Biopsia Líquida/métodos , Centrifugación por Gradiente de Densidad/métodos
12.
Biomed Res Int ; 2024: 2222098, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015602

RESUMEN

In this study, we aimed to isolate and purify catalase from human blood erythrocytes by using a newly synthesized affinity gel. The synthesized ω-amino hexyl agarose-1,2,3-triazole-5-carboxylic acid affinity gel was analyzed by FT-IR. Then, different buffer, pH, and ionic strength parameters were optimized to determine the equilibration, washing, and elution buffer conditions. The catalase was purified from human blood erythrocytes with a specific activity of 45.58 EU/mg, purification fold of 529.50, and a yield of 0.416% using the synthesized new affinity gel. The purity and molecular weight of the enzyme were analyzed by SDS-PAGE, and a single band at 60 kDa was observed for catalase. The optimum reaction temperature of the catalase was found to be 30°C, while the thermal stability temperature was 60°C. The Km and Vmax of the enzyme for hydrogen peroxide were calculated at 0.125 mM and 2500 U mL-1, respectively.


Asunto(s)
Catalasa , Cromatografía de Afinidad , Eritrocitos , Humanos , Catalasa/química , Catalasa/aislamiento & purificación , Catalasa/metabolismo , Eritrocitos/enzimología , Cromatografía de Afinidad/métodos , Concentración de Iones de Hidrógeno , Temperatura , Estabilidad de Enzimas , Cinética , Peróxido de Hidrógeno/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Peso Molecular
13.
Lasers Med Sci ; 39(1): 175, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970671

RESUMEN

This study aimed to identify differences in the composition of whole blood of patients with chronic kidney disease (CKD), before and after a hemodialysis session (HDS), and possible differences in blood composition between stages and between genders using Raman spectroscopy and principal component analysis (PCA). Whole blood samples were collected from 40 patients (20 women and 20 men), before and after a HDS. Raman spectra were obtained and the spectra were evaluated by PCA and partial least squares (PLS) regression. Mean spectra and difference spectrum between the groups were calculated: stages Before and After HDS, and gender Women and Men, which had their most intense peaks identified. Stage: mean spectra and difference spectrum indicated positive peaks that could be assigned to red blood cells, hemoglobin and deoxi-hemoglobin in the group Before HDS. There was no statistically significant difference by PCA. Gender: mean spectra and difference spectrum Before HDS indicated positive peaks that could be assigned to red blood cells, hemoglobin and deoxi-hemoglobin with greater intensity in the group Women, and negative peaks to white blood cells and serum, with greater intensity in the group Men. There was statistically significant difference by PCA, which also identified the peaks assigned to white blood cells, serum and porphyrin for Women and red blood cells and amino acids (tryptophan) for Men. PLS model was able to classify the spectra of the gender with 83.7% accuracy considering the classification per patient. The Raman technique highlighted gender differences in pacients with CKD.


Asunto(s)
Análisis de Componente Principal , Diálisis Renal , Insuficiencia Renal Crónica , Espectrometría Raman , Humanos , Masculino , Femenino , Espectrometría Raman/métodos , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/sangre , Persona de Mediana Edad , Adulto , Anciano , Hemoglobinas/análisis , Eritrocitos/química , Análisis de los Mínimos Cuadrados
14.
Genes (Basel) ; 15(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38927665

RESUMEN

BACKGROUND: Unbalances in the gut microbiota have been proposed as a possible cause of esophageal cancer (ESCA), yet the exact causal relationship remains unclear. PURPOSE: To investigate the potential causal relationship between the gut microbiota and ESCA with Mendelian randomization (MR) analysis. METHODS: Genome-wide association studies (GWASs) of 207 gut microbial taxa (5 phyla, 10 classes, 13 orders, 26 families, 48 genera, and 105 species) and 205 gut microbiota metabolic pathways conducted by the Dutch Microbiome Project (DMP) and a FinnGen cohort GWAS of esophageal cancer specified the summary statistics. To investigate the possibility of a mediation effect between the gut microbiota and ESCA, mediation MR analyses were performed for 1091 blood metabolites and 309 metabolite ratios. RESULTS: MR analysis indicated that the relative abundance of 10 gut microbial taxa was associated with ESCA but all the 12 gut microbiota metabolic pathways with ESCA indicated no statistically significant association existing. Two blood metabolites and a metabolite ratio were discovered to be mediating factors in the pathway from gut microbiota to ESCA. CONCLUSION: This research indicated the potential mediating effects of blood metabolites and offered genetic evidence in favor of a causal correlation between gut microbiota and ESCA.


Asunto(s)
Neoplasias Esofágicas , Microbioma Gastrointestinal , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/microbiología , Neoplasias Esofágicas/sangre , Microbioma Gastrointestinal/genética , Metaboloma
15.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928414

RESUMEN

Application of laser-generated electron beams in radiotherapy is a recent development. Accordingly, mechanisms of biological response to radiation damage need to be investigated. In this study, telomere length (TL) as endpoint of genetic damage was analyzed in human blood cells (leukocytes) and K562 leukemic cells irradiated with laser-generated ultrashort electron beam. Metaphases and interphases were analyzed in quantitative fluorescence in situ hybridization (Q-FISH) to assess TL. TLs were shortened compared to non-irradiated controls in both settings (metaphase and interphase) after irradiation with 0.5, 1.5, and 3.0 Gy in blood leukocytes. Radiation also caused a significant TL shortening detectable in the interphase of K562 cells. Overall, a negative correlation between TL and radiation doses was observed in normal and leukemic cells in a dose-dependent manner. K562 cells were more sensitive than normal blood cells to increasing doses of ultrashort electron beam radiation. As telomere shortening leads to genome instability and cell death, the results obtained confirm the suitability of this biomarker for assessing genotoxic effects of accelerated electrons for their further use in radiation therapy. Observed differences in TL shortening between normal and K562 cells provide an opportunity for further development of optimal radiation parameters to reduce side effects in normal cells during radiotherapy.


Asunto(s)
Electrones , Leucocitos , Telómero , Humanos , Células K562 , Leucocitos/efectos de la radiación , Leucocitos/metabolismo , Telómero/efectos de la radiación , Telómero/genética , Telómero/metabolismo , Leucemia/genética , Leucemia/patología , Leucemia/radioterapia , Homeostasis del Telómero/efectos de la radiación , Hibridación Fluorescente in Situ , Acortamiento del Telómero/efectos de la radiación , Daño del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación
16.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857395

RESUMEN

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Asunto(s)
Diferenciación Celular , Fagocitos , Humanos , Fagocitos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia/genética , Leucemia/patología , Leucemia/metabolismo , Ingeniería de Proteínas/métodos , Fagocitosis
17.
Cell Stem Cell ; 31(6): 818-833.e11, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38754427

RESUMEN

The human blood-brain barrier (hBBB) is a highly specialized structure that regulates passage across blood and central nervous system (CNS) compartments. Despite its critical physiological role, there are no reliable in vitro models that can mimic hBBB development and function. Here, we constructed hBBB assembloids from brain and blood vessel organoids derived from human pluripotent stem cells. We validated the acquisition of blood-brain barrier (BBB)-specific molecular, cellular, transcriptomic, and functional characteristics and uncovered an extensive neuro-vascular crosstalk with a spatial pattern within hBBB assembloids. When we used patient-derived hBBB assembloids to model cerebral cavernous malformations (CCMs), we found that these assembloids recapitulated the cavernoma anatomy and BBB breakdown observed in patients. Upon comparison of phenotypes and transcriptome between patient-derived hBBB assembloids and primary human cavernoma tissues, we uncovered CCM-related molecular and cellular alterations. Taken together, we report hBBB assembloids that mimic the core properties of the hBBB and identify a potentially underlying cause of CCMs.


Asunto(s)
Barrera Hematoencefálica , Hemangioma Cavernoso del Sistema Nervioso Central , Organoides , Células Madre Pluripotentes , Humanos , Organoides/patología , Organoides/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/metabolismo , Células Madre Pluripotentes/metabolismo , Modelos Biológicos
18.
BMC Med Genomics ; 17(1): 147, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807172

RESUMEN

BACKGROUND: Human blood metabolites have demonstrated close associations with chronic kidney disease (CKD) in observational studies. Nonetheless, the causal relationship between metabolites and CKD is still unclear. This study aimed to assess the associations between metabolites and CKD risk. METHODS: We applied a two-sample Mendelian randomization (MR) analysis to evaluate relationships between 1400 blood metabolites and eight phenotypes (outcomes) (CKD, estimated glomerular filtration rate(eGFR), urine albumin to creatinine ratio, rapid progress to CKD, rapid decline of eGFR, membranous nephropathy, immunoglobulin A nephropathy, and diabetic nephropathy). The inverse variance weighted (IVW), MR-Egger, and weighted median were used to investigate the causal relationship. Sensitivity analyses were performed with Cochran's Q, MR-Egger intercept, MR-PRESSO Global test, and leave-one-out analysis. Bonferroni correction was used to test the strength of the causal relationship. RESULTS: Through the MR analysis of 1400 metabolites and eight clinical phenotypes, a total of 48 metabolites were found to be associated with various outcomes. Among them, N-acetylleucine (OR = 0.923, 95%CI: 0.89-0.957, PIVW = 1.450 × 10-5) has a strong causal relationship with lower risk of CKD after the Bonferroni-corrected test, whereas Glycine to alanine ratio has a strong causal relationship with higher risk of CKD (OR = 1.106, 95%CI: 1.063-1.151, PIVW = 5.850 × 10-7). No horizontal pleiotropy and heterogeneity were detected. CONCLUSION: Our study offers groundbreaking insights into the integration of metabolomics and genomics to reveal the pathogenesis of and therapeutic strategies for CKD. It underscores 48 metabolites as potential causal candidates, meriting further investigation.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/genética , Fenotipo , Metaboloma , Metabolómica , Tasa de Filtración Glomerular , Biomarcadores/sangre
19.
Anal Biochem ; 692: 115574, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38782251

RESUMEN

Ascorbic acid (AA), a prominent antioxidant commonly found in human blood serum, serves as a biomarker for assessing oxidative stress levels. Therefore, precise detection of AA is crucial for swiftly diagnosing conditions arising from abnormal AA levels. Consequently, the primary aim of this research is to develop a sensitive and selective electrochemical sensor for accurate AA determination. To accomplish this aim, we used a novel nanocomposite comprised of CeO2-doped ZnO adorned on biomass-derived carbon (CeO2·ZnO@BC) as the active nanomaterial, effectively fabricating a glassy carbon electrode (GCE). Various analytical techniques were employed to scrutinize the structure and morphology features of the CeO2·ZnO@BC nanocomposite, ensuring its suitability as the sensing nanomaterial. This innovative sensor is capable of quantifying a wide range of AA concentrations, spanning from 0.5 to 1925 µM in a neutral phosphate buffer solution. It exhibits a remarkable sensitivity of 0.2267 µA µM-1cm-2 and a practical detection limit of 0.022 µM. Thanks to its exceptional sensitivity and selectivity, this sensor enables highly accurate determination of AA concentrations in real samples. Moreover, its superior reproducibility, repeatability, and stability underscore its reliability and robustness for AA quantification.


Asunto(s)
Ácido Ascórbico , Carbono , Cerio , Técnicas Electroquímicas , Nanocompuestos , Óxido de Zinc , Ácido Ascórbico/análisis , Ácido Ascórbico/química , Ácido Ascórbico/sangre , Nanocompuestos/química , Óxido de Zinc/química , Técnicas Electroquímicas/métodos , Cerio/química , Carbono/química , Humanos , Biomasa , Electrodos , Límite de Detección
20.
Environ Int ; 188: 108751, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761430

RESUMEN

Microplastics (MPs) are an everyday part of life, and are now ubiquitous in the environment. Crucially, MPs have not just been found within the environment, but also within human bodies, including the blood. We aimed to provide novel information on the range of MP polymer types present, as well as their size and shape characteristics, in human whole blood from 20 healthy volunteers. Twenty-four polymer types were identified from 18 out of 20 (90 %) donors and quantified in blood, with the majority observed for the first time. Using an LOQ approach, five polymer types met the threshold with a lower mean ± SD of 2466 ± 4174 MP/L. The concentrations of plastics analysed in blood samples ranged from 1.84 - 4.65 µg/mL. Polyethylene (32 %), ethylene propylene diene (14 %), and ethylene-vinyl-acetate/alcohol (12 %) fragments were the most abundant. MP particles that were identified within the blood samples had a mean particle length of 127.99 ± 293.26 µm (7-3000 µm), and a mean particle width of 57.88 ± 88.89 µm (5-800 µm). The MPs were predominantly categorised as fragments (88 %) and were white/clear (79 %). A variety of plastic additive chemicals were identified including endocrine disrupting-classed phthalates. The procedural blank samples comprised 7 polymer types, that were distinct from those identified in blood, mainly resin (25 %), polyethylene terephthalate (17 %), and polystyrene (17 %) with a mean ± SD of 4.80 ± 5.59 MP/L. This study adds to the growing evidence that MPs are taken up into the human body and are transported via the bloodstream. The shape and sizes of the particles raise important questions with respect to their presence and associated hazards in terms of potential detrimental impacts such as vascular inflammation, build up within major organs, and changes to either immune cell response, or haemostasis and thrombosis.


Asunto(s)
Microplásticos , Humanos , Microplásticos/análisis , Polímeros , Adulto , Masculino , Femenino , Plásticos , Monitoreo del Ambiente/métodos , Adulto Joven , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA