Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Hepatol ; 71(1): 78-90, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30880225

RESUMEN

BACKGROUND & AIMS: A causal link has recently been established between epigenetic alterations and hepatocarcinogenesis, indicating that epigenetic inhibition may have therapeutic potential. We aimed to identify and target epigenetic modifiers that show molecular alterations in hepatocellular carcinoma (HCC). METHODS: We studied the molecular-clinical correlations of epigenetic modifiers including bromodomains, histone acetyltransferases, lysine methyltransferases and lysine demethylases in HCC using The Cancer Genome Atlas (TCGA) data of 365 patients with HCC. The therapeutic potential of epigenetic inhibitors was evaluated in vitro and in vivo. RNA sequencing analysis and its correlation with expression and clinical data in the TCGA dataset were used to identify expression programs normalized by Jumonji lysine demethylase (JmjC) inhibitors. RESULTS: Genetic alterations, aberrant expression, and correlation between tumor expression and poor patient prognosis of epigenetic enzymes are common events in HCC. Epigenetic inhibitors that target bromodomain (JQ-1), lysine methyltransferases (BIX-1294 and LLY-507) and JmjC lysine demethylases (JIB-04, GSK-J4 and SD-70) reduce HCC aggressiveness. The pan-JmjC inhibitor JIB-04 had a potent antitumor effect in tumor bearing mice. HCC cells treated with JmjC inhibitors showed overlapping changes in expression programs related with inhibition of cell proliferation and induction of cell death. JmjC inhibition reverses an aggressive HCC gene expression program that is also altered in patients with HCC. Several genes downregulated by JmjC inhibitors are highly expressed in tumor vs. non-tumor parenchyma, and their high expression correlates with a poor prognosis. We identified and validated a 4-gene expression prognostic signature consisting of CENPA, KIF20A, PLK1, and NCAPG. CONCLUSIONS: The epigenetic alterations identified in HCC can be used to predict prognosis and to define a subgroup of high-risk patients that would potentially benefit from JmjC inhibitor therapy. LAY SUMMARY: In this study, we found that mutations and changes in expression of epigenetic modifiers are common events in human hepatocellular carcinoma, leading to an aggressive gene expression program and poor clinical prognosis. The transcriptional program can be reversed by pharmacological inhibition of Jumonji enzymes. This inhibition blocks hepatocellular carcinoma progression, providing a novel potential therapeutic strategy.


Asunto(s)
Antineoplásicos/farmacología , Carcinogénesis , Carcinoma Hepatocelular , Epigénesis Genética/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Neoplasias Hepáticas , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proteína A Centromérica/genética , Descubrimiento de Drogas , Humanos , Cinesinas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Ratones , Mutación , Pronóstico , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Transcriptoma , Quinasa Tipo Polo 1
2.
Oncotarget ; 8(46): 80235-80248, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-29113298

RESUMEN

New therapies are needed for advanced hepatocellular carcinoma (HCC) and the use of mesenchymal stromal cells (MSCs) carrying therapeutic genes is a promising strategy. HCC produce cytokines recruiting MSCs to the tumor milieu and modifying its biological properties. Our aim was to study changes generated on human MSCs exposed to conditioned media (CM) derived from human HCC fresh samples and xenografts. All CM shared similar cytokines expression pattern including CXCL1-2-3/GRO, CCL2/MCP-1 and CXCL8/IL-8 being the latter with the highest concentration. Neutralizing and knockdown experiments of CCL2/MCP-1, CXCL8/IL-8, CXCR1 and CXCR2 reduced in vitro MSC migration of ≥20%. Simultaneous CXCR1 and CXCR2 neutralization resulted in 50% of MSC migration inhibition. MSC stimulated with CM (sMSC) from HuH7 or HC-PT-5 showed a 2-fold increase of migration towards the CM compared with unstimulated MSC (usMSC). Gene expression profile of sMSC showed ~500 genes differentially expressed compared with usMSC, being 46 genes related with cell migration and invasion. sMSC increased fibroblasts and endothelial cells chemotaxis. Finally, sMSC with HuH7 CM and then inoculated in HCC tumor bearing-mice did not modify tumor growth. In this work we characterized factors produced by HCC responsible for the changes in MSC chemotactic capacity with would have an impact on therapeutic use of MSCs for human HCC.

3.
Biol. Res ; 48: 1-7, 2015. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-950782

RESUMEN

BACKGROUND: Ubiquitin Specific Peptidase 39 (USP39) is a 65 kDa SR-related protein involved in RNA splicing. Previous studies showed that USP39 is related with tumorigenesis of human breast cancer cells. RESULTS: In the present study, we investigated the functions of USP39 in human hepatocellular carcinoma (HCC) cell line SMMC-7721. We knocked down the expression of USP39 through lentivirus mediated RNA interference. The results of qRT-PCR and western blotting assay showed that both the mRNA and protein levels were suppressed efficiently after USP39 specific shRNA was delivered into SMMC-7721 cells. Cell growth was significantly inhibited as determined by MTT assay. Crystal violet staining indicated that colony numbers and sizes were both reduced after knock-down of USP39. Furthermore, suppression of USP39 arrested cell cycle progression at G2/M phase in SMMC-7721cells. In addition, Annexin V showed that downregulation of USP39 significantly increased the population of apoptotic cells. CONCLUSIONS: All our results suggest that USP39 is important for HCC cell proliferation and is a potential target for molecular therapy of HCC.


Asunto(s)
Humanos , Ciclo Celular , Carcinoma Hepatocelular/patología , Lentivirus/genética , Interferencia de ARN/fisiología , Proliferación Celular , Proteasas Ubiquitina-Específicas/metabolismo , Neoplasias Hepáticas/patología , Proteínas de Neoplasias/metabolismo , Técnicas In Vitro , Regulación Neoplásica de la Expresión Génica/genética , Ciclo Celular/genética , Western Blotting , Apoptosis , Técnicas de Transferencia de Gen , Carcinoma Hepatocelular/enzimología , Silenciador del Gen , Línea Celular Tumoral , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteasas Ubiquitina-Específicas/genética , Neoplasias Hepáticas/enzimología , Proteínas de Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA